JPH0828238B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JPH0828238B2
JPH0828238B2 JP62079249A JP7924987A JPH0828238B2 JP H0828238 B2 JPH0828238 B2 JP H0828238B2 JP 62079249 A JP62079249 A JP 62079249A JP 7924987 A JP7924987 A JP 7924987A JP H0828238 B2 JPH0828238 B2 JP H0828238B2
Authority
JP
Japan
Prior art keywords
electrode
negative electrode
positive electrode
capacity
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62079249A
Other languages
Japanese (ja)
Other versions
JPS63245858A (en
Inventor
善光 田島
元男 毛利
伸浩 柳沢
英明 田中
武仁 見立
三千世 笠原
芳和 好本
友成 鈴木
和田  弘
勝 吉田
重夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62079249A priority Critical patent/JPH0828238B2/en
Publication of JPS63245858A publication Critical patent/JPS63245858A/en
Publication of JPH0828238B2 publication Critical patent/JPH0828238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 <技術分野> 本発明は負極による容量支配型の非水二次電池に関
し、負極にリチウム,カリウム等のアルカリ金属,アル
カリ土類金属、希土類金属又は遷移金属を可逆的にイン
ターカレート及びデインターカレート可能な炭素質材料
を用いる非水二次電池に関するものである。
Description: TECHNICAL FIELD The present invention relates to a capacity-controlled non-aqueous secondary battery using a negative electrode, and reversibly using an alkali metal such as lithium or potassium, an alkaline earth metal, a rare earth metal or a transition metal in the negative electrode. The present invention relates to a non-aqueous secondary battery using a carbonaceous material capable of intercalating and deintercalating.

<従来技術> 電子機器等の小型化,軽量化に伴ない、リチウム,カ
リウム等の軽金属を利用したエネルギー密度の高い二次
電池が注目を集めている。これらの二次電池の負極に
は、リチウムやカリウム等の軽金属の単体,リチウム−
アルミニウム合金やウッド合金等の低融点合金を利用し
た軽金属合金又は導電性高分子若しくは熱焼成炭素体等
の炭素を主成分とした材料が用いられ、また他方の正極
には、五酸化バナジウムや二酸化マンガン等の金属酸化
物,二酸化チタンやセレン化チタン等のカルコゲン化合
物又は有機ポリマーが使用されている。ここに示したよ
うな従来の非水二次電池系においては、負極の容量が少
なかったり放電深度に制限があり、そのために正極に用
いられる材料に大幅な制約があった。
<Prior Art> With the miniaturization and weight reduction of electronic devices, secondary batteries with high energy density using light metals such as lithium and potassium have been attracting attention. For the negative electrode of these secondary batteries, a simple substance of light metal such as lithium or potassium, lithium-
A light metal alloy using a low melting point alloy such as an aluminum alloy or a wood alloy, or a material containing carbon as a main component such as a conductive polymer or a heat-baked carbon body is used, and the other positive electrode is made of vanadium pentoxide or dioxide. Metal oxides such as manganese, chalcogen compounds such as titanium dioxide and titanium selenide, or organic polymers are used. In the conventional non-aqueous secondary battery system as shown here, the capacity of the negative electrode is small and the depth of discharge is limited, so that the material used for the positive electrode is greatly restricted.

その理由としては、リチウム,カリウム等の軽金属の
単体を電極とした場合、頻繁な充電・放電の繰り返しに
よる金属の溶解・析出過程の結果、電池の内部短絡の原
因となる金属デンドライトが生成すると、リチウム−ア
ルミニウム合金を電極とした場合、放電によって合金中
のリチウム濃度が低下し、容量減少の原因となる合金電
極の脆化を起こすこと、ウッド合金などの低融点合金を
利用した場合では、電位を著しく貴にする過放電状態に
おいて特性劣化の原因となる合金成分の溶解が起こるこ
と、などが挙げられる。すなわち、これらの負極を完全
放電等のように深い放電深度の状態にまで放電すると電
極に何らかの支障をきたし、電池性能に悪影響を与える
ことになるために、正極に深い放電深度まで放電しても
特性に何ら影響の現われない活物質を用い、放電容量が
正極支配となるようにして負極の負担を軽減しなければ
ならなかった。
The reason for this is that when light metals such as lithium and potassium are used as electrodes, the metal dendrites that cause internal short circuit of the battery are generated as a result of the metal dissolution / precipitation process due to frequent charging / discharging, When a lithium-aluminum alloy is used as the electrode, the lithium concentration in the alloy decreases due to discharge, causing embrittlement of the alloy electrode that causes a decrease in capacity, and when using a low melting point alloy such as a wood alloy, the potential In other words, the melting of alloy components that cause deterioration of characteristics occurs in an over-discharged state that makes the temperature extremely noble. That is, if these negative electrodes are discharged to a deeper depth of discharge such as complete discharge, the electrodes will suffer some trouble, and the battery performance will be adversely affected. It has been necessary to reduce the burden on the negative electrode by using the active material that does not affect the characteristics at all so that the discharge capacity is controlled by the positive electrode.

