JPH07118308B2 - Electrode - Google Patents

Electrode

Info

Publication number
JPH07118308B2
JPH07118308B2 JP62079248A JP7924887A JPH07118308B2 JP H07118308 B2 JPH07118308 B2 JP H07118308B2 JP 62079248 A JP62079248 A JP 62079248A JP 7924887 A JP7924887 A JP 7924887A JP H07118308 B2 JPH07118308 B2 JP H07118308B2
Authority
JP
Japan
Prior art keywords
electrode
graphite
metal
substrate
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62079248A
Other languages
Japanese (ja)
Other versions
JPS63245855A (en
Inventor
芳和 好本
友成 鈴木
和田  弘
勝 ▲吉▼田
重夫 中島
善光 田島
英明 田中
伸浩 柳沢
元男 毛利
三千世 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62079248A priority Critical patent/JPH07118308B2/en
Priority to US07/065,508 priority patent/US4863818A/en
Priority to EP87305617A priority patent/EP0251677B1/en
Priority to DE87305617T priority patent/DE3787056T2/en
Publication of JPS63245855A publication Critical patent/JPS63245855A/en
Priority to US07/264,598 priority patent/US4968527A/en
Publication of JPH07118308B2 publication Critical patent/JPH07118308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • D01F9/1275Acetylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1276Aromatics, e.g. toluene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〈技術分野〉 本発明は電極及びそれを用いた電池に関し、特にリチウ
ム(Li)やカリウム(K)等のアルカリ金属、アルカリ
土類金属、希土類金属もしくは遷移金属をドーパント物
質とする電池電極あるいはハロゲン、ハロゲン化合物、
酸素酸をドーバント物質とする電池電極に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to an electrode and a battery using the same, and particularly to an alkali metal such as lithium (Li) or potassium (K), an alkaline earth metal, a rare earth metal or a transition metal as a dopant. Battery electrode or halogen, halogen compound,
The present invention relates to a battery electrode using oxygen acid as a dovant substance.

〈従来技術とその問題点〉 近年、電子機器等の小型化、省電力化に伴なってリチウ
ム等のアルカリ金属を利用した2次電池が注目されてお
り、実用化段階に達するまでになっている。しかし、電
極に金属を単体として用いる電池では充電・放電の繰り
返しにより負極金属がデンドライト状に成長し内部短絡
を引き起こすという問題があり、2次電池としての実用
化は困難を極めていた。その改良策として負極にリチウ
ム等の金属原子を吸収・放出することができる材料の開
発が進められ、低融点合金等の金属あるいは有機系材料
の様な金属原子を効率よく吸収・放出可能な材料が見い
出された。中でも、黒鉛等の層状化合物の層間に電気化
学的に種々の物質を挿入することを利用した二次電池の
開発が盛んに行なわれている。特に、黒鉛は、電子供与
性物質、電子受容性物質のいずれも挿入することが可能
であるので、二次電池用電極剤として有望な材料と考え
られている。しかし、いずれの黒鉛も粉末、フィルム、
箔、繊維状等の形態からなり、これらを用いて電極を形
成する場合、成形形態附与が困難である上に、集電体と
なる電極基板にこれら材料を固着させる複雑な工程が必
要となる。またそのために電荷担体以外に結着剤や導電
材等の補助材料を必要とし、単位重量又は単位体積当り
の容量が低下してしまうという欠点がある。
<Prior art and its problems> In recent years, secondary batteries using alkali metals such as lithium have been attracting attention due to miniaturization and power saving of electronic devices, etc. There is. However, in a battery in which a metal is used alone as an electrode, there is a problem that the negative electrode metal grows in a dendrite shape due to repeated charging / discharging and causes an internal short circuit, which makes it extremely difficult to put it into practical use as a secondary battery. As an improvement measure, the development of materials that can absorb and release metal atoms such as lithium in the negative electrode is progressing, and materials that can efficiently absorb and release metal atoms such as metals such as low melting point alloys and organic materials. Was found. Above all, a secondary battery utilizing electrochemically inserting various substances between layers of a layered compound such as graphite has been actively developed. In particular, graphite is considered to be a promising material as an electrode material for secondary batteries because it can insert both an electron donating substance and an electron accepting substance. However, any graphite is powder, film,
It is made of foil, fiber, etc., and when using these to form an electrode, it is difficult to add a molding form, and a complicated process of fixing these materials to the electrode substrate that serves as the current collector is required. Become. For that reason, auxiliary materials such as a binder and a conductive material are required in addition to the charge carriers, and the capacity per unit weight or unit volume is reduced.

