JPH0756795B2 - Electrode for non-aqueous secondary battery - Google Patents

Electrode for non-aqueous secondary battery

Info

Publication number
JPH0756795B2
JPH0756795B2 JP61261569A JP26156986A JPH0756795B2 JP H0756795 B2 JPH0756795 B2 JP H0756795B2 JP 61261569 A JP61261569 A JP 61261569A JP 26156986 A JP26156986 A JP 26156986A JP H0756795 B2 JPH0756795 B2 JP H0756795B2
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
aqueous secondary
carbon body
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61261569A
Other languages
Japanese (ja)
Other versions
JPS63102167A (en
Inventor
善光 田島
英明 田中
友成 鈴木
元男 毛利
芳和 好本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US07/030,886 priority Critical patent/US4863814A/en
Priority to DE3750754T priority patent/DE3750754T2/en
Priority to EP87302651A priority patent/EP0239410B1/en
Publication of JPS63102167A publication Critical patent/JPS63102167A/en
Publication of JPH0756795B2 publication Critical patent/JPH0756795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明はリチウム,カリウム,ナトリウム等のアルカリ
金属,アルカリ土類金属,希土類金属あるいは遷移金属
等の電子供与性物質及び/又はハロゲン,ハロゲン化合
物等の電子吸引性物質を電荷担体として利用した非水系
二次電池に関し、特にその非水系二次電池用電極構成に
関するものである。
TECHNICAL FIELD The present invention relates to an electron donating substance such as an alkali metal such as lithium, potassium and sodium, an alkaline earth metal, a rare earth metal or a transition metal and / or an electron such as a halogen or a halogen compound. The present invention relates to a non-aqueous secondary battery using an attracting substance as a charge carrier, and more particularly to an electrode structure for the non-aqueous secondary battery.

〈従来技術〉 近年、電子機器等の小型化,省電力化に伴なってリチウ
ム等のアルカリ金属を利用した非水系二次電池が注目さ
れており、実用化段階に達するまでになっている。しか
し、電極に金属を単体として用いる電池では、充電・放
電の繰り返しにより負極金属がデンドライト状に成長し
内部短絡を引き起こすという問題があり、2次電池とし
ての実用化は困難を極めていた。その改良策として、負
極にリチウム等の金属原子を吸収・放出することができ
る材料の開発が進められ、低融点合金等の金属あるいは
有機系材料の様な金属原子を効率良く吸収・放出可能な
材料が見い出された。しかし、いずれの材料も粉末、フ
ィルム,箔,繊維等の形態からなり、これらを用いて電
極を形成する場合、集電体となる電極基板にこれら材料
を固着させる工程が必要となる。またそのために電荷担
体以外に結着材や導電材等の補助材料を必要とし、単位
重量又は単位体積当りの容量が低下してしまうという欠
点がある。
<Prior Art> In recent years, non-aqueous secondary batteries using alkali metals such as lithium have been attracting attention as electronic devices have been downsized and power consumption has been reduced, and they have reached the stage of practical application. However, in a battery in which a metal is used alone as an electrode, there is a problem that the negative electrode metal grows in a dendrite shape due to repeated charging / discharging, causing an internal short circuit, and it is extremely difficult to put it into practical use as a secondary battery. As an improvement measure, the development of a material that can absorb and release metal atoms such as lithium in the negative electrode is being advanced, and it is possible to efficiently absorb and release metal atoms such as metals such as low melting point alloys and organic materials. The material was found. However, any of the materials is in the form of powder, film, foil, fiber or the like, and when these are used to form an electrode, a step of fixing these materials to an electrode substrate serving as a current collector is required. For this reason, auxiliary materials such as a binder and a conductive material are required in addition to the charge carriers, and the capacity per unit weight or unit volume is reduced.

〈発明の目的〉 本発明は上記問題点に鑑み、溶出,分解等を起こすこと
がなく高容量で充放電の繰り返し特性の良い非水系二次
電池用電極を提供することを目的とする。
<Object of the Invention> In view of the above problems, an object of the present invention is to provide an electrode for a non-aqueous secondary battery, which has a high capacity and good charge / discharge repetitive characteristics without causing elution and decomposition.