また、深い放電深度の状態にしても比較的劣化しにく
い導電性高分子などの炭素を主成分とした従来の材料を
用いること及び放電の終了条件を制御することにより、
負極支配型の電池を可能とすることができるが、これら
の構造では放電容量が少なくなり、電池を高エネルギー
密度化することができない。
Further, by using a conventional material containing carbon as a main component such as a conductive polymer that is relatively difficult to deteriorate even in a deep discharge depth state and controlling the discharge termination condition,
Although a negative electrode-dominated battery can be made possible, these structures have a low discharge capacity and cannot be made to have a high energy density.

<発明の目的> 本発明は負極の深い放電深度まで放電しても特性に何
ら影響の現われない電極構造を用いることで放電容量が
負極支配となり得る高容量の二次電池の実現を可能と
し、従来では非水二次電池用の正極として使用の困難で
あった材料を使用可能とし、非水二次電池系として幅の
ある電池を提供することを目的とする。
<Object of the Invention> The present invention enables the realization of a high-capacity secondary battery in which the discharge capacity can be the negative electrode dominant by using an electrode structure that does not affect the characteristics even if discharged to a deep discharge depth of the negative electrode. It is an object of the present invention to provide a battery having a wide range as a non-aqueous secondary battery system by making it possible to use a material which has been difficult to use as a positive electrode for a non-aqueous secondary battery in the past.

<発明の概要> 従来の技術により発生する種々の問題を鑑み、鋭意研
究を重ねた結果、炭化水素又は炭化水素化合物を出発原
料とし熱分解による気相堆積法で得られる炭素質材料
を、炭素の黒鉛化に対して触媒作用を有する導電性基板
上へ堆積した電極が、電池用電極材料として高い容量を
保有しかつ深い放電深度まで放電しても特性に何ら影響
が現われないことを見い出した。
<Summary of the Invention> In view of various problems caused by conventional techniques, as a result of intensive studies, a carbonaceous material obtained by a vapor deposition method by thermal decomposition using a hydrocarbon or a hydrocarbon compound as a starting material It was found that the electrode deposited on the conductive substrate that has a catalytic action for the graphitization of TiO2 has a high capacity as an electrode material for batteries and has no effect on the characteristics even when discharged to a deep discharge depth. .

炭素質材料は、ベンゼン,ナフタリン,アントラセ
ン,ヘキサメチレンベンゼン,1,2−ジブロモエチレン,2
−ブチン,アセチレン,ビフェニル,ジフェニルアセチ
レン等の炭化水素あるいは他の特性基を付加乃至置換し
た炭化水素化合物を水素及び/又はアルゴンガスをキャ
リアガスとするバブラ法,蒸発法,昇華法等の各種搬送
方法により気化して反応系へ供給し、反応系内で1500℃
以下の低温熱分解による気相堆積法でニッケル等の触媒
作用を有する金属基体に直接形成することにより得られ
る。ここで、低温熱分解する濃度と温度は、出発原料に
する炭化水素あるいは炭化水素化合物材料により異なる
が、通常数ミリモルパーセントの濃度及び1000℃程度の
温度で制御される。
Carbonaceous materials include benzene, naphthalene, anthracene, hexamethylenebenzene, 1,2-dibromoethylene, 2
-Various transports such as butane, acetylene, biphenyl, diphenylacetylene and other hydrocarbons or hydrocarbon compounds having other characteristic groups added or substituted, using hydrogen and / or argon gas as carrier gas such as bubbler method, evaporation method and sublimation method. It is vaporized by the method and supplied to the reaction system, and 1500 ° C in the reaction system.
It can be obtained by directly forming on a metal substrate having a catalytic action, such as nickel, by the following vapor phase deposition method by low temperature pyrolysis. Here, the concentration and temperature for low-temperature pyrolysis differ depending on the hydrocarbon or hydrocarbon compound material used as the starting material, but are usually controlled at a concentration of several millimole percent and a temperature of about 1000 ° C.