CVD法等により、アルミニウム等の導電性基板上に、炭
素体を堆積し、これを電極として用いる構成も考えられ
るが、この炭素体は通常黒鉛化度の低い炭素体であるた
め、上述の問題点を解決することはできない。層間化合
物を形成し得る高結晶性の黒鉛を得るためには、これら
炭素体を少なくとも2000℃以上の高温で処理する必要が
あり、この様な高温に耐え得る電池用電極基板は存在し
ない。
A structure in which a carbon body is deposited on a conductive substrate such as aluminum by a CVD method or the like and is used as an electrode is also conceivable. However, since this carbon body is usually a carbon body having a low degree of graphitization, the above-mentioned problem You cannot solve the point. In order to obtain highly crystalline graphite capable of forming an intercalation compound, it is necessary to treat these carbon bodies at a high temperature of at least 2000 ° C. or higher, and there is no battery electrode substrate capable of withstanding such a high temperature.

〈発明の目的〉 本発明は上記従来の現状に鑑みてなされたもので、熱分
解CVD法等の電極の作製過程より基板としてニッケル等
の高結晶化を促進する触媒作用のある電極基材を用いる
ことにより、金属の融点以下である1000℃前後の熱分解
CVD法で黒鉛の堆積を可能とし得られる黒鉛の結晶性の
著しい向上(黒鉛化)を達成すると同時に上記金属基板
を黒鉛で密着性よく被覆することによって従来の黒鉛電
極に比べて、著しく大きな電気容量を示す電極及びそれ
を用いた電池を提供することを目的とする。
<Purpose of the invention> The present invention has been made in view of the above conventional circumstances, and an electrode base material having a catalytic action for promoting high crystallization of nickel or the like as a substrate during the process of manufacturing an electrode such as a thermal decomposition CVD method. By using it, thermal decomposition around 1000 ℃, which is below the melting point of metal
By making it possible to deposit graphite by the CVD method and achieving a marked improvement in the crystallinity of the resulting graphite (graphitization), by coating the above metal substrate with graphite with good adhesion, it is possible to achieve a significantly higher electrical conductivity than conventional graphite electrodes. It is an object to provide an electrode showing capacity and a battery using the same.

〈発明の概要〉 本発明は、炭化水素又は炭化水素化合物を原料とし、10
00℃前後またはそれ以下の金属基板を変質させない比較
的低温雰囲気下で、基板として鉄、コバルト、ニッケル
又はこれらの合金等の触媒作用のある基材を用い、上記
基板上に高結晶性の熱分解黒鉛を堆積して上記電極基板
を被覆することにより得られる高容量電極を作製するこ
とを特徴とする。
<Outline of the Invention> The present invention uses a hydrocarbon or a hydrocarbon compound as a raw material.
Highly crystalline heat is applied to the above substrate by using a catalytic substrate such as iron, cobalt, nickel or their alloys in a relatively low temperature atmosphere that does not deteriorate the metal substrate around 00 ° C or lower. A high capacity electrode obtained by depositing decomposed graphite and coating the electrode substrate is characterized.