〈発明の概要〉 本発明の概要は以下の通りである。高い多孔度を有する
三次元構造体等の導電性基板に炭素体を例えば炭化水素
化合物から1500℃以下の低温熱分解による気相堆積法
(熱分解CVD法)で炭素堆積物として直接形成して電荷
担体の担持体とした電極を用いる。ここで、高い多孔度
を有する構造体としては一般に発泡状金属と呼ばれる三
次元構造を有する金属体,綿状金属体,網状金属体、多
孔度が60%以上の平板状金属焼結体等がある。また炭素
体とは、炭素水素化合物特に低分子性芳香族や低分子性
不飽和炭化水素を気化し、低濃度状態から低温熱分解工
程を介して堆積させることにより得られるものが適す
る。この様にして得られる炭素体について詳細に解析し
た結果、高度に配向された黒鉛構造からなる炭素よりも
わずかに乱層構造を有しかつ選択的配向を有する構造を
もつ炭素材料であることがわかり、この様な構造を含ん
だ炭素材料がアルカリ金属等をドーパント物質とする電
極材料として良好な特性を示した。
<Outline of the Invention> The outline of the present invention is as follows. A carbon body is directly formed on a conductive substrate such as a three-dimensional structure having a high porosity as a carbon deposit from a hydrocarbon compound by a vapor phase deposition method (pyrolysis CVD method) by low temperature pyrolysis at 1500 ° C or less. An electrode is used as a carrier for charge carriers. Here, as the structure having a high porosity, a metal body having a three-dimensional structure generally called a foam metal, a cotton-like metal body, a reticulated metal body, a flat metal sintered body having a porosity of 60% or more, etc. is there. Further, as the carbon body, those obtained by vaporizing a carbon-hydrogen compound, particularly low-molecular aromatic or low-molecular unsaturated hydrocarbon, and depositing it from a low-concentration state through a low-temperature pyrolysis step are suitable. As a result of detailed analysis of the carbon body obtained in this way, it was found that it is a carbon material having a structure having a slightly disordered structure and a selectively oriented structure as compared with carbon having a highly oriented graphite structure. Obviously, the carbon material containing such a structure showed good characteristics as an electrode material using an alkali metal or the like as a dopant substance.