本発明の電池は、前述の低温熱分解による気相堆積法
で得られる炭素質材料を、炭素の黒鉛化に対して触媒作
用を有する導電性基板上へ堆積したものを負極とし、他
に正極及びイオン導電性物質とから構成される。
The battery of the present invention uses, as a negative electrode, a carbonaceous material obtained by the vapor deposition method by low temperature pyrolysis described above deposited on a conductive substrate having a catalytic action for graphitization of carbon, and a positive electrode. And an ion conductive material.

正極には、バナシウム酸化物,五酸化ニオブ,三二酸
化ビスマス,三二酸化アンチモン,クロム酸化物,三酸
化モリブデン,三酸化タングステン,二酸化セレン,二
酸化テルル,二酸化マンガン,三二酸化鉄,四三酸化ニ
ッケル,酸化ニッケル,三酸化コバルト,酸化コバルト
等の酸化物又は硫化チタン,硫化ジルコニウム,硫化ハ
フニウム,硫化タンタル,硫化モリブデン,硫化タング
ステン,セレン化チタン,セレン化ジルコニウム,セレ
ン化ハフニウム,セレン化バナジウム,セレン化ニオ
ブ,セレン化タンタル,セレン化モリブデン,セレン化
タングステン等のカルコゲン化合物などの単一化合物あ
るいは2種類以上の複合物若しくは混合物が用いられ
る。又、これら化合物に少量のドーパントを添加しても
かまわない。正極活物質の結晶状態は単結晶,微結晶,
非晶質のいずれの状態でもよくこれらが共存していても
よい。正極の形態は、フィルム状,薄膜状,焼結体,ペ
ースト状,粒状,高多孔体,ゲル状,インゴット等のい
ずれであってもよくまたこれらの混合物であってもかま
わない。
For the positive electrode, vanadium oxide, niobium pentoxide, bismuth trioxide, antimony trioxide, chromium oxide, molybdenum trioxide, tungsten trioxide, selenium dioxide, tellurium dioxide, manganese dioxide, iron sesquioxide, nickel trioxide, Oxides of nickel oxide, cobalt trioxide, cobalt oxide, etc. or titanium sulfide, zirconium sulfide, hafnium sulfide, tantalum sulfide, molybdenum sulfide, tungsten sulfide, titanium selenide, zirconium selenide, hafnium selenide, vanadium selenide, selenide A single compound such as a chalcogen compound such as niobium, tantalum selenide, molybdenum selenide, or tungsten selenide, or a composite or mixture of two or more kinds is used. Also, a small amount of dopant may be added to these compounds. The crystalline state of the positive electrode active material is single crystal, microcrystal,
Any of the amorphous states may be present and these may coexist. The form of the positive electrode may be any of a film form, a thin film form, a sintered body, a paste form, a granular form, a highly porous body, a gel form, an ingot and the like, or a mixture thereof.

イオン導電性物質とは負極炭素質材料に対し電気化学
的かつ可逆的にインターカレート,デインターカレート
可能なイオン又はそのイオンにより構成される塩類及び
それらを安定に存在させ得る物質のことであり、例えば
非ブロトン性有機溶媒溶液等の電解質溶液,固体電解
質,溶融塩などが挙げられる。尚、正極と負極の接触を
妨げるためのセパレータを正極と負極の間に配置しても
かまわない。
The ion conductive substance is an ion capable of electrochemically and reversibly intercalating or deintercalating an anode carbonaceous material or a salt composed of the ion and a substance capable of stably existing them. Examples thereof include electrolyte solutions such as non-brotonic organic solvent solutions, solid electrolytes, and molten salts. A separator for preventing contact between the positive electrode and the negative electrode may be arranged between the positive electrode and the negative electrode.