本発明の目的を達成し得る黒鉛電極は以下の製造法によ
って達成される。即ち、高結晶性熱分解黒鉛は、炭化水
素又は炭化水素化合物を出発原料としてこれを反応系へ
供給し、高結晶化の触媒作用のあるニッケル基材等へ熱
分解による気相堆積法により形成されるものである。炭
化水素化合物としては炭化水素の一部に酸素、窒素、硫
黄またはハロゲンより選択された少なくとも1つ以上の
元素を含む特性基を付加または置換したものが用いられ
る、このように、電極基板が、高結晶性熱分解黒鉛によ
り被覆連結されている構造体を、アルカリ金属等がドー
パント物質として含有された電池の電極に用いた場合に
は、以下のような効果がある。
The graphite electrode that can achieve the object of the present invention is achieved by the following manufacturing method. That is, the highly crystalline pyrolytic graphite is formed by vapor-phase deposition method by pyrolysis by using hydrocarbon or hydrocarbon compound as a starting material and supplying it to the reaction system to form a nickel base material having a catalytic action for high crystallization. It is what is done. As the hydrocarbon compound, a compound obtained by adding or substituting a characteristic group containing at least one element selected from oxygen, nitrogen, sulfur or halogen to a part of hydrocarbon is used. The following effects can be obtained when the structure covered and connected by the highly crystalline pyrolytic graphite is used for the electrode of the battery containing the alkali metal or the like as the dopant substance.

(1)従来の製法により製造された黒鉛材料例えば有機
繊維の炭化により製造されたもの、高配向性熱分解黒鉛
(HOPG),天然黒鉛に比べてドーパント物質のドープ脱
ドープが起こり易く、電気容量も大きい。
(1) Compared to graphite materials manufactured by conventional manufacturing methods such as carbonization of organic fibers, highly oriented pyrolytic graphite (HOPG), and natural graphite, dope dedoping of the dopant substance is more likely to occur, and the electric capacity is increased. Is also big.

(2)基板上への薄膜等の直接形成が可能なため、内部
抵抗が小さく活物質の利用率が高い。
(2) Since a thin film or the like can be directly formed on the substrate, the internal resistance is small and the utilization rate of the active material is high.

(3)電極の薄型化が可能でまた任意の形状の基板上に
作製が可能である。
(3) The electrodes can be thinned and can be manufactured on a substrate having an arbitrary shape.

〈実施例〉 第1図は本発明の一実施例に用いられる黒鉛電極製造装
置のブロック構成図である。出発物質として使用される
炭化水素及び一部に種々の特性基を含んだ炭化水素化合
物として例えば脂肪族炭化水素好ましくは不飽和炭化水
素、芳香族化合物、脂環式化合物がある。これらは1000
℃前後またはそれ以下の温度で熱分解される。具体的に
はアセチレン,ジフェニル,アセチレン,アクリロニト
リル,1.2−ジブロモエチレン,2−ブチン,ベンゼン,ト
ルエン,ピリジン,アニリン,フェノール,ジフェニ
ル,アントラセン,ピレン,ヘキサメチルベンゼン,ス
チレン,アリルベンゼン,シクロヘキサン,ノルマルヘ
キサン,ピロール,チオフェン等があげられる。
<Example> FIG. 1 is a block diagram of a graphite electrode manufacturing apparatus used in an example of the present invention. Examples of hydrocarbons used as starting materials and hydrocarbon compounds partially containing various characteristic groups include aliphatic hydrocarbons, preferably unsaturated hydrocarbons, aromatic compounds, and alicyclic compounds. These are 1000
It is pyrolyzed at temperatures around ℃ or below. Specifically, acetylene, diphenyl, acetylene, acrylonitrile, 1.2-dibromoethylene, 2-butyne, benzene, toluene, pyridine, aniline, phenol, diphenyl, anthracene, pyrene, hexamethylbenzene, styrene, allylbenzene, cyclohexane, normal hexane. , Pyrrole, thiophene, etc.

使用した炭化水素化合物の種類によって、後述する反応
管への供給方法はバブラー法、蒸発法または昇華法を用
い毎時数ミリモル以下の供給量に制御される。熱分解黒
鉛が形成される下地電極基板としては一例としてニッケ
ル基材を用いた。
Depending on the kind of the hydrocarbon compound used, the supply method to the reaction tube described later is controlled by a bubbler method, an evaporation method or a sublimation method to a supply amount of several millimoles or less per hour. As a base electrode substrate on which pyrolytic graphite is formed, a nickel base material is used as an example.