上記炭素体の特徴について、さらに詳細に説明する。Cu
Kα線を用いたX線回折法により炭素平面の層間隔を求
めたところ、層間隔が0.337nmから0.355nmの値をとるも
のが電極材料として良好な特性を示した。また、そのと
きの回折ピークは、黒鉛にみられるような鋭いピークを
示すものではなくかなり幅広い回折ピークを示す。回折
ピークの半値値から結晶子の大きさを求める方法を用い
てC軸方向の結晶子の大きさを求めると、2.0nmから10
0.0nmの範囲であった。ab軸方向の結晶子の大きさに反
映される(110)面の解析ピークはほとんど現われない
か現われても非常にブロードであるから、ab軸方向の結
晶子の大きさは非常に小さいものであると認められる。
レーザーラマンスペクトルによって黒鉛化への進行の度
合を調べた。黒鉛構造に由来する1580cm-1のラマンスペ
クトルの他に黒鉛構造の不完全さに由来する1360cm-1
ラマンスペクトルが観測されたことから、本炭素材料は
黒鉛に比べ不完全な結晶構造を持つことがわかる。黒鉛
化の進行に伴なって1360cm-1のピークは減少し、黒鉛特
有の格子振動に起因する1580cm-1のピークが増大する。
本発明での炭素体は、ラマンスペクトルの1580cm-1のピ
ーク強度に対する1360cm-1のピーク強度比をみた場合0.
4から1.0の範囲にあり、黒鉛構造の不完全さが残ってい
るといえる。反射高速電子線による回折パターンは、黒
鉛構造の(002),(004),(006)反射に相当する回
折線でブロードなリング状となり、このことは結晶子が
非常に細かいことに反映している。これらの回折リング
をより詳細に検討したところ、各リングは均一ではなく
弧状又はブロードなスポットになっており、これより、
各結晶子の方位がランダムではなく、各結晶子の(00
l)面が特定の方向に揃っていることがわかった。これ
をさらに定量化すると、各結晶子間のc軸方向の相対的
な傾きが±75度の範囲内にあり、該炭素材料は、上記の
配向性を有する結晶子を主成分とする方位配列を有する
炭素材料として特徴付けられる。
The characteristics of the carbon body will be described in more detail. Cu
When the layer spacing on the carbon plane was determined by the X-ray diffraction method using Kα rays, those having a layer spacing of 0.337 nm to 0.355 nm showed good characteristics as an electrode material. Further, the diffraction peak at that time does not show a sharp peak as seen in graphite, but shows a considerably wide diffraction peak. When the crystallite size in the C-axis direction is calculated using the method for determining the crystallite size from the half value of the diffraction peak, it is 2.0 nm to 10 nm.
It was in the range of 0.0 nm. The analytical peak of the (110) plane, which is reflected in the size of the crystallite in the ab axis direction, is almost nonexistent or very broad even if it appears, so the size of the crystallite in the ab axis direction is very small. Recognized to be.
The degree of progress toward graphitization was investigated by laser Raman spectroscopy. In addition to the Raman spectrum of 1580 cm -1 derived from the graphite structure, the Raman spectrum of 1360 cm -1 derived from the incompleteness of the graphite structure was observed, so this carbon material has an incomplete crystal structure compared to graphite. I understand. With the progress of graphitization, the peak at 1360 cm -1 decreases and the peak at 1580 cm -1 due to the lattice vibration peculiar to graphite increases.
Carbon body in the present invention, when viewed peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the Raman spectrum 0.
It is in the range of 4 to 1.0, and it can be said that the incompleteness of the graphite structure remains. The diffraction pattern of the reflected high-energy electron beam has a broad ring shape with the diffraction lines corresponding to the (002), (004), and (006) reflections of the graphite structure, which is reflected in the extremely fine crystallites. There is. A closer examination of these diffractive rings reveals that each ring is not uniform but has an arcuate or broad spot.
The orientation of each crystallite is not random, but (00
l) It was found that the faces are aligned in a particular direction. When this is further quantified, the relative inclination in the c-axis direction between the crystallites is within a range of ± 75 degrees, and the carbon material has an orientational arrangement mainly composed of the crystallites having the above orientation. Is characterized as a carbon material having

このように黒鉛に比べ面間隔が広く、又、結晶子の大き
さが小さく、かつ、これらが互いにある程度の配向性を
有する炭素体が電極材料として良好な特性を示す。上記
条件を満足する炭素体は粉末体や繊維体を焼成すること
によっては得難いものである。すなわち、炭素体の面間
隔、結晶子の大きさでは本発明で用いる炭素体と同様の
物性値が得られるものでも、各結晶子の配向性が不規則
となるため、大きな放電容量が得られず長期にわたる充
放電の繰り返しには耐え難いものとなる。
As described above, a carbon body having a larger interplanar spacing, a smaller crystallite size, and a certain degree of orientation with respect to each other as compared with graphite exhibits good characteristics as an electrode material. A carbon body that satisfies the above conditions is difficult to obtain by firing a powder body or a fibrous body. That is, even if the physical properties similar to those of the carbon body used in the present invention can be obtained in the plane spacing of the carbon body and the size of the crystallite, the orientation of each crystallite becomes irregular, and thus a large discharge capacity can be obtained. Therefore, it becomes difficult to withstand repeated charging and discharging over a long period of time.