<発明の効果> ニッケル等の触媒作用を有する導電性の電極基体上に
炭化水素あるいは炭化水素化合物の低温熱分解による気
相堆積法で形成して得られる炭素質材料からなる電極
は、充電・放電の繰り返し及び過放電することによっ
て、可逆的な充電・放電の可能な容量が減少することな
く、また、炭素質材料が導電性の電極基体上に直接形成
されて電気的、機械的に連結され、新たな導電材の添加
や結着剤の添加を必要としないために電極材料の充填密
度が高くなり、その結果高エネルギー密度の電極が得ら
れる。また、工程が簡単化され、二次電池用の電極とし
て非常に有効なものである。
<Effects of the Invention> An electrode made of a carbonaceous material obtained by a vapor deposition method by low temperature pyrolysis of a hydrocarbon or a hydrocarbon compound on a conductive electrode substrate having a catalytic action such as nickel is By repeating the discharge and over-discharging, the capacity for reversible charging / discharging does not decrease, and the carbonaceous material is directly formed on the conductive electrode substrate and electrically and mechanically connected. However, since it is not necessary to add a new conductive material or a binder, the packing density of the electrode material becomes high, and as a result, an electrode having a high energy density can be obtained. Moreover, the process is simplified, and it is very effective as an electrode for a secondary battery.

上記触媒作用を有する導電性基板上へ堆積された炭素
質材料を負極とし、可逆的に充電・放電可能な容量を負
極に比べ大とした正極と組み合わせて得られる二次電池
は、充電・放電の繰り返し回数及び過放電することによ
る可逆的に充電・放電の可能な容量の減少がなく、ま
た、高エネルギー密度となることから二次電池として優
れた特性を得ることが可能となるため、その工業的価値
は極めて大である。
A secondary battery obtained by combining a carbonaceous material deposited on a conductive substrate having the above-mentioned catalytic action as a negative electrode and a positive electrode having a reversibly chargeable / dischargeable capacity larger than that of the negative electrode is a chargeable / dischargeable battery. Since there is no reversible decrease in the chargeable / dischargeable capacity due to the number of repetitions and overdischarging, and high energy density makes it possible to obtain excellent characteristics as a secondary battery. The industrial value is extremely large.

<実施例> 第1図は本発明の1実施例を示す電池の構成図であ
る。
<Example> FIG. 1 is a configuration diagram of a battery showing an example of the present invention.

負極にベンゼンを出発原料とし低温熱分解法で発泡性
ニッケル基体に直接気相堆積して得られた炭素質材料を
用い、正極2にCr3O8を、また両電極間に1Mの過塩素酸
リチウムを溶解したプロピレンカーボネートを電解液と
して含有したポリエチレン製の不織布よりなるセパレー
タ6を用い、第1図に示す形状の電池を作製した。ここ
で、負極1である炭素質材料は、第2図に示す反応装置
を用いて作製した。即ち、一旦脱水処理を施しさらに真
空移送による蒸留精製操作を行なったベンゼンを収納し
た容器11内にアルゴンガス供給器12よりアルゴンガスを
供給し、ベンゼンのバブルを行なった後パイレックス製
ガラス管13を介して石英製反応管14へベンゼンを給送す
る。この際、容器11をベンゼンの蒸発による吸熱量の分
だけ加熱することにより温度を一定に保持し、またニー
ドル弁15,16を操作することによりベンゼン量を最適化
した。反応管14には発泡状ニッケルから成る直径15mm
φ、厚さ1.5mmの電極基体の載置されたホルダー17が設
置されており、反応管14の外周囲には加熱炉18が設けら
れている加熱炉18によりホルダー17及び電極基体を約10
00℃に約30分間維持し、パイレックス製ガラス管13より
供給されるベンゼンを熱分解し、電極基体に39.8mgの炭
素質材料を堆積させた。
A carbonaceous material obtained by directly vapor-depositing benzene as a starting material on a foamable nickel substrate by a low temperature thermal decomposition method was used for the negative electrode, Cr 3 O 8 was used for the positive electrode 2, and 1M perchlorine was used between both electrodes. A battery having the shape shown in FIG. 1 was produced using the separator 6 made of a polyethylene non-woven fabric containing propylene carbonate in which lithium acid was dissolved as an electrolytic solution. Here, the carbonaceous material that is the negative electrode 1 was produced using the reaction apparatus shown in FIG. That is, argon gas was supplied from an argon gas supplier 12 into a container 11 containing benzene that had been dehydrated and then subjected to distillation purification operation by vacuum transfer, and a glass tube 13 made of Pyrex was used after bubbling benzene. Benzene is fed to the quartz reaction tube 14 via the. At this time, the temperature was kept constant by heating the container 11 by the amount of heat absorbed by the evaporation of benzene, and the amount of benzene was optimized by operating the needle valves 15 and 16. The reaction tube 14 has a diameter of 15 mm made of foamed nickel.
A holder 17 on which an electrode substrate having a diameter of φ and a thickness of 1.5 mm is placed is installed. A heating furnace 18 is provided around the outer periphery of the reaction tube 14.
The temperature was maintained at 00 ° C. for about 30 minutes, the benzene supplied from the Pyrex glass tube 13 was pyrolyzed, and 39.8 mg of carbonaceous material was deposited on the electrode substrate.

熱分解反応後の反応管14内に残留するガスは排気設備
19,20を通して除去する。この様にして炭素体を堆積さ
せた電極基体をプレス機で成形し本実施例の電池の負極
1とした。尚、この電極の容量を調べたところ、可逆的
充電・放電可能な容量が12.5mAhであった。正極2のCr3
O8なる組成の酸化物は、三酸化クロムを耐圧容器内で23
0℃の温度で熱処理することにより得た。この酸化物100
重量部に対し、アセチレンブラック10重量部、ポリ四フ
ッ化エチレン樹脂粉末5重量部を加えて混練し、正極活
物質の混合物を得た。この混合物100mgを210℃の温度で
かつ300Kg cm-2の加圧力で成型し本実施例の電池の正極
2とした。また、この電極の容量を調べたところ可逆的
充電・放電可能な容量が19.7mAhであった。正極2及び
負極1の容量は200℃で8時間減圧乾燥し脱水処理を施
した後、グローブボックス内で1M過塩素酸リチウムを溶
解したプロピレンカーボネート中で調べたものである。
第1図の電池は、予め正極容器4にスポット溶接してあ
る金属性ネット5に正極2を圧着し、1M過塩素酸リチウ
ムを溶解したプロピレンカーボネートを含有したポリプ
ロピレン製セパレータ6をのせた後、予め負極1をスポ
ット溶接してある負極蓋3をかぶせ、かしめ金型を用い
てかしめ、ポリプロピレン製パッキン7によりシール
し、コイン型状の電池Aとしたものである。
The gas remaining in the reaction tube 14 after the thermal decomposition reaction is exhaust equipment.
Remove through 19,20. The electrode substrate on which the carbon body was deposited in this manner was molded by a press machine to obtain the negative electrode 1 of the battery of this example. When the capacity of this electrode was examined, the capacity capable of reversible charging / discharging was 12.5 mAh. Positive electrode 2 Cr 3
The oxide with the composition of O 8 is chromium trioxide in a pressure vessel.
It was obtained by heat treatment at a temperature of 0 ° C. This oxide 100
10 parts by weight of acetylene black and 5 parts by weight of polytetrafluoroethylene resin powder were added to the parts by weight and kneaded to obtain a mixture of positive electrode active materials. 100 mg of this mixture was molded at a temperature of 210 ° C. and a pressure of 300 Kg cm −2 to obtain a positive electrode 2 of the battery of this example. When the capacity of this electrode was examined, the capacity capable of reversible charging / discharging was 19.7 mAh. The capacities of the positive electrode 2 and the negative electrode 1 are those which were examined in a propylene carbonate in which 1M lithium perchlorate was dissolved in a glove box after being dried under reduced pressure at 200 ° C. for 8 hours, dehydrated.
In the battery shown in FIG. 1, the positive electrode 2 is pressure-bonded to the metallic net 5 which has been spot-welded to the positive electrode container 4 in advance, and the polypropylene separator 6 containing propylene carbonate in which 1M lithium perchlorate is dissolved is placed thereon, A negative electrode lid 3 to which the negative electrode 1 has been spot-welded in advance is covered, crimped using a crimping die, and sealed with a polypropylene packing 7, whereby a coin-shaped battery A is obtained.

電池Aを1mAの電流で充電・放電を繰り返し、繰り返
しのサイクル数に対する放電容量の変化を第3図に実線
で示した。
Battery A was repeatedly charged and discharged with a current of 1 mA, and the change in discharge capacity with the number of repeated cycles is shown by the solid line in FIG.

<比較例1> 負極にリチウム金属を用い、正極に上記実施例と同様
の正極を用い、負極蓋に集電用金属ネットを設け、その
他は上記実施例と同様の条件としてコイン型状の電池B
を作製した。電池Bの正極の可逆的充電・放電可能な容
量は15.0mAhであり、負極の理論放電容量は300mAhであ
った。電池Bを1mAの電流で充電・放電を繰り返し、繰
り返しのサイクル数に対する放電容量の変化を第3図に
破線で示した。
Comparative Example 1 Lithium metal was used for the negative electrode, the same positive electrode as the above-mentioned example was used for the positive electrode, a metal net for current collection was provided on the negative electrode lid, and the other conditions were the same as in the above-mentioned example. B
Was produced. The reversible charge / discharge capacity of the positive electrode of Battery B was 15.0 mAh, and the theoretical discharge capacity of the negative electrode was 300 mAh. Battery B was repeatedly charged and discharged with a current of 1 mA, and the change in discharge capacity with respect to the number of repeated cycles is shown by the broken line in FIG.

<比較例2> 負極にリチウム金属を用い、正極に上記実施例と同様
の材料を用い、正極と負極の可逆的充電・放電可能な容
量に比が異なること以外は比較例1と同様の電池Cを作
製した。電池Cの正極の充電・放電可能な容量は15.0mA
hであり、負極の理論放電容量は12.0mAhであった。電池
Cを1mAの電流で充電・放電を繰り返したところ初め9.5
mAhの放電容量が得られたが3サイクルめの放電容量は0
mAhであった。
<Comparative Example 2> A battery similar to Comparative Example 1 except that lithium metal is used for the negative electrode, the same material as that of the above-described example is used for the positive electrode, and the ratios of the reversible charge / discharge capacities of the positive electrode and the negative electrode are different. C was produced. The chargeable / dischargeable capacity of the positive electrode of battery C is 15.0 mA.
The theoretical discharge capacity of the negative electrode was 12.0 mAh. When battery C was repeatedly charged and discharged with a current of 1 mA, it was initially 9.5
A discharge capacity of mAh was obtained, but the discharge capacity at the 3rd cycle was 0.
It was mAh.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例を示す二次電池の模式断面図
である。第2図は、第1図に示す実施例の説明に係る炭
素質材料生成装置のブロック構成図である。第3図は、
電池A及び電池Bの充電・放電可能な容量とサイクル数
の関係を示す特性図である。 1……負極、2……正極、3……負極蓋、4……正極容
器、5……金属製ネット、6……セパレータ、7……パ
ッキン、11……バブル容器、12……アルゴンガス供給
系、13……パイレックスガラス管、14……反応管、15,1
6……ニードル弁、17……試料ホルダー、18……加熱
炉、19,20……排気設備。
FIG. 1 is a schematic sectional view of a secondary battery showing one embodiment of the present invention. FIG. 2 is a block diagram of a carbonaceous material production system according to the embodiment shown in FIG. Figure 3 shows
FIG. 4 is a characteristic diagram showing the relationship between the chargeable / dischargeable capacities of batteries A and B and the number of cycles. 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Negative electrode lid, 4 ... Positive electrode container, 5 ... Metal net, 6 ... Separator, 7 ... Packing, 11 ... Bubble container, 12 ... Argon gas Supply system, 13 …… Pyrex glass tube, 14 …… Reaction tube, 15,1
6 ... Needle valve, 17 ... Sample holder, 18 ... Heating furnace, 19, 20 ... Exhaust equipment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 英明 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 見立 武仁 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 笠原 三千世 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 好本 芳和 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 鈴木 友成 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 和田 弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 吉田 勝 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中島 重夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (56)参考文献 特開 昭60−36315(JP,A) 特開 昭61−7567(JP,A) 特開 昭58−189968(JP,A) 特開 昭60−54999(JP,A) 特開 昭59−18578(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Tanaka 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Takehito 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within the company (72) Inventor Sansei Kasahara 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside the company Sharp (72) Yoshikazu Yoshimoto 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka (72) Inventor Tomonari Suzuki 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Prefecture Sharp Corporation (72) Inventor Hiroshi Wada 22-22, Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture (72) ) Inventor Masaru Yoshida 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture Sharp Corporation (72) Inventor Shigeo Nakajima, Mayor, Abeno-ku, Osaka City, Osaka Prefecture Town No. 22-22, Sharp Co., Ltd. (56) Reference JP-A-60-36315 (JP, A) JP-A-61-7567 (JP, A) JP-A-58-189968 (JP, A) JP-A Sho-60-54999 (JP, A) JP-A-59-18578 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極の可逆的に充放電可能な容量が負極の
可逆的に充放電可能な容量に比べて大である非水二次電
池において、 炭素の黒鉛化に対して触媒作用を有する金属基体上に、
アルカリ金属、アルカリ土類金属、希土類金属または遷
移金属が可逆的にインターカレート、デインターカレー
トする熱分解炭素が直接形成されている炭素体電極を負
極に用いることを特徴とする非水二次電池。
1. A non-aqueous secondary battery in which the capacity of the positive electrode capable of reversibly charging / discharging is larger than the capacity of the negative electrode capable of charging / discharging reversibly has a catalytic action for graphitization of carbon. On a metal substrate,
A non-aqueous electrode characterized by using as a negative electrode a carbon body electrode on which a pyrolytic carbon that reversibly intercalates or deintercalates an alkali metal, an alkaline earth metal, a rare earth metal or a transition metal is directly formed. Next battery.
【請求項2】炭素の黒鉛化に対して触媒作用を有する金
属基体がニッケルであることを特徴とする特許請求の範
囲第1項記載の非水二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the metal substrate having a catalytic action for graphitization of carbon is nickel.
JP62079249A 1987-03-31 1987-03-31 Non-aqueous secondary battery Expired - Fee Related JPH0828238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62079249A JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079249A JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63245858A JPS63245858A (en) 1988-10-12
JPH0828238B2 true JPH0828238B2 (en) 1996-03-21

Family

ID=13684583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079249A Expired - Fee Related JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0828238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779023B2 (en) * 1988-06-03 1995-08-23 シャープ株式会社 Method for manufacturing battery electrode
JP2899048B2 (en) * 1990-03-15 1999-06-02 シャープ株式会社 Carbon electrode and non-aqueous secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103274A (en) * 1980-12-17 1982-06-26 Yuasa Battery Co Ltd Secondary battery with nonaqueous electrolyte
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it

Also Published As

Publication number Publication date
JPS63245858A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
US5069683A (en) Process of making a rechargeable battery
EP0880187B1 (en) Non-aqueous electrolyte secondary battery
EP0239410A2 (en) An electrode and a battery with the same
EP0434776A1 (en) Carbonaceous electrodes for lithium cells
CA2043779A1 (en) Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
JP2003115293A (en) Negative electrode for secondary battery, secondary battery using it, and method of manufacturing negative electrode
EP0267791B1 (en) A secondary battery using nonaqueous electrolytes
US20030207178A1 (en) Method of preparing electrode composition having a carbon-containing-coated metal oxide, electrode composition and electrochemical cell
JP3204291B2 (en) Carbon body electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JPH063745B2 (en) Non-aqueous electrolyte secondary battery
JP2703350B2 (en) Rechargeable battery
JPH05266880A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH0828238B2 (en) Non-aqueous secondary battery
JPH047070B2 (en)
JPH09320570A (en) Lithium ton secondary battery
JPH1140159A (en) Nonaqueous electrolyte secondary battery
JPH1197014A (en) Electrode material for secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JPH09199126A (en) Nonaqueous electrolyte secondary battery and manufacture of its negative electrode
JP3141003B2 (en) Non-aqueous electrolyte secondary battery
JPH04296471A (en) Non-aqueous electrolyte secondary battery
JPH02215043A (en) Nonaqueous solvent secondary battery
JP3229847B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees