JPH0756893B2 - Method of manufacturing radiation resistant MIS type semiconductor integrated circuit - Google Patents

Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Info

Publication number
JPH0756893B2
JPH0756893B2 JP63308194A JP30819488A JPH0756893B2 JP H0756893 B2 JPH0756893 B2 JP H0756893B2 JP 63308194 A JP63308194 A JP 63308194A JP 30819488 A JP30819488 A JP 30819488A JP H0756893 B2 JPH0756893 B2 JP H0756893B2
Authority
JP
Japan
Prior art keywords
region
oxide film
forming
element isolation
field oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63308194A
Other languages
Japanese (ja)
Other versions
JPH02153571A (en
Inventor
理夫 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63308194A priority Critical patent/JPH0756893B2/en
Publication of JPH02153571A publication Critical patent/JPH02153571A/en
Publication of JPH0756893B2 publication Critical patent/JPH0756893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐放射線性を有するMIS型半導体集積回路の製
造方法に関し、特に素子分離領域の漏れ電流を低減する
方法に関する。
The present invention relates to a method for manufacturing a radiation-resistant MIS semiconductor integrated circuit, and more particularly to a method for reducing leakage current in an element isolation region.

〔従来の技術〕[Conventional technology]

一般にnMOSトランジスタに電子線,陽子線,γ線等の電
離性放射線を照射すると、ゲート酸化膜中に電子−正孔
対が発生し、そのうちの正孔が酸化膜中のトラップに捕
捉され正の固定電荷となって蓄積されるためしきい電圧
が負方向にシフトするという現象が起こる。その変動量
はゲート酸化膜厚の1〜3乗に比例すると言われてお
り、膜厚が厚いほど変動量は大きいことかがわかってい
る。したがって素子間分離のために通常用いられるフィ
ールド酸化膜のところでは、寄生的に形成されるMOS構
造のしきい電圧シフトはフィールド酸化膜が厚いため極
めて大きくなる。例えば500nm厚の場合には105rad(S
i)の吸収線量で数十Vもの変動になる。この結果、初
期の寄生MOSトランジスタの素子分離耐圧が20V程度あっ
ても105rad(Si)の被曝後には0V以下となってしまい、
素子間漏電流が増加してLSIとして使用に耐えなくなっ
てしまう。
In general, when an nMOS transistor is exposed to ionizing radiation such as an electron beam, a proton beam, or a γ-ray, electron-hole pairs are generated in the gate oxide film, and the holes are trapped in a trap in the oxide film to generate positive ions. Since the charge is accumulated as fixed charges, the threshold voltage shifts in the negative direction. It is said that the variation is proportional to the gate oxide film thickness to the first to third powers, and it is known that the greater the film thickness, the greater the variation. Therefore, at the field oxide film normally used for element isolation, the threshold voltage shift of the parasitically formed MOS structure becomes extremely large because the field oxide film is thick. For example, for a thickness of 500 nm, 10 5 rad (S
The absorbed dose of i) changes by several tens of volts. As a result, after the exposure of the initial parasitic MOS isolation breakdown voltage of the transistor is about 20V there be 10 5 rad (Si) becomes less 0V,
The leakage current between elements increases and it becomes unusable as an LSI.

この対策として従来取られてる手段に、昭和60年特許願
第5411号の明細書に記載されているMOSトランジスタが
ある。これは、第3図に示すように、素子分離耐圧を上
げるため、酸化膜の薄い領域にまで分離領域を拡大した
もので、フィールド酸化膜端(A)から能動領域側に距
離をとってソース・ドレイン領域6を形成している。さ
らに、フィールド酸化膜端とソース・ドレイン領域6の
間のシリコン基板表面には、分離耐圧を上げるために比
較的高濃度のp型不純物層5を形成し、しきい電圧を上
げて素子間漏れ電流を防止している。
A MOS transistor described in the specification of Japanese Patent Application No. 5411 in 1985 is one of the measures that has been taken as a countermeasure against this problem. As shown in FIG. 3, the isolation region is expanded to a region where the oxide film is thin in order to increase the element isolation breakdown voltage. The field oxide film end (A) is spaced from the active region side to the source region. -The drain region 6 is formed. Further, on the surface of the silicon substrate between the end of the field oxide film and the source / drain region 6, a relatively high concentration p-type impurity layer 5 is formed to increase the isolation breakdown voltage, and the threshold voltage is increased to increase the leakage between the elements. Preventing current.

第3図の構造の製造方法を第4図に示す。まず選択酸化
法によりフィールド酸化膜2を形成して後(同図
(a))、素子間漏れ電流防止層であるp層5をフィー
ルド酸化膜端に接する能動領域周辺にイオン注入法を用
いてボロンを打込むことにより形成し(同図(b))、
さらにゲート電極4を能動領域内に形成した後で、ソー
ス・ドレイン領域となるn+層6をフィールド酸化膜端か
らdだけ離れた位置にイオン注入法を用いて形成する
(同図(c))。この距離dは漏れ電流防止の効果を確
保するためには漏れ防止層(5)の幅がある程度以上に
なるように取る必要があるが、あまり大きく選ぶと集積
度が悪くなるため通常2μm程度を用いている。また、
漏れ防止層(5)とソース・ドレイン領域のn+層6とは
接していなくても良いが、やはり集積度を悪化させない
ためには接する位置に形成せざるを得ない。
A method of manufacturing the structure of FIG. 3 is shown in FIG. First, after forming the field oxide film 2 by the selective oxidation method (FIG. 9A), the p layer 5 which is an inter-element leakage current prevention layer is formed by ion implantation around the active region in contact with the edge of the field oxide film. It is formed by implanting boron (Fig. (B)),
Further, after the gate electrode 4 is formed in the active region, the n + layer 6 serving as the source / drain region is formed at a position separated by d from the end of the field oxide film by using the ion implantation method (FIG. 7C). ). This distance d needs to be set so that the width of the leakage prevention layer (5) becomes a certain amount or more in order to secure the effect of preventing the leakage current, but if it is selected too large, the integration degree will be deteriorated, so that it is usually about 2 μm. I am using. Also,
The leakage prevention layer (5) and the n + layer 6 in the source / drain regions may not be in contact with each other, but in order to prevent the integration degree from being deteriorated, the leakage prevention layer (5) has to be formed in a contact position.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した従来の耐放射線性MIS型半導体集積回路の製造
方法においては、放射線被曝後の素子間漏れ電流を抑制
するためフィールド酸化膜端とソース・ドレイン領域の
間の素子形成領域内にp層を形成する工程を有してい
る。耐放射線性を向上させるにはp層の濃度を上げるこ
とが望ましいが、前述のようにp層のソース・ドレイン
のn+層は境界を接しているためあまり高濃度化すると接
合耐圧が低下する。ちなみに、その上限濃度はおよそ10
17cm-3程度である。
In the conventional method for manufacturing a radiation-resistant MIS type semiconductor integrated circuit described above, a p-layer is formed in the element formation region between the field oxide film edge and the source / drain region in order to suppress the leakage current between the elements after exposure to radiation. It has a forming process. To improve radiation resistance, it is desirable to increase the concentration of the p-layer, but as described above, the n + layers of the source and drain of the p-layer are in contact with each other at the boundary, so if the concentration is too high, the junction breakdown voltage decreases. . By the way, the upper limit concentration is about 10
It is about 17 cm -3 .

結果として従来製造方法による素子間漏れ電流防止は完
全ではなく、耐放射線性の大幅な改善が望めないという
欠点がある。
As a result, there is a drawback that the prevention of leakage current between elements by the conventional manufacturing method is not perfect, and a large improvement in radiation resistance cannot be expected.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の耐放射線性MIS型半導体集積回路の製造方法
は、素子間分離酸化膜形成を選択酸化法により行う工程
と、前記素子間分離酸化膜で区画された素子形成領域に
MISトランジスタのゲード電極,ドレイン・ソース領域
の形成を行ったあとでp型不純物のイオン注入を選択的
に行うことによって少なくとも素子間分離酸化膜のバー
ズビーク部下に高濃度のp型領域を形成すると同時に素
子間分離酸化膜全面に不純物を導入する工程とを有する
というものである。
A method of manufacturing a radiation resistant MIS type semiconductor integrated circuit according to the present invention comprises a step of forming an element isolation oxide film by a selective oxidation method, and an element formation region partitioned by the element isolation oxide film.
After the gate electrode of the MIS transistor and the drain / source regions are formed, a high concentration p-type region is formed at least under the bird's beak portion of the inter-element isolation oxide film by selectively performing ion implantation of p-type impurities. And a step of introducing impurities into the entire surface of the element isolation oxide film.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図(a)〜(c)は、本発明の第1の実施例の説明
をするための工程順に配置した半導体チップの断面図で
ある。
1A to 1C are sectional views of semiconductor chips arranged in the order of steps for explaining the first embodiment of the present invention.

まず選択酸化法を用いてフィールド酸化膜102(素子間
分離酸化膜)を形成し、フィールド酸化膜で区画された
素子形成領域にフィールド酸化膜からソース・ドレイン
領域(106)が1〜2μm程度離れた位置に来るように
トランジスタを形成する(同図(a))。続いてフィー
ルド酸化膜の表面を除き全て覆われるようにアルミニウ
ム等のイオン注入マスク材(I/Iマスク材108)でパター
ンを形成する。その後全面に極めて高濃度(例えば1015
〜1016個/cm2の注入量)のボロンをイオン注入し、選
択酸化法で形成したフィールド酸化膜102をボロンガラ
ス(BSG)化すると同時にフィールド酸化膜端の傾斜部
(バーズビーク部)の下のp型シリコン基板101表面に
は高濃度のp+層110を形成する(同図(b))。このと
き、注入エネルギーを制御することにより、BSG膜109の
部分の厚さがある程度決められる。フィールド酸化膜が
全てBSG膜化するのが望ましいが、そうでなくとも良
い。続いてI/Iマスク材108を除去して同図(c)の構造
を得る。素子分離領域のフィールド酸化膜がBSG化する
と、BSG膜化した領域では放射線被曝時に発生する電子
−正孔対が膜内に多量に存在するトラップに両方とも捕
えられ電気的には中性となるため、BSG膜化した分だけ
電子−正孔対の発生領域が減少したのと等価である。し
たがって前述したように寄生MOS構造のしきい電圧のシ
フトは実効的な酸化膜厚が減るので小さくなる。第5図
は耐放射線性が改善される一例を示したもので、ΔVFB
はMOS構造のフラットバンド電圧のシフト量である。BSG
膜化することにより大幅なΔVFBの減少が見られる。
First, the field oxide film 102 (inter-element isolation oxide film) is formed by using the selective oxidation method, and the source / drain region (106) is separated from the field oxide film by about 1 to 2 μm in the element formation region partitioned by the field oxide film. The transistor is formed so as to come to the open position ((a) in the same figure). Then, a pattern is formed with an ion implantation mask material (I / I mask material 108) such as aluminum so as to cover all but the surface of the field oxide film. After that, extremely high concentration (eg 10 15
The field oxide film 102 formed by the selective oxidation method is converted into boron glass (BSG) by ion-implanting boron (a dose of up to 10 16 pieces / cm 2 ), and at the same time, under the inclined portion (bird's beak portion) of the end of the field oxide film. A high-concentration p + layer 110 is formed on the surface of the p-type silicon substrate 101 (FIG. 3B). At this time, the thickness of the portion of the BSG film 109 is determined to some extent by controlling the implantation energy. Although it is desirable that all the field oxide films be BSG films, this is not necessary. Then, the I / I mask material 108 is removed to obtain the structure shown in FIG. When the field oxide film in the element isolation region becomes BSG, electron-hole pairs generated during radiation exposure in the BSG film-formed region are both trapped in a large amount of traps in the film and become electrically neutral. Therefore, it is equivalent to reducing the generation region of electron-hole pairs by the amount of the BSG film. Therefore, as described above, the shift of the threshold voltage of the parasitic MOS structure becomes small because the effective oxide film thickness decreases. Fig. 5 shows an example of improved radiation resistance. ΔVFB
Is the shift amount of the flat band voltage of the MOS structure. BSG
A significant decrease in ΔVFB is seen by forming a film.

フィールド酸化膜がBSG膜化する効果の他に第1図
(c)の構造ではバーズビーク部の下のp型シリコン基
板表面には極めて高濃度のp+領域110が形成されその濃
度は1019〜1020cm-3にもなる(素子形成領域側にはほと
んど侵入していないので、n+層106と分離しても集積度
の低下は招かない)。したがって第3図の従来構造にお
いて説明したp層よりも放射線被曝後の素子間漏れ電流
防止効果は格段に大きい。
In addition to the effect that the field oxide film becomes a BSG film, in the structure of FIG. 1 (c), an extremely high concentration p + region 110 is formed on the surface of the p-type silicon substrate below the bird's beak portion, and the concentration is 10 19 to It is as high as 10 20 cm -3 (since it hardly penetrates into the element formation region side, separation from the n + layer 106 does not reduce the degree of integration). Therefore, the effect of preventing inter-element leakage current after radiation exposure is much greater than that of the p-layer described in the conventional structure of FIG.

第2図(a)〜(c)は本発明の第2の実施例の説明を
行うための工程順に配置した半導体チップの断面図であ
る。
FIGS. 2A to 2C are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the second embodiment of the present invention.

この実施例は本発明を相補型MOS半導体集積回路の製造
に適用したもので、まずp型シリコン基板201上にnウ
ェル211を形成し、さらに選択酸化法を用いてフィール
ド酸化膜202と形成した後、トランジスタのゲート電極2
04−1,2−4−2を形成する。続いてnMOSトランジスタ
のソース・ドレイン領域206を素子分離領域から離して
形成し同図(a)の構造を得る。次に前述の実施例と同
様にフィールド酸化膜のBSG膜化を行うが、このときの
イオン注入マスク材208はnMOSトランジスタを形成する
側だけフィールド酸化膜以外の部分を覆うようにする。
続いてボロン等のp型不純物のイオン注入を行い、同図
(b)に示したようにフィールド酸化膜のBSG膜化,バ
ーズビーク下の高濃度のp+領域210の形成、およびpMOS
トランジスタのソース・ドレイン領域212の形成を同時
に行う。その後、マスク材を除去して同図(c)の構造
を得る。以後通常の工程を用いて集積回路装置を形成す
れば良い。このようにすると、フィールド酸化膜のBSG
膜化のためのパターニング工程をpMOSトランジスタのソ
ース・ドレイン領域形成のためのパターニング工程と共
用でき従来と同じパターニング回数で耐放射線性に優れ
たCMOS集積回路を形成できる。
In this embodiment, the present invention is applied to the manufacture of a complementary MOS semiconductor integrated circuit. First, an n well 211 is formed on a p-type silicon substrate 201, and then a field oxide film 202 is formed by using a selective oxidation method. After, the gate electrode 2 of the transistor
04-1 and 2-4-2 are formed. Subsequently, the source / drain region 206 of the nMOS transistor is formed apart from the element isolation region to obtain the structure of FIG. Next, the field oxide film is formed into a BSG film in the same manner as in the above-described embodiment, but the ion implantation mask material 208 at this time covers the portion other than the field oxide film only on the side where the nMOS transistor is formed.
Then, ion implantation of p-type impurities such as boron is performed to form a field oxide film as a BSG film, a high-concentration p + region 210 under the bird's beak, and a pMOS as shown in FIG.
The source / drain regions 212 of the transistor are formed simultaneously. Then, the mask material is removed to obtain the structure shown in FIG. After that, the integrated circuit device may be formed by using a normal process. In this way, the field oxide BSG
The patterning process for forming a film can be shared with the patterning process for forming the source / drain regions of the pMOS transistor, and a CMOS integrated circuit excellent in radiation resistance can be formed with the same number of patterning times as the conventional one.

なお、上に述べたのはp型シリコン基板,nウェルを用い
る相補型MOSデバイスの例であったが、p型シリコン基
板,nウェル,pウェル方式でも同じように適用できること
は明らかである。またエピタキシャル基板や絶縁基板上
に形成する相補型MOSデバイスに対しても同様である。
It should be noted that the above description is an example of the complementary MOS device using the p-type silicon substrate and the n-well, but it is clear that the same can be applied to the p-type silicon substrate, the n-well and the p-well system. The same applies to complementary MOS devices formed on an epitaxial substrate or an insulating substrate.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明では予め選択酸化法で形成し
たフィールド酸化膜領域に極めて高濃度のp型不純物を
導入することによりフィールド領域の耐放射線性を高め
ると同時に、バーズビーク下の基板表面に高濃度のp+
を形成し素子分離耐圧を大幅に高め、それらの相乗作用
により放射線被曝後の素子間漏れ電流をほぼ完全に抑制
することができる耐放射線性MIS型半導体装置を製造で
きる効果がある。
As described above, according to the present invention, the radiation resistance of the field region is enhanced by introducing an extremely high concentration of p-type impurities into the field oxide film region formed in advance by the selective oxidation method, and at the same time, the substrate surface under the bird's beak is highly protected. It is possible to manufacture a radiation resistant MIS type semiconductor device in which a p + layer of high concentration is formed, the element isolation breakdown voltage is significantly increased, and the synergistic effect of them can almost completely suppress the interelement leakage current after radiation exposure. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は本発明の第1の実施例の説明に
用いる工程順に配置した半導体チップの断面図、第2図
(a)〜(c)は本発明の第2の実施例の説明に用いる
工程順に配置した半導体チップの断面図、第3図は従来
の耐放射線性nMOSトランジスタを有す半導体チップの断
面図、第4図(a)〜(d)は従来の耐放射線性nMOSト
ランジスタの製造方法を説明するための工程順に配置し
た半導体チップの断面図、第5図は熱酸化膜とBSG膜の
耐放射線特性を示す特性図である。 1,101,201……P型シリコン基板、2,102,202……フィー
ルド酸化膜、3,103,203……ゲート酸化膜、4,104,204−
1,204−2……n+層、7−1,7−2,108,208……イオン注
入マスク材、109,209……BSG膜、110,210……p+層、211
……nウェル。
1 (a) to 1 (c) are sectional views of semiconductor chips arranged in the order of steps used for explaining the first embodiment of the present invention, and FIGS. 2 (a) to 2 (c) are second embodiment of the present invention. Sectional views of semiconductor chips arranged in the order of steps used for explaining the embodiments, FIG. 3 is a sectional view of a semiconductor chip having a conventional radiation-resistant nMOS transistor, and FIGS. 4A to 4D are conventional sectional views. FIG. 5 is a sectional view of a semiconductor chip arranged in the order of steps for explaining a method of manufacturing a radiation type nMOS transistor, and FIG. 5 is a characteristic diagram showing radiation resistance characteristics of a thermal oxide film and a BSG film. 1,101,201 …… P-type silicon substrate, 2,102,202 …… Field oxide film, 3,103,203 …… Gate oxide film, 4,104,204−
1,204-2 ...... n + layer, 7-1,7-2,108,208 …… ion implantation mask material, 109,209 …… BSG film, 110,210 …… p + layer, 211
... n well.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板の表面に素子間分離酸化膜形成
を選択酸化法により行なう工程と、前記素子間分離酸化
膜で区画された素子形成領域のうち表面がp型のnチャ
ネルMISトランジスタ形成領域に前記素子間分離酸化膜
と離間するドレイン・ソース領域の形成を行なったあと
で前記nチャネルMISトランジスタ形成領域の全面をイ
オン注入用のマスクで被覆してからp型不純物のイオン
注入を行なうことによって前記nチャネルMISトランジ
スタ領域形成を区画する素子間分離酸化膜の全面および
バーズビーク部下の前記半導体基板領域にそれぞれ前記
p型不純物を導入して前記バーズビーク部下の前記半導
体基板領域に前記ドレイン・ソース領域と離間する高濃
度のp型領域を形成する工程とを有することを特徴とす
る耐放射線性MIS型半導体集積回路の製造方法。
1. A step of forming an element isolation oxide film on a surface of a semiconductor substrate by a selective oxidation method, and a step of forming an n-channel MIS transistor having a p-type surface in an element formation region partitioned by the element isolation oxide film. After forming a drain / source region which is separated from the element isolation oxide film in the region, the entire surface of the n-channel MIS transistor forming region is covered with an ion implantation mask, and then p-type impurity ions are implanted. As a result, the p-type impurity is introduced into the entire surface of the inter-element isolation oxide film that defines the formation of the n-channel MIS transistor region and the semiconductor substrate region under the bird's beak portion, and the drain / source is introduced into the semiconductor substrate region under the bird's beak portion. Radiation-resistant MIS-type semiconductor, characterized in that it has a step of forming a high-concentration p-type region separated from the region. Method for producing a product circuit.
JP63308194A 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit Expired - Lifetime JPH0756893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308194A JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308194A JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH02153571A JPH02153571A (en) 1990-06-13
JPH0756893B2 true JPH0756893B2 (en) 1995-06-14

Family

ID=17978051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308194A Expired - Lifetime JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0756893B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148143A (en) * 1984-01-13 1985-08-05 Nec Corp Semiconductor device with enforced withstand radiation property thereof
JPS61232678A (en) * 1985-04-09 1986-10-16 Nec Corp Manufacture of semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH02153571A (en) 1990-06-13

Similar Documents

Publication Publication Date Title
EP0442144B1 (en) Manufacturing high speed low leakage radiation hardened CMOS/SOI devices
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4717683A (en) CMOS process
US4435895A (en) Process for forming complementary integrated circuit devices
US6096589A (en) Low and high voltage CMOS devices and process for fabricating same
JP2682425B2 (en) Method for manufacturing semiconductor device
US5506438A (en) Semiconductor device with two different threshold voltages
US6455402B2 (en) Method of forming retrograde doping file in twin well CMOS device
TWI707386B (en) A semiconductor device and a method of manufacturing a semiconductor device
US7247899B2 (en) Semiconductor device, photoelectric conversion device and method of manufacturing same
JPH02264464A (en) Manufacture of semiconductor device
US6171914B1 (en) Synchronized implant process to simplify NLDD/PLDD stage and N+/P+stage into one implant
US6255153B1 (en) Method of manufacturing a semiconductor device
JPH0756893B2 (en) Method of manufacturing radiation resistant MIS type semiconductor integrated circuit
JPH0492466A (en) Semiconductor device and manufacture thereof
JPH0637106A (en) Manufacture of semiconductor device
JPS61164265A (en) Mis type semiconductor integrated circuit device
JPH04328861A (en) Semiconductor integrated circuit device and manufacture thereof
JPH08227936A (en) Semiconductor device and fabrication thereof
JPH0783046B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
KR19990085480A (en) Manufacturing Method of Double Voltage Morse Transistors
JP2860483B2 (en) Method for manufacturing semiconductor device
JP2002057222A (en) Semiconductor device and its manufacturing method
JPH02219237A (en) Mis type semiconductor device
JPH07202034A (en) Semiconductor nonvolatile storage device and its manufacture