本発明の電池用電極は以下の製造方法により得ることが
できる。出発原料である炭化水素又はその化合物として
一部に酸素,窒素,硫黄もしくはハロゲンより選択され
た1つ以上の元素を含む特性基を付加もしくは置換した
炭化水素化合物例えば、ベンゼン,ナフタレン,アント
ラセン,ヘキサメチルベンゼン,1,2−ジプロモエチレ
ン,2−ブチン,アセチレン,ビフェニル,ジフェニルア
セチレン等あるいはこれ以外の適当な炭素系化合物を用
い、これを気化して反応系へ供給し、導電性基板上へ低
温での熱分解による気相堆積法により直接形成すること
により得られるものである。低温熱分解する濃度及び温
度は、出発原料とする有機材料により若干異なるが、通
常数ミリモルパーセントの濃度,1000℃程度の温度に制
御される。気化する方法としては、水素及び/又はアル
ゴンをキャリアガスとするバブラ法,蒸発法あるいは昇
華法等が利用される。尚、炭素体を導電性基板に堆積さ
せる際にリチウム等の金属を同時にドープしてもかまわ
ない。
The battery electrode of the present invention can be obtained by the following manufacturing method. Hydrocarbon compound which is a starting material hydrocarbon or a compound thereof in which a characteristic group containing at least one element selected from oxygen, nitrogen, sulfur or halogen is added or substituted, for example, benzene, naphthalene, anthracene, hexa Methylbenzene, 1,2-dipromoethylene, 2-butyne, acetylene, biphenyl, diphenylacetylene, etc. or other suitable carbon-based compounds are used, vaporized and supplied to the reaction system, and then placed on the conductive substrate. It is obtained by direct formation by a vapor deposition method by thermal decomposition at low temperature. The concentration and temperature for low-temperature pyrolysis vary slightly depending on the organic material used as the starting material, but are usually controlled to a concentration of several millimol% and a temperature of about 1000 ° C. As the vaporizing method, a bubbler method using hydrogen and / or argon as a carrier gas, an evaporation method or a sublimation method is used. Incidentally, when depositing the carbon body on the conductive substrate, a metal such as lithium may be simultaneously doped.

〈発明の効果〉 多孔性の高い金属等の導電性基板上に炭素体を低温熱分
解による気相堆積法で形成して得られた電極は、充放電
サイクル及び過放電に対して強く、新たな導電材の添加
を必要としないため電極の充填密度が高くなり、その結
果高密度の特性を示す。又、工程が簡単化されるため、
非水系二次電池用の電極として非常に有効なものであ
る。本発明の電極を用いることにより得られる電池は充
放電サイクル特性が良く、小型で低コストの電池として
種々の分野に広く利用することができる。
<Effects of the Invention> An electrode obtained by forming a carbon body on a conductive substrate such as a metal having high porosity by a vapor phase deposition method by low temperature pyrolysis is strong against a charge / discharge cycle and over discharge, Since it is not necessary to add such a conductive material, the packing density of the electrode is increased, resulting in high density characteristics. Also, because the process is simplified,
It is very effective as an electrode for non-aqueous secondary batteries. The battery obtained by using the electrode of the present invention has good charge / discharge cycle characteristics, and can be widely used in various fields as a small-sized and low-cost battery.

さらに、本願発明は起案として多孔性の金属三次元構造
体から成る導電性基板を用い、この上に気相堆積により
炭素を直接堆積するので、炭素繊維等を基体として用い
るものに比べて高い集電効果が得られ高容量の電極を得
ることができる。
Furthermore, the invention of the present application uses a conductive substrate composed of a porous metal three-dimensional structure as a proposal, and carbon is directly deposited on the conductive substrate by vapor deposition. An electric effect can be obtained and a high capacity electrode can be obtained.

〈実施例〉 以下、炭化水素化合物としてベンゼンを例にとって第1
図を参照しながら本発明をさらに詳しく説明する。
<Example> Hereinafter, the first example will be described with benzene as the hydrocarbon compound.
The present invention will be described in more detail with reference to the drawings.