以下、製造工程に従って説明する。Hereinafter, the manufacturing process will be described.

真空蒸留による精製操作を行なったベンゼンが収納され
たバブル容器1内にアルゴンガス制御系2よりアルゴン
ガスを供給してベンゼンをバブルさせ、パイレックスガ
ラス管3を介して石英反応管4へベンゼン分子を給送す
る。この際バブル容器1内の液体ベンゼンの温度を一定
に保持してアルゴンガス流量をバルブ5で調節し、ベン
ゼン分子の反応管4内への供給量を毎時数ミリモルに制
御する。一方希釈ライン6よりアルゴンガスを流し、反
応管4へ給送される直前のガラス管3内にいけるアルゴ
ンガス中のベンゼン分子数密度及び流速を最適化する。
反応管4には基板の載置された試料台7が配設されてお
り、反応管4の外周囲には加熱炉8が設けられている。
この加熱炉8によって反応管4内の堆積用電極基板は10
00℃前後またはそれ以下の温度に保持されている。ベン
ゼン分子が反応管4内に給送されるとベンゼン分子は反
応管4内で熱分解し、基板上に炭素堆積物が生成され
る。反応管4内へのガスは排気パイプ9を介して排気系
10へ導入され、反応管4から除去される。反応管4内に
導入されたベンゼン分子は1000℃前後又はそれ以下の温
度で加熱されて熱分解し、順次電極基板上に黒鉛が成長
形成される。この際、成長形成される熱分解黒鉛は、ニ
ッケルの触媒効果を導入して、結晶性の勝れた黒鉛とな
り、電極基板を変質及び融解しない低い温度で黒鉛化が
達成されると同時に、熱分解黒鉛膜は、ニッケル基材を
強固に被覆する。上記製法によれば、従来の黒鉛材料形
成方法に較べ、低い温度で黒鉛化を進行させるため、本
発明の目的達成のために適した黒鉛電極が実現できる。
また用いる出発物質、出発物質の供給量、供給速度、反
応温度を選定することにより、結晶性等を任意に制御す
ることができる利点を有する。この熱分解黒鉛のCuKα
を線源とするX線回析図形を第2図に示す。
Argon gas is supplied from an argon gas control system 2 into a bubble container 1 containing benzene which has been subjected to a purification operation by vacuum distillation to bubble benzene, and benzene molecules are transferred to a quartz reaction tube 4 through a Pyrex glass tube 3. To send. At this time, the temperature of the liquid benzene in the bubble container 1 is kept constant and the flow rate of the argon gas is adjusted by the valve 5 to control the supply amount of benzene molecules into the reaction tube 4 to several millimoles per hour. On the other hand, an argon gas is caused to flow from the dilution line 6 to optimize the benzene molecule number density and the flow rate in the argon gas in the glass tube 3 immediately before being fed to the reaction tube 4.
A sample stage 7 on which a substrate is placed is disposed in the reaction tube 4, and a heating furnace 8 is provided around the outer periphery of the reaction tube 4.
With this heating furnace 8, the deposition electrode substrate in the reaction tube 4 is
The temperature is maintained at around 00 ℃ or below. When the benzene molecule is fed into the reaction tube 4, the benzene molecule is thermally decomposed in the reaction tube 4, and a carbon deposit is formed on the substrate. The gas into the reaction tube 4 is exhausted through the exhaust pipe 9
It is introduced into 10 and removed from the reaction tube 4. The benzene molecules introduced into the reaction tube 4 are heated at a temperature of about 1000 ° C. or lower and thermally decomposed, and graphite is successively grown and formed on the electrode substrate. At this time, the pyrolytic graphite that is grown and formed becomes a graphite with excellent crystallinity by introducing the catalytic effect of nickel, and at the same time graphitization is achieved at a low temperature that does not deteriorate or melt the electrode substrate, The decomposed graphite film firmly covers the nickel base material. According to the above-mentioned manufacturing method, graphitization proceeds at a lower temperature as compared with the conventional graphite material forming method, so that a graphite electrode suitable for achieving the object of the present invention can be realized.
Further, by selecting a starting material to be used, a supply amount of the starting material, a supply rate, and a reaction temperature, there is an advantage that the crystallinity and the like can be arbitrarily controlled. CuKα of this pyrolytic graphite
Fig. 2 shows the X-ray diffraction pattern with the X-ray as the radiation source.

