JPH02153571A - Manufacture of radiation-resistant mis type semiconductor integrated circuit - Google Patents

Manufacture of radiation-resistant mis type semiconductor integrated circuit

Info

Publication number
JPH02153571A
JPH02153571A JP63308194A JP30819488A JPH02153571A JP H02153571 A JPH02153571 A JP H02153571A JP 63308194 A JP63308194 A JP 63308194A JP 30819488 A JP30819488 A JP 30819488A JP H02153571 A JPH02153571 A JP H02153571A
Authority
JP
Japan
Prior art keywords
oxide film
field oxide
region
high concentration
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63308194A
Other languages
Japanese (ja)
Other versions
JPH0756893B2 (en
Inventor
Michio Komatsu
小松 理夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63308194A priority Critical patent/JPH0756893B2/en
Publication of JPH02153571A publication Critical patent/JPH02153571A/en
Publication of JPH0756893B2 publication Critical patent/JPH0756893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To almost eliminate inter-element leakage currents by a method wherein not only a p-type high concentration impurity is introduced into a field oxide film region to improve the field region in radiation resistance but also a high concentration p<+>-layer is formed on the substrate surface under bird's beaks to improve an element isolation dielectric strength. CONSTITUTION:A field oxide film 102 is formed through a selective oxidation, and a transistor is formed on a demarcated element forming region so as to position source and drain regions 106 apart from the field oxide film by 1-2mum. In succession, a pattern is formed of an ion implantation mask material of Al or the like to cover the whole face excluding the surface of the field oxide film. Then, high concentration B ions are implanted into the whole face to turn the film 102 into a borosilicate glass BSG, and a high concentration p<+>-layer 110 is formed on the surface of a p-type Si 101 under the bird's beak located at the end of the field oxide film. In succession, the ion implantation I/I mask material 108 is removed. By this setup, the field region can be improved in radiation resistance, and concurrently a high concentration p<+>-layer is formed on the surface of the substrate under bird's beaks to remarkably improve an element isolation dielectric strength, so that inter-element leakage currents can be restrained by the synergetic effect of the dielectric strength and the radiation resistance both improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐放射線性を有するMIS型半導体集積回路の
製造方法に関し、特に素子分離領域の漏れ電流を低減す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a radiation-resistant MIS type semiconductor integrated circuit, and particularly to a method of reducing leakage current in an element isolation region.

〔従来の技術〕[Conventional technology]

一般にnMO3)ランジスタに電子線、陽子線2γ線等
の電離性放射線を照射すると、ゲート酸化膜中に電子−
正孔対が発生し、そのうちの正孔が酸化膜中のトラップ
に捕捉され正の固定電荷となって蓄積されるためしきい
電圧が負方向にシフトするという現象が起こる。その変
動量はゲート酸化膜厚の1〜3乗に比例すると言われて
おり、膜厚が厚いほど変動量は大きいことがわかってい
る。したがって素子間分離のために通常用いられるフィ
ールド酸化膜のところでは、寄生的に形成されるMO3
構造のしきい電圧シフトはフィールド酸化膜が厚いため
極めて大きくなる9例えば500 nm厚の場合には1
0’ rad (Si)の吸収線量で数十Vもの変動に
なる。この結果、初期の寄生MOS)ランジスタの素子
分離耐圧が20V程度あっても10’ rad (Si
)の被曝後には0■以下となってしまい、素子間漏電流
が増加してLSIとして使用に耐えなくなってしまう。
In general, when an nMO3) transistor is irradiated with ionizing radiation such as an electron beam, a proton beam, or 2γ rays, electrons are generated in the gate oxide film.
A phenomenon occurs in which hole pairs are generated, and the holes are captured by traps in the oxide film and accumulated as positive fixed charges, causing the threshold voltage to shift in the negative direction. It is said that the amount of variation is proportional to the first to third power of the thickness of the gate oxide film, and it is known that the thicker the film, the larger the amount of variation. Therefore, in the field oxide film normally used for isolation between elements, MO3 is formed parasitically.
The threshold voltage shift of the structure is extremely large due to the thickness of the field oxide.9 For example, in the case of 500 nm thickness,
An absorbed dose of 0' rad (Si) results in fluctuations of several tens of volts. As a result, even if the element isolation voltage of the initial parasitic MOS transistor is about 20V, the voltage of 10' rad (Si
) after being exposed to radiation, it becomes less than 0■, and the leakage current between elements increases, making it unusable as an LSI.