一旦脱水処理を施し、さらに真空移送による蒸留精製操
作を行なったベンゼンが収納された容器1内にアルゴン
供給器2よりアルゴンガスを供給してベンゼンのバルブ
を行ない、気化したベンゼン粒子をアルゴンガスととも
にパイレックス製ガラス管3を介して石英製反応管4へ
給送する。この際、容器1をベンゼンの蒸発による吸熱
分だけ加熱することにより温度を一定に保持し、またニ
ードル弁5,6の開閉を調節することによりベンゼン量を
最適化する。反応管4には発泡状ニッケルからなる直径
15mm厚さ1.0mmの導電性三次元構造体が載置された試料
ホルダー7が設置されており、反応管4の外周面には加
熱炉8が周設されている。この加熱炉8により試料ホル
ダー7及び三次元構造体を約1000℃に加熱保持し、パイ
レックス製ガラス管3より供給されてきたベンゼンを熱
分解する。ベンゼンを熱分解することにより三次元構造
体に炭素体が堆積される。熱分解反応後の反応管4内に
残留するガスは、排気設備9及び10により排気除去され
る。
A container 1 containing benzene which has been dehydrated and then subjected to distillation and purification by vacuum transfer is supplied with argon gas from an argon supplier 2 and a valve for benzene is operated to vaporize benzene particles together with the argon gas. It is fed to the quartz reaction tube 4 through the Pyrex glass tube 3. At this time, the temperature is kept constant by heating the container 1 by the amount of heat absorbed by the evaporation of benzene, and the opening / closing of the needle valves 5 and 6 is adjusted to optimize the amount of benzene. The reaction tube 4 has a diameter made of foamed nickel.
A sample holder 7 on which a conductive three-dimensional structure having a thickness of 15 mm and a thickness of 1.0 mm is placed is installed, and a heating furnace 8 is provided around the outer peripheral surface of the reaction tube 4. The sample holder 7 and the three-dimensional structure are heated and held at about 1000 ° C. by the heating furnace 8 to thermally decompose benzene supplied from the Pyrex glass tube 3. Carbon bodies are deposited on the three-dimensional structure by thermally decomposing benzene. The gas remaining in the reaction tube 4 after the thermal decomposition reaction is exhausted and removed by the exhaust equipment 9 and 10.

導電性三次元構造体に堆積した炭素体のCuKα線による
X線回折図を第2図に、またラマンスペクトル図を第3
図に示す。これらの図から、本炭素体の平均面間隔は0.
342nmであり、ラマンスペクトルによる1580cm-1のラマ
ン強度に対する1360cm-1のラマン強度の比は0.75である
ことがわかる。第2図のX線の回折ピークにより求めた
結晶子のc軸方向の大きさは式(1)により4.86nmであ
った。
The X-ray diffraction diagram by CuKα line of the carbon body deposited on the conductive three-dimensional structure is shown in Fig. 2, and the Raman spectrum diagram is shown in Fig. 3.
Shown in the figure. From these figures, the average interplanar spacing of this carbon body is 0.
Is 342 nm, the ratio of the Raman intensity of 1360 cm -1 for the Raman intensity of 1580 cm -1 by Raman spectrum is found to be 0.75. The size of the crystallite in the c-axis direction determined from the X-ray diffraction peak in FIG. 2 was 4.86 nm according to the formula (1).

三次元構造体と同じ試料台に置かれた導電性基板上へ堆
積された炭素体の反射高速電子回折により得られる回折
パターンは弧状のブロードなリングを成していた。又、
この回折パータンより求められる結晶子の配向性は各結
晶子のc軸方向の相対的な傾きが±35度の範囲内であ
り、このことから本炭素体が高い配向性を有しているこ
とが確かめられた。マダガスカル産の天然黒鉛について
本炭素体と同様にCuKαによるX線回折パターン及びラ
マンスペクトルを詳細に調査したところ、平均面間隔が
0.336nmであり、ラマンスペクトルの1580cm-1の散乱強
度に対する1360cm-1の散乱強度の比が0.1であった。こ
のように平均面間隔に大差がなくても黒鉛構造における
結晶構造の乱れに反映する1360cm-1のラマンバンドに大
きな相違があるため、本実施例で用いる炭素体は、天然
黒鉛等の黒鉛に比べわずかに乱層構造を有していること
がわかる。
The diffraction pattern obtained by reflection high energy electron diffraction of a carbon body deposited on a conductive substrate placed on the same sample stage as the three-dimensional structure formed an arc-shaped broad ring. or,
The crystallite orientation determined from this diffraction pattern is such that the relative inclination of each crystallite in the c-axis direction is within ± 35 degrees, which indicates that the carbon body has a high orientation. Was confirmed. As for the natural graphite from Madagascar, when the X-ray diffraction pattern and Raman spectrum by CuKα were investigated in detail as with this carbon body, the average interplanar spacing was found.
Is 0.336 nm, the ratio of the scattering intensity of 1360 cm -1 relative scattering intensity 1580 cm -1 in the Raman spectrum was 0.1. Thus, there is a large difference in the Raman band of 1360 cm -1 , which is reflected in the disorder of the crystal structure in the graphite structure even if there is no great difference in the average interplanar spacing, the carbon body used in this example, the graphite such as natural graphite It can be seen that it has a slightly disordered structure.

以上の様な導電性基板に気相から低温熱分解により直接
形成して得られる炭素体と基板である三次元構造体より
なる電極体をプレス機により成形し電極Aとした。この
電極Aを試験極,リチウムを参照極及び対極とする三極
法で、1Mの過塩素酸リチウムを含むプロピレンカーボネ
ート溶液を電解液として、充放電試験を行なった。上述
の実施例で得られた電極の特性を比較するために第1図
の反応装置を用いてベンゼンを熱分解し、石英基板上に
炭素体を堆積させた後これを取り出し、粉末状に粉砕し
て炭素体100重量部に対し結着剤としてのポリエチレン
粉末20重量部を加え、均一に混合する。次に発泡状ニッ
ケルから成る直径15mm厚さ1.0mmの三次元構造体中に充
填し、150℃の温度に保ち、プレス機を用いて300kgcm-2
の圧力で圧縮成形し電極Bを作製した。この電極Bにつ
いても電極Aと同様の条件において充放電試験を行なっ
た。第4図は、本実施例の電極A(曲線Aの実線で示
す)と比較のための電極B(曲線Bの破線で示す)の充
放電特性を示す特性図である。この結果より同形状の電
極を比較した場合、本実施例による電極Aがより大きな
電気容量をもつことが確認された。このように導電性基
板上へ気相堆積により直接電極活物質である炭素体を形
成することによって高容量で製造工程の簡単化された電
極を得ることができる。
An electrode body composed of a carbon body obtained by directly forming on the conductive substrate from the gas phase by low-temperature pyrolysis and a three-dimensional structure as the substrate was molded by a press machine to obtain an electrode A. A charge / discharge test was conducted by a three-electrode method in which this electrode A was used as a test electrode and lithium was used as a reference electrode and a counter electrode, using a propylene carbonate solution containing 1M lithium perchlorate as an electrolytic solution. In order to compare the characteristics of the electrodes obtained in the above-mentioned examples, benzene was pyrolyzed by using the reaction apparatus of FIG. 1, a carbon body was deposited on a quartz substrate, and then this was taken out and ground into powder. Then, 20 parts by weight of polyethylene powder as a binder is added to 100 parts by weight of the carbon body and uniformly mixed. Next, it was filled into a three-dimensional structure made of foamed nickel and having a diameter of 15 mm and a thickness of 1.0 mm, kept at a temperature of 150 ° C., and 300 kgcm -2 using a press machine.
An electrode B was produced by compression molding under the pressure of. This electrode B was also subjected to the charge / discharge test under the same conditions as the electrode A. FIG. 4 is a characteristic diagram showing charge / discharge characteristics of the electrode A (shown by the solid line of the curve A) and the electrode B (shown by the broken line of the curve B) of this example. From the results, it was confirmed that when the electrodes having the same shape were compared, the electrode A according to this example had a larger electric capacity. Thus, by directly forming the carbon body as the electrode active material on the conductive substrate by vapor deposition, an electrode having a high capacity and a simplified manufacturing process can be obtained.

上記工程によって作製された電極を負極又は正極の一方
として用い、他方の電極としては陽イオン又は陰イオン
がドープされた導電性物質例えばLi+,K+,ClO4 -,BF4 -
等をポリアセチレン等の高重合体にドープしたもの、塩
化ニッケル亜鉛層間化合物から成るもの、MnO2,Bi
2O3,Cr3O8等の金属酸化物から成るもの、その他種々の
電極材料を用い、また電解質としては非水系電解質であ
る窒化リチウム,ベーターアルミナ,有機電解質等を用
いて充放電が可能な二次電池を製作する。尚、電極とし
ては双方とも上記工程で作製された炭素材料を使用して
もよい。
Using the electrode produced by the above process as one of the negative electrode or the positive electrode, the other electrode cation or anion-doped conductive material for example Li +, K +, ClO 4 -, BF 4 -
Etc. doped with a high polymer such as polyacetylene, composed of nickel chloride zinc intercalation compound, MnO 2 , Bi
Capable of charging and discharging using metal oxides such as 2 O 3 and Cr 3 O 8 and other various electrode materials, and non-aqueous electrolytes such as lithium nitride, beta-alumina and organic electrolytes. A secondary battery. Both electrodes may use the carbon material produced in the above process.

本実施例の電池は第4図で示される良好な充放電特性を
有する電極を用いるため、繰り返し使用における寿命が
長く長期にわたって高い信頼性が保障される。
Since the battery of this embodiment uses the electrode having good charge / discharge characteristics shown in FIG. 4, it has a long life in repeated use and high reliability is ensured for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例の説明に供する炭素体生成装
置のブロック図である。 第2図は、第1図の実施例に示す電極Aで用いた炭素体
のCuKα線によるX線回折図である。 第3図は第1図の実施例に示す電極Aで用いた炭素体の
レーザラマンスペクトル図である。 第4図は上記電極A及び比較のための電極Bの充放電特
性図である。 1…ベンゼン容器,2…Arガス供給器,3…パイレックス製
ガラス管,4…石英製反応管,5,6…ニードル弁,7…試料ホ
ルダー,8…加熱炉。
FIG. 1 is a block diagram of a carbon body producing apparatus used to explain one embodiment of the present invention. FIG. 2 is an X-ray diffraction diagram by a CuKα ray of the carbon body used in the electrode A shown in the example of FIG. FIG. 3 is a laser Raman spectrum diagram of the carbon body used in the electrode A shown in the embodiment of FIG. FIG. 4 is a charge / discharge characteristic diagram of the electrode A and the electrode B for comparison. 1 ... Benzene container, 2 ... Ar gas feeder, 3 ... Pyrex glass tube, 4 ... Quartz reaction tube, 5, 6 ... Needle valve, 7 ... Sample holder, 8 ... Heating furnace.

フロントページの続き (72)発明者 毛利 元男 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 好本 芳和 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (56)参考文献 特開 昭60−36315(JP,A) 特開 昭59−18578(JP,A) 特開 昭50−50629(JP,A)Front page continuation (72) Inventor Motoo Mohri 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (72) Yoshikazu Yoshimoto 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka In-house (56) Reference JP-A-60-36315 (JP, A) JP-A-59-18578 (JP, A) JP-A-50-50629 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多孔性の金属三次元構造体から成る導電性
基板上へ気相堆積された炭素体がアルゴンレーザラマン
スペクトルにおける1580cm-1のピーク強度に対する、13
60cm-1のピーク強度比が0.4〜1.0の範囲であるような乱
層構造を六角網目からなる黒鉛層構造に有することを特
徴とする非水系二次電池用電極。
1. A carbon body vapor-deposited on a conductive substrate composed of a porous metal three-dimensional structure has a peak intensity of 1580 cm −1 in an argon laser Raman spectrum.
An electrode for a non-aqueous secondary battery, having a hexagonal graphite layer structure having a disordered layer structure having a peak intensity ratio of 60 cm -1 in the range of 0.4 to 1.0.
【請求項2】前記炭素体の六角網目の平均面間隔が0.33
7nmから0.335nmである特許請求の範囲第1項記載の非水
系二次電池用電極。
2. The average interplanar spacing of the hexagonal mesh of the carbon body is 0.33.
The non-aqueous secondary battery electrode according to claim 1, which has a thickness of 7 nm to 0.335 nm.
【請求項3】前記多孔性の金属三次元構造体から成る導
電性基板が多孔度が60%以上の多孔性基板である特許請
求の範囲第1項記載の非水系二次電池用電極。
3. The electrode for a non-aqueous secondary battery according to claim 1, wherein the conductive substrate made of the porous metal three-dimensional structure is a porous substrate having a porosity of 60% or more.
JP61261569A 1986-03-27 1986-10-31 Electrode for non-aqueous secondary battery Expired - Lifetime JPH0756795B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/030,886 US4863814A (en) 1986-03-27 1987-03-26 Electrode and a battery with the same
DE3750754T DE3750754T2 (en) 1986-03-27 1987-03-27 Electrode and battery provided with it.
EP87302651A EP0239410B1 (en) 1986-03-27 1987-03-27 An electrode and a battery with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-126724 1986-05-30
JP12672486 1986-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6297047A Division JP2656003B2 (en) 1986-05-30 1994-11-30 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63102167A JPS63102167A (en) 1988-05-07
JPH0756795B2 true JPH0756795B2 (en) 1995-06-14

Family

ID=14942302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261569A Expired - Lifetime JPH0756795B2 (en) 1986-03-27 1986-10-31 Electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0756795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784124B1 (en) * 2006-10-31 2007-12-12 한국전기연구원 Method of manufacturing thin film electrode and lithium secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722018B2 (en) * 1988-03-04 1995-03-08 シャープ株式会社 Method of manufacturing graphite electrode
JP2643035B2 (en) * 1991-06-17 1997-08-20 シャープ株式会社 Carbon negative electrode for non-aqueous secondary battery and method for producing the same
JP2702829B2 (en) * 1991-07-24 1998-01-26 シャープ株式会社 Negative electrode for battery and manufacturing method thereof
CA2130807A1 (en) * 1992-12-25 1994-06-26 Jun Tsukamoto Electrode and secondary battery using the same
JP3204291B2 (en) * 1994-07-21 2001-09-04 シャープ株式会社 Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
RU2472257C1 (en) * 2008-11-25 2013-01-10 Ниссан Мотор Ко., Лтд. Electroconductive unit and fuel element with polymer electrolyte with its usage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050629A (en) * 1973-09-07 1975-05-07
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPH063745B2 (en) * 1986-07-02 1994-01-12 シャープ株式会社 Non-aqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784124B1 (en) * 2006-10-31 2007-12-12 한국전기연구원 Method of manufacturing thin film electrode and lithium secondary battery

Also Published As

Publication number Publication date
JPS63102167A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
US5344726A (en) Carbon anode for secondary battery
EP0239410B1 (en) An electrode and a battery with the same
EP0251677B1 (en) Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
KR100326975B1 (en) Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material
US4835075A (en) Secondary battery using nonaqueous electrolytes
JPH06243867A (en) Nonaqueous secondary battery
JPH0213423B2 (en)
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JPH063745B2 (en) Non-aqueous electrolyte secondary battery
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
EP0434402A2 (en) Process for preparing a carbon electrode
JP2656003B2 (en) Non-aqueous secondary battery
JP3241321B2 (en) Electrodes for secondary batteries
JP2004207252A (en) Anode material for non-aqueous solvent secondary battery
JP2785909B2 (en) Non-aqueous secondary battery
JP3581631B2 (en) Anode materials for non-aqueous solvent secondary batteries
JPS63124380A (en) Nonaqueous electrolyte secondary battery
JP3141003B2 (en) Non-aqueous electrolyte secondary battery
JP3172669B2 (en) Non-aqueous lithium secondary battery
JPH07118308B2 (en) Electrode
RU2133527C1 (en) Pyrolized carbon containing material for anode of lithium storage cell and method of its manufacture
JP3229847B2 (en) Non-aqueous electrolyte secondary battery
JPH0828238B2 (en) Non-aqueous secondary battery
JPH07153446A (en) Electrode and manufacture thereof