この回析ピークからブラッグの式 により求めた(002)面の平均面間隔は(3.36±0.01)
Åであり、ピークの半値幅βから次式 より求めたC軸方向の結晶子の大きさは350Åであっ
た。
Bragg's equation from this diffraction peak The average interplanar spacing of the (002) plane was calculated by (3.36 ± 0.01)
Å, and from the half-value width β of the peak, The size of the crystallite in the C-axis direction determined from the above was 350Å.

このように製作した黒鉛電極のニッケルからリード線を
取り出して、これを試験極Aとする。試験極Aを第3図
に示すような電解槽内に配設しリチウム金属を対極、リ
チウムをドーパント物質として、リチウム元素のドープ
・脱ドープによる充放電試験を行なった。第3図におい
て12は本実施例に係る黒鉛電極よりなる試験極A、13は
対極、14は参照極として用いたリチウム、15は1モル過
塩酸リチウムを溶解したプロピレンカーポネートからな
る電解液、16は電解槽である。第4図は各種黒鉛電極に
リチウムをドープ・脱ドープさせたときの25℃における
リチウム参照極に対する電位変化図である。第4図の曲
線Aは本実施例による黒鉛電極の電位変化曲線である。
曲線Aにおいて、電位が零Vに近づく方向がドープ(充
電)、高電圧になる方向が脱ドープ(放電)である。第
5図は本実施例に係る黒鉛電極をリチウム参照極に対し
0Vから2.5Vの間で定電流により充放電させるテストにお
ける放電容量の変化を示す。第5図の曲線は本実施例の
特性曲線を示す。この結果より明らかな如く、充放電の
繰り返しによる容量劣化はほとんどなく繰り返し特性は
非常に良好である。
A lead wire is taken out from the nickel of the graphite electrode thus manufactured, and this is used as a test electrode A. A test electrode A was arranged in an electrolytic cell as shown in FIG. 3, and a lithium metal was used as a counter electrode and lithium was used as a dopant substance to conduct a charge / discharge test by doping / dedoping lithium element. In FIG. 3, 12 is a test electrode A made of the graphite electrode according to this example, 13 is a counter electrode, 14 is lithium used as a reference electrode, 15 is an electrolytic solution made of propylene carbonate in which 1 mol of lithium perhydrochloride is dissolved, 16 is an electrolytic cell. FIG. 4 is a potential change diagram with respect to a lithium reference electrode at 25 ° C. when various graphite electrodes are doped or dedoped with lithium. Curve A in FIG. 4 is a potential change curve of the graphite electrode according to this example.
In the curve A, the direction in which the potential approaches 0 V is dope (charge), and the direction in which the potential is high is dedope (discharge). FIG. 5 shows the graphite electrode according to the present embodiment with respect to the lithium reference electrode.
The change in discharge capacity in the test of charging and discharging with a constant current between 0 V and 2.5 V is shown. The curve in FIG. 5 shows the characteristic curve of this embodiment. As is clear from this result, there is almost no capacity deterioration due to repeated charging and discharging, and the repeating characteristics are very good.

以上、このような電極材料を用いることによって充放電
可能な非水リチウム二次電池の負極として利用すること
ができる。
As described above, by using such an electrode material, it can be used as a negative electrode of a non-aqueous lithium secondary battery that can be charged and discharged.