この対策として従来取られている手段に、昭和60年特
許願第5411号の明細書に記載されているMOS)ラ
ンジスタがある。これは、第3図に示すように、素子分
離耐圧を上げるなめ、酸化膜の薄い領域にまで分離領域
を拡大したもので、フィールド酸化膜端(A)から能動
領域側に距離をとってソース・ドレイン領域6を形成し
ている。さらに、フィールド酸化膜端とソース・トレイ
ン領域6の間のシリコン基板表面には、分離耐圧を上げ
るために比較的高濃度のp型不純物層5を形成し、しき
い電圧を上げて素子間漏れ電流を防止している。
As a conventional measure against this problem, there is a MOS transistor described in the specification of Patent Application No. 5411 of 1985. As shown in Figure 3, in order to increase the element isolation breakdown voltage, the isolation region is expanded to a thin oxide film region, and the source is placed at a distance from the field oxide film edge (A) toward the active region. - Forms the drain region 6. Furthermore, a relatively high concentration p-type impurity layer 5 is formed on the silicon substrate surface between the edge of the field oxide film and the source train region 6 in order to increase the isolation voltage, thereby increasing the threshold voltage and reducing the leakage between elements. Prevents electric current.

第3図の構造の製造方法を第4図に示す、まず選択酸化
法によりフィールド酸化膜2を形成して後(同図(a)
)、素子間漏れ電流防止層である9層5をフィールド酸
化膜端に接する能動領域周辺にイオン注入法を用いてボ
ロンを打込むことにより形成しく同図(b))、さらに
ゲート電極4を能動領域内に形成した後で、ソース・ド
レイン領域となるn+層6をフィールド酸化膜端からd
だけ離れた位置にイオン注入法を用いて形成する(同図
(C))、この距離dは漏れ電流防止の効果を確保する
ためには漏れ防止層(5)の幅がある程度以上になるよ
うに取る必要があるが、あまり大きく選ぶと集積度が悪
くなるため通常2μm程度を用いている。また、漏れ防
止層(5)とソース・ドレイン領域のn” M6とは接
していなくても良いが、やはり集積度を悪化させないた
めには接する位置に形成せざるを得ない。
The manufacturing method of the structure shown in FIG. 3 is shown in FIG. 4. First, a field oxide film 2 is formed by a selective oxidation method.
), the 9-layer 5 which is an inter-element leakage current prevention layer is formed by implanting boron into the periphery of the active region in contact with the edge of the field oxide film using an ion implantation method (Figure (b)), and the gate electrode 4 is also formed. After forming the n+ layer 6 in the active region, the n+ layer 6, which will become the source/drain region, is placed d from the edge of the field oxide film.
This distance d is set so that the width of the leakage prevention layer (5) is at least a certain level in order to ensure the leakage current prevention effect. However, if it is too large, the degree of integration will deteriorate, so it is usually about 2 μm. Further, although the leakage prevention layer (5) and the n'' M6 of the source/drain region do not have to be in contact with each other, they must be formed in a position where they are in contact with each other in order not to deteriorate the degree of integration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の耐放射線性MIS型半導体集積回路の製
造方法においては、放射線被曝後の素子間漏れ電流を抑
制するためフィールド酸化膜端とソース・ドレイン領域
の間の素子形成領域内に9層を形成する工程を有してい
る。耐放射線性を向上させるにはpmの濃度を上げるこ
とが望ましいが、前述のようにpJIのソース・ドレイ
ンのn+層は境界を接しているためあまり高濃度化する
と接合耐圧が低下する。ちなみに、その上限濃度はおよ
そ101フcm−’程度である。
In the conventional method for manufacturing radiation-resistant MIS type semiconductor integrated circuits described above, nine layers are formed in the element formation region between the edge of the field oxide film and the source/drain region in order to suppress leakage current between elements after exposure to radiation. It has a process of forming. In order to improve the radiation resistance, it is desirable to increase the concentration of PM, but as mentioned above, the source/drain n+ layers of the pJI are in contact with the boundary, so if the concentration is increased too high, the junction breakdown voltage will decrease. Incidentally, its upper limit concentration is about 101 cm-'.

結果として従来製造方法による素子間漏れ電流防止は完
全ではなく、耐放射線性の大幅な改善が望めないという
欠点がある。
As a result, leakage current between elements cannot be completely prevented by the conventional manufacturing method, and there is a drawback that a significant improvement in radiation resistance cannot be expected.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の耐放射線性MIS型半導体集積回路の製造方法
は、素子間分離酸化膜形成を選択酸化法により行う工程
と、前記素子間分離酸化膜で区画された素子形成領域に
M工Sトランジスタのゲート電極、ドレイン・ソース領
域の形成を行ったあとでp型不純物のイオン注入を選択
的に行うことによって少なくとも素子間分離酸化膜のバ
ーズビーク部下に高濃度のp型領域を形成すると同時に
素子間分離酸化膜全面に不純物を導入する工程とを有す
るというものである。
The method for manufacturing a radiation-resistant MIS type semiconductor integrated circuit of the present invention includes a step of forming an isolation oxide film between elements by a selective oxidation method, and a step of forming an isolation oxide film between elements using a selective oxidation method. By selectively implanting p-type impurity ions after forming the gate electrode and drain/source regions, a highly concentrated p-type region is formed at least under the bird's beak of the device isolation oxide film, and at the same time, device isolation is achieved. This method includes a step of introducing impurities into the entire surface of the oxide film.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は、本発明の第1の実施例の説明
をするための工程順に配置した半導体チップの断面図で
ある。
FIGS. 1(a) to 1(c) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining the first embodiment of the present invention.

まず選択酸化法を用いてフィールド酸化膜102(素子
間分離酸化膜)を形成し、フィールド酸化膜で区画され
た素子形成領域にフィールド酸化膜からソース・ドレイ
ン領域(106)が1〜2μm程度離れた位置に来るよ
うにトランジスタを形成する(同図(a))。続いてフ
ィールド酸化膜の表面を除き全て覆われるようにアルミ
ニウム等のイオン注入マスク材(I/Iマスク材108
)でパターンを形成する。その後全面に極めて高濃度(
例えば1015〜1016個/dの注入Ji)のボロン
をイオン注入し、選択酸化法で形成したフィールド酸化
膜102をボロンガラス(BSG)化すると同時にフィ
ールド酸化膜端の傾斜部(バーズビーク部)の下のp型
シリコン基板101表面には高濃度のp+層110を形
成する(同図(b))、このとき、注入エネルギーを制
御することにより、BSG膜109の部分の厚さがある
程度法められる。フィールド酸化膜が全てBSG膜化す
るのが望ましいが、そうでなくとも良い。続いてI/I
マスク材108を除去して同図(c)の構造を得る。素
子分離領域のフィールド酸化膜がBSG化すると、BS
G膜化した領域では放射線被曝時に発生する電子−正孔
対が膜内に多量に存在するトラップに両方とも捕えられ
電気的には中性となるため、BSG膜化した分だけ電子
−正孔対の発生領域が減少したのと等価である。したが
って前述したように寄生MOS構造のしきい電圧のシフ
トは実効的な酸化膜厚が減るので小さくなる。第5図は
耐放射線性が改善される一例を示したもので、△VFB
はMO3構造のフラットバンド電圧のシフト量である。
First, a field oxide film 102 (element isolation oxide film) is formed using a selective oxidation method, and the source/drain regions (106) are separated from the field oxide film by about 1 to 2 μm in the element formation region partitioned by the field oxide film. A transistor is formed so as to be located at the same position (FIG. 2(a)). Next, an ion implantation mask material such as aluminum (I/I mask material 108) is applied so as to cover all but the surface of the field oxide film.
) to form a pattern. After that, extremely high concentration (
For example, 1015 to 1016 boron ions/d are implanted to transform the field oxide film 102 formed by selective oxidation into boron glass (BSG), and at the same time under the sloped part (bird's beak part) at the end of the field oxide film. A highly concentrated p+ layer 110 is formed on the surface of the p-type silicon substrate 101 (FIG. 2(b)). At this time, the thickness of the BSG film 109 can be controlled to some extent by controlling the implantation energy. . Although it is desirable that all the field oxide films be BSG films, this need not be the case. Then I/I
The mask material 108 is removed to obtain the structure shown in FIG. 3(c). When the field oxide film in the element isolation region becomes BSG, the BS
In the G film region, the electron-hole pairs generated during radiation exposure are captured by the traps that exist in large quantities in the film, making them electrically neutral. This is equivalent to a reduction in the area where pairs occur. Therefore, as described above, the shift in threshold voltage of the parasitic MOS structure is reduced because the effective oxide film thickness is reduced. Figure 5 shows an example of improved radiation resistance.
is the shift amount of the flat band voltage of the MO3 structure.

BSG膜化することにより大幅なΔVFBの減少が見ら
れる。
A significant decrease in ΔVFB is seen by forming a BSG film.

フィールド酸化膜がBSG膜化する効果の他に第1図(
c)の構造ではバーズビーク部の下のp型シリコン基板
表面には極めて高濃度のp1領域110が形成されその
濃度は1Q19〜1020ロー3にもなる(素子形成領
域側にはほとんど侵入していないので、n+層106と
分離しても薬積度の低下は招かない)、シたがって第3
図の従来構造において説明した9層よりも放射線被曝後
の素子間漏れ電流防止効果は格段に大きい。
In addition to the effect of converting the field oxide film into a BSG film, the
In the structure c), an extremely highly concentrated p1 region 110 is formed on the surface of the p-type silicon substrate under the bird's beak portion, and its concentration is as high as 1Q19~1020Rho3 (it hardly penetrates into the element forming region side). Therefore, separation from the n+ layer 106 does not result in a decrease in drug loading), therefore, the third
The effect of preventing leakage current between elements after exposure to radiation is much greater than that of the nine layers described in the conventional structure shown in the figure.

第2図(a)〜(c)は本発明の第2の実施例の説明を
行うための工程順に配置した半導体チップの断面図であ
る。
FIGS. 2(a) to 2(c) are cross-sectional views of semiconductor chips arranged in the order of steps for explaining a second embodiment of the present invention.

この実施例は本発明を相補型MO3半導体集積回路の製
造に適用したもので、まずp型シリコン基板201上に
nウェル211を形成し、さらに選択酸化法を用いてフ
ィールド酸化膜202と形成した後、トランジスタのゲ
ート電極204−1.204−2を形成する。続いてn
Mo5トランジスタのソース・ドレイン領域206を素
子分離領域から離して形成し同図(a)の構造を得る0
次に前述の実施例と同様にフィールド酸化膜のBSG膜
化を行うが、このときのイオン注入マスク材208はn
 M OS )ランジスタを形成する側だけフィールド
酸化膜以外の部分を覆うようにする。続いてボロン等の
p型不純物のイオン注入を行い、同図(b)に示したよ
うにフィールド酸化膜のBSG膜化、バーズビーク下の
高濃度のp+領域210の形成、およびpMOSトラン
ジスタのソース・ドレイン領域212の形成を同時に行
う。その後、マスク材を除去して同図(c)の構造を得
る。以後通常の工程を用いて集積回路装置を形成すれば
良い。このようにすると、フィールド酸化膜のBSG膜
化のためのパターニング工程をpMOSトランジスタの
ソース・ドレイン領域形成のためのパターニング工程と
共用でき従来と同じパターニング回数で耐放射線性に優
れたCMO3集積回路を形成できる。
In this embodiment, the present invention is applied to the manufacture of a complementary MO3 semiconductor integrated circuit, in which an n-well 211 is first formed on a p-type silicon substrate 201, and then a field oxide film 202 is formed using a selective oxidation method. After that, gate electrodes 204-1 and 204-2 of the transistor are formed. followed by n
The source/drain region 206 of the Mo5 transistor is formed apart from the element isolation region to obtain the structure shown in FIG.
Next, the field oxide film is converted into a BSG film in the same manner as in the previous embodiment, but the ion implantation mask material 208 at this time is n
MOS) Cover only the side where the transistor is to be formed except for the field oxide film. Subsequently, ion implantation of p-type impurities such as boron is performed, and as shown in FIG. 3(b), the field oxide film is changed to a BSG film, a highly concentrated p+ region 210 is formed under the bird's beak, and the source and region of the pMOS transistor are The drain region 212 is formed at the same time. Thereafter, the mask material is removed to obtain the structure shown in FIG. 3(c). Thereafter, an integrated circuit device may be formed using normal processes. In this way, the patterning process for converting the field oxide film into a BSG film can be shared with the patterning process for forming the source/drain regions of the PMOS transistor, and a CMO3 integrated circuit with excellent radiation resistance can be produced with the same number of patterning steps as before. Can be formed.

なお、上に述べたのはp型シリコン基板、nウェルを用
いる相補型MOSデバイスの例であったが、p型シリコ
ン基板、nウェル、pウェル方式でも同じように適用で
きることは明らがである。
Although the above is an example of a complementary MOS device using a p-type silicon substrate and an n-well, it is clear that it can be similarly applied to a p-type silicon substrate, n-well, and p-well system. be.

またエピタキシャル基板や絶縁基板上に形成する相補型
MOSデバイスに対しても同様である。
The same applies to complementary MOS devices formed on epitaxial substrates and insulating substrates.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では予め選択酸化法で形成し
たフィールド酸化膜領域に極めて高濃度のp型不純物を
導入することによりフィールド領域の耐放射線性を高め
ると同時に、バーズビーク下の基板表面に高濃度のp+
層を形成し素子分離耐圧を大幅に高め、それらの相乗作
用により放射線被曝後の素子間漏れ電流をほぼ完全に抑
制することができる耐放射線性MIS型半導体装置を製
造できる効果がある。
As explained above, in the present invention, by introducing an extremely high concentration of p-type impurity into the field oxide film region formed in advance by selective oxidation method, the radiation resistance of the field region is improved, and at the same time, the radiation resistance of the field region is increased. concentration p+
This has the effect of manufacturing a radiation-resistant MIS type semiconductor device that can substantially completely suppress leakage current between elements after exposure to radiation by forming layers to significantly increase element isolation withstand voltage, and by their synergistic effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(c)は本発明の第1の実施例の説明に
用いる工程順に配置した半導体チップの断面図、第2図
(a)〜(c)は本発明の第2の実施例の説明に用いる
工程順に配置した半導体チップの断面図、第3図は従来
の耐放射線性nMOs)ランジスタを有す半導体チップ
の断面図、第4図(a)〜(d)は従来の耐放射線性n
MOs)ランジスタの製造方法を説明するための工程順
に配置した半導体チップの断面図、第5図は熱酸化膜と
BSG膜の耐放射線特性を示す特性図である。 1,101,201・・・P型シリコン基板、2゜10
2.202・・・フィールド酸化膜、3,103.20
3・・・ゲート酸化膜、4,104,204−1,20
4−2・・・B+層、7−1.7−2゜108.208
・・・イオン注入マスク材、109゜209・・・BS
G膜、110,210・・・p+層、211nウエル。
FIGS. 1(a) to (c) are cross-sectional views of semiconductor chips arranged in the order of steps used to explain the first embodiment of the present invention, and FIGS. 3 is a sectional view of a semiconductor chip having a conventional radiation-resistant nMOS transistor, and FIGS. Radiation resistance n
FIG. 5 is a cross-sectional view of a semiconductor chip arranged in the order of steps to explain the manufacturing method of a transistor (MOS) transistor, and FIG. 5 is a characteristic diagram showing the radiation resistance characteristics of a thermal oxide film and a BSG film. 1,101,201...P-type silicon substrate, 2°10
2.202...Field oxide film, 3,103.20
3... Gate oxide film, 4,104,204-1,20
4-2...B+ layer, 7-1.7-2°108.208
...Ion implantation mask material, 109°209...BS
G film, 110, 210...p+ layer, 211n well.

Claims (1)

【特許請求の範囲】[Claims] 素子間分離酸化膜形成を選択酸化法により行う工程と、
前記素子間分離酸化膜で区画された素子形成領域にMI
Sトランジスタのゲート電極、ドレイン・ソース領域の
形成を行ったあとでp型不純物のイオン注入を選択的に
行うことによって少なくとも素子間分離酸化膜のバーズ
ビーク部下に高濃度のp型領域を形成すると同時に素子
間分離酸化膜全面に不純物を導入する工程とを有するこ
とを特徴とする耐放射線性MIS型半導体集積回路の製
造方法。
A step of forming an inter-element isolation oxide film using a selective oxidation method;
MI is placed in the element formation region partitioned by the element isolation oxide film.
By selectively implanting p-type impurity ions after forming the gate electrode, drain and source regions of the S transistor, a highly concentrated p-type region is simultaneously formed at least under the bird's beak of the element isolation oxide film. A method for manufacturing a radiation-resistant MIS type semiconductor integrated circuit, comprising the step of introducing impurities into the entire surface of an element isolation oxide film.
JP63308194A 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit Expired - Lifetime JPH0756893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63308194A JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308194A JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH02153571A true JPH02153571A (en) 1990-06-13
JPH0756893B2 JPH0756893B2 (en) 1995-06-14

Family

ID=17978051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308194A Expired - Lifetime JPH0756893B2 (en) 1988-12-05 1988-12-05 Method of manufacturing radiation resistant MIS type semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0756893B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148143A (en) * 1984-01-13 1985-08-05 Nec Corp Semiconductor device with enforced withstand radiation property thereof
JPS61232678A (en) * 1985-04-09 1986-10-16 Nec Corp Manufacture of semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60148143A (en) * 1984-01-13 1985-08-05 Nec Corp Semiconductor device with enforced withstand radiation property thereof
JPS61232678A (en) * 1985-04-09 1986-10-16 Nec Corp Manufacture of semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0756893B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US5024965A (en) Manufacturing high speed low leakage radiation hardened CMOS/SOI devices
US4306916A (en) CMOS P-Well selective implant method
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPS6372164A (en) Manufacture of improved type integrated circuit
US6146977A (en) Method of manufacturing a radiation-resistant semiconductor integrated circuit
US6647542B2 (en) Efficient fabrication process for dual well type structures
US6455402B2 (en) Method of forming retrograde doping file in twin well CMOS device
JP3348782B2 (en) Method for manufacturing semiconductor device
JPS61290753A (en) Complementary type mis semiconductor integrated circuit device
JPH02153571A (en) Manufacture of radiation-resistant mis type semiconductor integrated circuit
JPH05308126A (en) Manufacture of semiconductor device
KR100470393B1 (en) Method for fabricating dual gate semiconductor device
JPS61164265A (en) Mis type semiconductor integrated circuit device
JPS60206040A (en) Insulation isolator for semiconductor ic
JP2959038B2 (en) Semiconductor device and manufacturing method thereof
JP2606444B2 (en) Method for manufacturing semiconductor device
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPH07202034A (en) Semiconductor nonvolatile storage device and its manufacture
JPS6240741A (en) Semiconductor device
JPH0783046B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2928076B2 (en) Semiconductor device and manufacturing method thereof
JPS63305548A (en) Complementary type mis semiconductor integrated circuit
JPS60130136A (en) Semiconductor integrated circuit device
JPH04263467A (en) Semiconductor device
JPH0584060B2 (en)