本実施例においては電解質に1モル過塩素酸リチウム、
電解液にプロピレンカーボネートを用いて説明したが、
本発明はこれに限定されるものではなく、その他の電解
質としては六フッ化砒酸リチウム,ホウフッ化リチウ
ム,トリフルオロスルホン酸リチウム等があり、また電
解液としてはジメチルスルフオキシド,ガンマーブチル
ラクトン,スルフォランテトラヒドロフラン,2−メチル
テトラヒドロフラン,1.2−ジメトキシエタン,1.3−ジオ
キシラン等の有機溶媒や水があげられ、これらを単独も
しくは混合して用いることができる。
In this example, 1 mol of lithium perchlorate was used as the electrolyte,
I explained using propylene carbonate as the electrolyte,
The present invention is not limited to this, and other electrolytes include lithium hexafluoroarsenate, lithium borofluoride, lithium trifluorosulfonate, and the like, and electrolytes such as dimethyl sulfoxide, gamma-butyl lactone, Examples thereof include organic solvents such as sulfolane tetrahydrofuran, 2-methyltetrahydrofuran, 1.2-dimethoxyethane, and 1.3-dioxirane, and water, and these may be used alone or in combination.

また本実施例で示した作製法を用いて得られた黒鉛電極
の熱分解黒鉛の面間隔は、原料供給速度、反応温度に応
じて3.35Å〜3.55Åのものから得られ、上記いずれの黒
鉛電極を用いても、高電気容量及び良好な充放電繰り返
し特性を示す。
Further, the interplanar spacing of the pyrolytic graphite of the graphite electrode obtained by using the production method shown in this example is obtained from 3.35Å to 3.55Å depending on the raw material supply rate and the reaction temperature. Even if an electrode is used, it exhibits high electric capacity and good charge / discharge repeating characteristics.

尚、上述の電極特性を示すものは、本実施例に述べた製
作法にのみに限定されるものではない。抵抗加熱や高周
波誘導加熱等のCVD法によっても最適化することによ
り、本発明の目的は達成される。
In addition, what shows the above-mentioned electrode characteristics is not limited only to the manufacturing method described in the present embodiment. The object of the present invention can be achieved by optimizing by a CVD method such as resistance heating or high frequency induction heating.

〈比較例〉 市販に黒鉛繊維を集電用ネットで挾持し、電極を作製し
た。これを試験極Bを第3図に示すような電解槽内に配
設し、上記実施例と同様に充放電テストを行なった。第
4図の曲線Bは本比較例による集電用ネットで挾持して
得られる炭素電極の電位変化曲線である。この結果より
上記実施例の電極に比べ、放電容量もわずかで、電極と
しては不適当であった。
<Comparative example> A graphite fiber was sandwiched between commercially available nets to collect electrodes. The test electrode B was placed in an electrolytic cell as shown in FIG. 3, and a charge / discharge test was conducted in the same manner as in the above-mentioned examples. Curve B in FIG. 4 is a potential change curve of the carbon electrode obtained by sandwiching the current collecting net according to this comparative example. From these results, the discharge capacity was small compared with the electrodes of the above-mentioned examples, and it was unsuitable as an electrode.

〈発明の効果〉 ニッケル等触媒作用のある導電性基板上に、高結晶性黒
鉛を低温熱分解による気相堆積法で形成して得られた電
極は、充放電サイクル及び過放電に対して強く、新たな
導電材の添加を必要としないため電極の充填密度が高く
なり、その結果高密度の特性を示す。又、工程が簡単化
されるため、2次電池用の電極として非常に有効なもの
である。本発明の電極を用いることにより得られる電池
は充放電サイクル特性が良く、小型で低コストの電池と
して種々の分野に広く利用することができる。
<Effects of the Invention> The electrode obtained by forming highly crystalline graphite on a conductive substrate having a catalytic action such as nickel by a vapor phase deposition method by low temperature pyrolysis is strong against charge-discharge cycle and over-discharge. Moreover, since it is not necessary to add a new conductive material, the packing density of the electrode is increased, and as a result, high density characteristics are exhibited. Moreover, since the process is simplified, it is very effective as an electrode for a secondary battery. The battery obtained by using the electrode of the present invention has good charge / discharge cycle characteristics, and can be widely used in various fields as a small-sized and low-cost battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の説明に供する黒鉛電極製造
装置のブロック構成図である。 第2図は本発明に係る黒鉛電極の熱分解黒鉛のX線回析
結果の一例を示す説明図である。 第3図は本発明に係る黒鉛電極の電極特性測定のための
装置の1例を示す概略図である。 第4図は本発明の一実施例に係る黒鉛電極及び黒鉛の充
放電特性図である。 第5図は、本発明の一実施例に係る黒鉛電極の放電容量
のサイクル特性図である。 1……バルブ容器、2……アルゴンガス制御系、3……
バイレックスガラス管、4……反応管、5……バルブ、
6……希釈ライン、7……試料台、8……加熱炉、9…
…排気バイブ。
FIG. 1 is a block diagram of a graphite electrode manufacturing apparatus used to explain one embodiment of the present invention. FIG. 2 is an explanatory diagram showing an example of the X-ray diffraction result of the pyrolytic graphite of the graphite electrode according to the present invention. FIG. 3 is a schematic view showing an example of an apparatus for measuring the electrode characteristics of the graphite electrode according to the present invention. FIG. 4 is a charge / discharge characteristic diagram of a graphite electrode and graphite according to an embodiment of the present invention. FIG. 5 is a cycle characteristic diagram of a discharge capacity of a graphite electrode according to an example of the present invention. 1 ... Valve container, 2 ... Argon gas control system, 3 ...
Baylex glass tube, 4 ... reaction tube, 5 ... valve,
6 ... Dilution line, 7 ... Sample stand, 8 ... Heating furnace, 9 ...
… Exhaust vibrator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼田 勝 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 田島 善光 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 田中 英明 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 柳沢 伸浩 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 毛利 元男 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 笠原 三千世 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (56)参考文献 特開 昭60−36315(JP,A) 特開 昭59−18578(JP,A) 特開 昭60−182670(JP,A) 電気学会論文A,105〔6〕(昭60−6) P.34 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor ▲ Yoshi ▼ Takatsu 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Shigeo Nakajima 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka No. 22, 22 Inventor, Yoshimitsu Tajima, Osaka Prefecture, Osaka City, 22-22 Nagaike-cho, Abeno-ku, Osaka Prefecture (72) No. 22, 22 Inventor, Hideaki Tanaka, 22-22, Nagaike-cho, Abeno-ku, Osaka, Osaka In-house (72) Inventor Nobuhiro Yanagisawa 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) In-house Motoo Mouri 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation ( 72) Inventor Mitsuyo Kasahara, 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (56) References JP-A-60-36315 (JP, A) JP 59-18578 (JP, A) JP 60-182670 (JP, A) The Institute of Electrical Engineers of Japan A, 105 [6] (SHO 60-6) P.A. 34

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】黒鉛を電極活物質とする電極において、前
記黒鉛は、炭化水素又は炭化水素化合物の高結晶性熱分
解黒鉛から成り、黒鉛化を促進する触媒作用を呈する金
属から成る電極基板上へ直接気相堆積法によって形成さ
れて該金属電極基板を被覆していることを特徴とする電
極。
1. An electrode comprising graphite as an electrode active material, wherein the graphite is composed of a highly crystalline pyrolytic graphite of a hydrocarbon or a hydrocarbon compound, and is on an electrode substrate made of a metal exhibiting a catalytic action for promoting graphitization. An electrode formed by direct vapor deposition to cover the metal electrode substrate.
【請求項2】金属電極基板が、鉄、コバルト、ニッケル
又はこれら金属の合金である特許請求の範囲第1項記載
の電極。
2. The electrode according to claim 1, wherein the metal electrode substrate is iron, cobalt, nickel or an alloy of these metals.
【請求項3】熱分解黒鉛がアルカリ金属、アルカリ土類
金属、希土類金属または遷移金属をドープしている特許
請求の範囲第1項記載の電極。
3. The electrode according to claim 1, wherein the pyrolytic graphite is doped with an alkali metal, an alkaline earth metal, a rare earth metal or a transition metal.
【請求項4】熱分解黒鉛がハロゲン、ハロゲン化合物ま
たは酸素酸をドープしている特許請求の範囲第1項記載
の電極。
4. The electrode according to claim 1, wherein the pyrolytic graphite is doped with halogen, a halogen compound or oxyacid.
JP62079248A 1986-06-24 1987-03-31 Electrode Expired - Fee Related JPH07118308B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62079248A JPH07118308B2 (en) 1987-03-31 1987-03-31 Electrode
US07/065,508 US4863818A (en) 1986-06-24 1987-06-23 Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
EP87305617A EP0251677B1 (en) 1986-06-24 1987-06-24 Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
DE87305617T DE3787056T2 (en) 1986-06-24 1987-06-24 Electrodes made of graphite intercalation compounds for rechargeable batteries and manufacturing processes therefor.
US07/264,598 US4968527A (en) 1986-06-24 1988-10-31 Method for the manufacture of pyrolytic graphite with high crystallinity and electrodes with the same for rechargeable batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079248A JPH07118308B2 (en) 1987-03-31 1987-03-31 Electrode

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7141746A Division JP2785909B2 (en) 1995-06-08 1995-06-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63245855A JPS63245855A (en) 1988-10-12
JPH07118308B2 true JPH07118308B2 (en) 1995-12-18

Family

ID=13684557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079248A Expired - Fee Related JPH07118308B2 (en) 1986-06-24 1987-03-31 Electrode

Country Status (1)

Country Link
JP (1) JPH07118308B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899048B2 (en) * 1990-03-15 1999-06-02 シャープ株式会社 Carbon electrode and non-aqueous secondary battery
JP3204291B2 (en) * 1994-07-21 2001-09-04 シャープ株式会社 Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
電気学会論文A,105〔6〕(昭60−6)P.34

Also Published As

Publication number Publication date
JPS63245855A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4863818A (en) Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
US8703338B2 (en) Material based on carbon and silicon nanotubes that can be used in negative electrodes for lithium batteries
US8158282B2 (en) Method of producing prelithiated anodes for secondary lithium ion batteries
JP2018519648A (en) Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
EP2768050B1 (en) Silicon oxide for nonaqueous electroltye secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
JPH06243867A (en) Nonaqueous secondary battery
KR20190116011A (en) Silicon-Silicon Oxide-Carbon composite and manufacturing method for Silicon- Silicon Oxide-Carbon composite
CN112978730A (en) Preparation method of silicon-carbon alkene material and preparation method of electrode active material of silicon-carbon alkene material
US20040175622A9 (en) Method of preparing electrode composition having a carbon-containing-coated metal oxide, electrode composition and electrochemical cell
JP3204291B2 (en) Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP2592143B2 (en) Carbon electrode for non-aqueous lithium secondary battery and method for producing the same
JP2592152B2 (en) Method for producing carbon electrode for non-aqueous lithium secondary battery
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JP2000251890A (en) Negative electrode for nonaqueous electrolyte secondary battery, and secondary battery using the same
JP2703350B2 (en) Rechargeable battery
EP3291337B1 (en) Electrode, method for fabricating the same, and metal ion battery employing the same
JPH07118308B2 (en) Electrode
JP2785909B2 (en) Non-aqueous secondary battery
JP2883491B2 (en) Charging method
Sumiya et al. Enhancement of the electrochemical Li doping/undoping reaction rate of a graphitic material by an evaporated film of Sn, Zn or Pb
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JP2007188877A (en) Electrode, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2899048B2 (en) Carbon electrode and non-aqueous secondary battery
JP2656003B2 (en) Non-aqueous secondary battery
JP3172669B2 (en) Non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees