JPS63124380A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS63124380A
JPS63124380A JP61269425A JP26942586A JPS63124380A JP S63124380 A JPS63124380 A JP S63124380A JP 61269425 A JP61269425 A JP 61269425A JP 26942586 A JP26942586 A JP 26942586A JP S63124380 A JPS63124380 A JP S63124380A
Authority
JP
Japan
Prior art keywords
active material
carbon
organic polymer
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269425A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Tajima
善光 田島
Motoo Mori
毛利 元男
Hideaki Tanaka
英明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61269425A priority Critical patent/JPS63124380A/en
Publication of JPS63124380A publication Critical patent/JPS63124380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase charge-discharge cycle performance in deep charge by using carbon family active material mainly comprising carbon as a negative active material and organic polymer active material mainly comprising conductive organic polymer as a positive active material. CONSTITUTION:A negative electrode 11 uses carbon in which a Raman spectrum intensity ratio of 1360cm<-1> to 1580cm<-1> is 0.4-1.0, a mean spacing of plane network six-membered ring is 0.337-0.355nm, and a crystallite size in c-axis direction is 2.00-10.00nm. A positive electrode 12 uses, as an active material, a conductive organic polymer which forms a charge-transfer complex, which is electrochemically reversible, with an electron acceptor such as halogen and halogen compound and is n-type conductive organic polymer, such as polyacene, polyacenoacene, polyacetylene, and polymethyl acetylene.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、非水電解液二次電池に関する。さらに詳しく
は、リチウム、ナトリウム等の電子供与性物質である軽
金属カチオン及びハロゲン、ハロゲン化合物等の電子吸
引性物質であるアニオンを電荷担体とし、非プロトン性
の有機溶媒を電解液用溶媒として用いる非水電解液二次
電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, it uses light metal cations, which are electron-donating substances such as lithium and sodium, and anions, which are electron-withdrawing substances such as halogen and halogen compounds, as charge carriers, and uses an aprotic organic solvent as a solvent for the electrolytic solution. The present invention relates to a water electrolyte secondary battery.

(ロ)従来の技術 リチウム等の軽金属を活物質とする電池系は、高い電圧
が得られ、また高いエネルギー密度を保有しているため
、小型電気機器の電源、メモリーバックアップ用の電源
等、幅広い応用分野があり、なおかつ、より広い用途開
発が推し進められている。しかし、負極に金属リチウム
の箔、インゴット等を用いているために、放電によるリ
チウム負極体積減少、充電・放電の繰り返しにより発生
するリチウムデンドライトによる電池の内部短絡等、二
次電池としての用途開発が難しく、−次電池としての応
用しかなされていなかった。しかし、携帯用小型電気機
器等による需要の発達により、リチウム電池の二次電池
化への期待が高まってきている。
(b) Conventional technology Battery systems that use light metals such as lithium as active materials can obtain high voltage and have high energy density, so they can be used in a wide range of applications, such as power sources for small electrical devices and memory backup power sources. There are many application fields, and the development of wider applications is being promoted. However, since metallic lithium foil, ingot, etc. are used for the negative electrode, there are problems such as a decrease in the volume of the lithium negative electrode due to discharge, and internal short circuits of the battery due to lithium dendrites that occur due to repeated charging and discharging, making it difficult to develop applications for secondary batteries. It was difficult to use, and its application was limited to secondary batteries. However, with the development of demand for portable small electric devices and the like, there are increasing expectations for the conversion of lithium batteries into secondary batteries.

(ハ)発明が解決しようとする問題点 リチウム電池を二次電池として用いるためには、充電・
放電を繰り返したときに電池の特性が変化しない、所謂
、サイクル特性劣化のない電池としなければならない。
(c) Problems to be solved by the invention In order to use a lithium battery as a secondary battery, charging and
The battery must not change its characteristics even after repeated discharges, that is, it must not suffer from deterioration in cycle characteristics.

従来見られるように、負極に金属リチウムを用いた場合
では、充電・放電を繰り返すことでみられる負極でのリ
チウムデンドライトの発生を防ぐために負極の放電容量
を正極の放電容量に比べ著しく多くし、負極の利用域を
下げることが試みられている。しかし、リチウム金属を
単体で電極として用いると、放電により電極の体積が減
少し、その結果、集電効果が劣化してしまうために、電
池の内部琳抗増加の原因となってしまう。このような観
点から、負極にリチウム等の軽金属を可逆的に吸収・放
出可能な材料の研究がなされ、ウッド合金に代表される
低融点合金、又は、リチウム・アルミニウム合金等を用
いることで、デンドライト発生による電池の内部短絡、
電極体積の減少による集電効果の劣化は防止可能となっ
た。しかし、このような材料を用いた電池においても、
充放電サイクルを繰り返すことにより、脆化、溶出等に
よる負極の劣化は否めなく、更なる負極についての改善
が必要であった。
Conventionally, when metallic lithium is used for the negative electrode, the discharge capacity of the negative electrode is made significantly larger than that of the positive electrode in order to prevent the formation of lithium dendrites in the negative electrode, which occurs when charging and discharging are repeated. Attempts are being made to lower the usable range of negative electrodes. However, when lithium metal is used alone as an electrode, the volume of the electrode decreases due to discharge, and as a result, the current collection effect deteriorates, which causes an increase in the internal resistance of the battery. From this perspective, research has been carried out on materials that can reversibly absorb and release light metals such as lithium for negative electrodes. Internal short circuit of the battery due to the occurrence of
It has become possible to prevent deterioration of the current collection effect due to a decrease in electrode volume. However, even in batteries using such materials,
Repeated charging and discharging cycles undeniably caused deterioration of the negative electrode due to embrittlement, elution, etc., and further improvements were needed for the negative electrode.

さらに正極として金属酸化物、金属カルコゲン化合物等
の活物質を用い、負極に上述した材料を用い放電を行な
うと、正極中の金属は、高い酸化状態から低い酸化状態
へと複数の段階を経て、酸化数を変えていく。放電反応
により、非水電解質中のリチウム陽イオンは、正極活物
質の中に侵入していく。このリチウム陽イオンは、正極
中の金属が高い酸化状態にあるうちは、正極活物質より
容易に取り出すことができるが、放電が進行し、正極活
物質中のリチウム陽イオンの量が増え、正極中の金属が
低い酸化状態へと移行すると、正極活物質がリチウムイ
オンを安定な状態に取り込んでしまい、リチウム陽イオ
ンを正極活物質より取り出すことが困難になってしまう
。すなわち、金属酸化物、金属カルコゲン化合物等の化
合物を正極活物質として、深い放電を行なうと、電荷担
体である軽金属イオンは安定な状態で取り込まれ、軽金
属イオンが放出困難な安定な化合物を形成してしまう。
Furthermore, when an active material such as a metal oxide or a metal chalcogen compound is used as the positive electrode and the above-mentioned material is used as the negative electrode and discharge is performed, the metal in the positive electrode goes through multiple stages from a high oxidation state to a low oxidation state. Change the oxidation number. Due to the discharge reaction, lithium cations in the nonaqueous electrolyte penetrate into the positive electrode active material. These lithium cations can be easily extracted from the positive electrode active material while the metal in the positive electrode is in a highly oxidized state, but as the discharge progresses, the amount of lithium cations in the positive electrode active material increases, and the positive electrode When the metal inside shifts to a low oxidation state, the positive electrode active material takes in lithium ions in a stable state, making it difficult to extract lithium cations from the positive electrode active material. In other words, when deep discharge is performed using compounds such as metal oxides and metal chalcogen compounds as positive electrode active materials, light metal ions, which are charge carriers, are captured in a stable state, forming stable compounds that are difficult to release. I end up.

従って、金属酸化物、金属カルコゲン化合物等の化合物
を正極活物質として用いた場合、深い放電を伴う充電・
放電サイクルを繰り返すと放電容量の減少を促すことに
なる。
Therefore, when compounds such as metal oxides and metal chalcogen compounds are used as positive electrode active materials, charging and
Repeating discharge cycles will promote a decrease in discharge capacity.

一方ポリアセチレン等の共役二重結合を有する有機ポリ
マーやポリアセン骨格構造を有する有機ポリマーは、電
気化学的に可逆的に過塩素酸リチウムイオン、六フッ化
と酸イオン、四フッ化ホウ素イオン等の陰イオン及びリ
チウムイオン、ナトリウムイオン等の陽イオンと電荷移
動錯体を形成し、p型及びn型の導電性有機ポリマーと
なり得ることが知られている。そしてこれら有機ポリマ
ーを活物質とする電極は、容量密度、電流密度が高く、
又、充放電サイクルの繰り返し特性が良いことから二次
電池用の電極として注目を集めている。しかし、これら
有機ポリマーを負極、すなわちリチウムイオン、ナトリ
ウムイオン等の軽金属イオンと電荷移動錯体を形成する
電極として用いた場合、充電により電池の内部短絡の原
因となる軽金属の樹枝状析出が起こるという問題があっ
た。
On the other hand, organic polymers with conjugated double bonds such as polyacetylene and organic polymers with a polyacene skeleton structure can be used to electrochemically reversibly react with anions such as lithium perchlorate ions, hexafluoride and acid ions, and boron tetrafluoride ions. It is known that it forms charge transfer complexes with ions and cations such as lithium ions and sodium ions, and can become p-type and n-type conductive organic polymers. Electrodes using these organic polymers as active materials have high capacity density and high current density.
In addition, it is attracting attention as an electrode for secondary batteries because of its good repeatability in charge/discharge cycles. However, when these organic polymers are used as a negative electrode, that is, an electrode that forms a charge transfer complex with light metal ions such as lithium ions and sodium ions, there is a problem that dendritic precipitation of light metals occurs during charging, which causes internal short circuits in the battery. was there.

本発明は、かかる状況に鑑みなされたものであり、深い
放電を伴う充電・放電サイクルを繰り返し行なっても放
電容量が減少せず、サイクル寿命に優れた非水電解液二
次電池を提供しようとするものである。
The present invention was made in view of this situation, and an object thereof is to provide a non-aqueous electrolyte secondary battery that does not reduce its discharge capacity even after repeated charge/discharge cycles involving deep discharge and has an excellent cycle life. It is something to do.

(ニ)問題点を解決するための手段 本発明者らは、まず溶出、分解等の心配のない電極活物
質である炭素体を負極材料に用いる点に着目し、上記観
点から鋭意研究を行なった結果、ベンゼン等の炭化水素
化合物を1500℃以下の熱分解CVD (気相堆積法
)に付すことによって支持体上に形成される炭素体が、
従来の黒鉛構造からなる高配向炭素よりもわずかに乱層
構造と選択的配向性を有する平面網状の六員環構造から
なること、及びこの乱層構造を有する炭素体が従来の炭
素体即ち高配向性熱分解黒鉛、天然黒鉛、有機縁= 8
− 維の炭化黒鉛、活性炭等に比してリチウム等の軽金属の
電気化学的に可逆なドープ、脱ドープが起こり易く電気
容量が大きいことを見出した。そして、さらに検討を加
えた結果、上記特定の炭素体を電極活物質として負極体
を構成し、かつ過塩素酸イオンのような電解液陰イオン
(電子供与性物質)を電気化学的に可逆な電荷移動錯体
としてドープしつる導電性有機ポリマーを電極活物質と
して用い正極体を構成することにより、深い放電深度ま
での放電が行なえ充放電サイクル特性が著しく改善され
た非水電解液二次電池が得られる事実を見出し本発明を
完成するに到った。
(d) Means for solving the problem The inventors of the present invention first focused on the use of carbon, which is an electrode active material that does not have to worry about elution or decomposition, as a negative electrode material, and conducted intensive research from the above viewpoint. As a result, the carbon body formed on the support by subjecting hydrocarbon compounds such as benzene to pyrolytic CVD (vapor phase deposition method) at 1500°C or less,
The fact that the carbon body has a planar network-like six-membered ring structure that has a slightly more turbostratic structure and selective orientation than the conventional highly oriented carbon body that has a graphite structure, and that the carbon body that has this turbostratic structure is different from the conventional carbon body that is Oriented pyrolytic graphite, natural graphite, organic edge = 8
- It has been found that electrochemically reversible doping and dedoping of light metals such as lithium occurs more easily and the electric capacity is larger than that of fibers such as carbonized graphite and activated carbon. As a result of further investigation, we found that the specific carbon material described above can be used as an electrode active material to form a negative electrode body, and electrolyte anions (electron-donating substances) such as perchlorate ions can be electrochemically reversible. By constructing a positive electrode body using a conductive organic polymer doped as a charge transfer complex as an electrode active material, a non-aqueous electrolyte secondary battery that can discharge to a deep discharge depth and has significantly improved charge-discharge cycle characteristics has been created. Based on these findings, we have completed the present invention.

かくして本発明によれば、リチウム、ナトリウム等の軽
金属を活物質として含有する非水電解液を用いかつセパ
レータを介して負極体と正極体を配設してなる非水電解
液二次電池であって、上記負極体の電極活物質として、
平均面間隔が0.337〜0.355nmで、アルゴン
レーザーラマンスペクトルにおける1580aa−”に
対する1360cIn−1のラマン強度比が0.4〜1
.0でかつ選択的配向性を有する平面網状六員環構造の
炭素体を主成分とする炭素系活物質を用い、かつ正極体
の電極活物質として電子受容性物質と電気化学的に可逆
的な電荷移動錯体を形成し得る導電性有機ポリマーを主
成分とする有機高分子系活物質を用いたことを特徴とす
る非水電解液二次電池が提供される。
Thus, according to the present invention, there is provided a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing light metals such as lithium and sodium as active materials and disposing a negative electrode body and a positive electrode body with a separator interposed therebetween. As the electrode active material of the negative electrode body,
The average interplanar spacing is 0.337 to 0.355 nm, and the Raman intensity ratio of 1360cIn-1 to 1580aa-'' in the argon laser Raman spectrum is 0.4 to 1.
.. A carbon-based active material whose main component is a carbon body with a planar network six-membered ring structure having zero and selective orientation, and which is electrochemically reversible with an electron-accepting substance as the electrode active material of the positive electrode body. A nonaqueous electrolyte secondary battery is provided that uses an organic polymer active material whose main component is a conductive organic polymer capable of forming a charge transfer complex.

本発明における上記特定の炭素体は、炭化水素化合物か
ら1500℃以下の低温熱分解によるCVD(気相堆積
法)によって所定の電極支持体に形成することができる
The above-mentioned specific carbon body in the present invention can be formed into a predetermined electrode support by CVD (vapor phase deposition) using low-temperature pyrolysis at 1500° C. or lower from a hydrocarbon compound.

上記炭化水素化合物としては、脂肪族炭化水素(好まし
くは不飽和炭化水素)、芳香族炭化水素及び脂環族炭化
水素が挙げられ、これらは置換基(例えば、ハロゲン原
子、水酸基、スルホン酸基、ニトロ基、ニトロソ基、ア
ミン基、カルボン酸基等)を有していてもよい。具体的
には、ベンゼン、ナフタレン、アントラセン、ヘキサメ
チルベンゼン、1,2−ジブロモエチレン、2−ブチン
、アセチレン、ビフェニル、ジフェニルアセチレン等が
挙げられ、これらのうちベンゼン等の芳香族系炭化水素
を用いるのが好ましい。また、熱分解する気相中の化合
物濃度及び温度は、出発原料とする炭化水素化合物によ
り異なるが通常、数ミリモルパーセントの濃度、及び1
000℃程度の温度に制御するのが適当である。また、
炭化水素化合物をCVDチャンバー内に気体として供給
するために気化する方法としては、水素及び/又はアル
ゴンをキャリアガスとするバブラ法や蒸留法、昇華法等
を炭化水素の沸点に対応して適宜選択すればよい。
Examples of the hydrocarbon compounds include aliphatic hydrocarbons (preferably unsaturated hydrocarbons), aromatic hydrocarbons, and alicyclic hydrocarbons, which have substituents (e.g., halogen atoms, hydroxyl groups, sulfonic acid groups, nitro group, nitroso group, amine group, carboxylic acid group, etc.). Specific examples include benzene, naphthalene, anthracene, hexamethylbenzene, 1,2-dibromoethylene, 2-butyne, acetylene, biphenyl, diphenylacetylene, etc. Among these, aromatic hydrocarbons such as benzene are used. is preferable. In addition, the concentration and temperature of the compound in the gas phase to be thermally decomposed vary depending on the hydrocarbon compound used as the starting material, but usually the concentration is several mmol percent, and the temperature is 1 mmol percent.
It is appropriate to control the temperature to about 000°C. Also,
As a method of vaporizing the hydrocarbon compound to supply it as a gas into the CVD chamber, a bubbler method using hydrogen and/or argon as a carrier gas, a distillation method, a sublimation method, etc. can be selected as appropriate depending on the boiling point of the hydrocarbon. do it.

一方、上記炭素体を形成させる支持体は直接電極支持体
とすることができ、この場合、少なくとも上記熱分解C
VD時の温度に耐えうる耐熱性を有する多孔質状、網目
状、クロス状、ネット状、不織布状等の形態のものが適
している。この支持体の材質は、電気絶縁体であっても
よく電気伝導体であってもよい。通常、石英ガラス板、
ニッケルネット等を用いるのが適している。ただし、上
記炭素体は支持体から分離して新たな電極支持体と組合
せてもよい。
On the other hand, the support on which the carbon body is formed can be directly an electrode support, in which case at least the pyrolytic carbon
Porous, mesh, cross, net, nonwoven, or other forms having heat resistance that can withstand the temperature during VD are suitable. The material of this support may be an electrical insulator or an electrical conductor. Usually a quartz glass plate,
It is suitable to use nickel net or the like. However, the carbon body may be separated from the support and combined with a new electrode support.

このようにして形成される炭素体は、高度に配向された
黒鉛構造よりなる炭素よりもわずかに乱層構造を有し、
かつ、選択的配向構造を有した炭素を主成分とするもの
であり、前述した物理化学的特性を有する。ここで面間
隔0.337〜0,355nmはX線回折法により求め
られる値であるが、この回折ピークの半値幅から求めら
れる結晶子の大きさとして、結晶子のC軸方向の結晶子
の大きさは、2.00nmから10.OOnmであるも
のが望ましい。また該炭素体の配向性については、反射
高速電子線回折法により規定可能である。この回折パタ
ーンは、ブロードなリング状であり、結晶子が非常に小
さいことに反映している。さらに詳しく説明すると、ブ
ロードなリングは均一ではなく弧状、又はブロードなス
ポットとなっており、各結晶子間のC軸方向の相対的な
傾きが±75度の範囲、好ましくは±60度の範囲のも
のとして特徴づけることができる。
The carbon body formed in this way has a slightly more turbostratic structure than carbon, which is composed of a highly oriented graphite structure,
Moreover, it is mainly composed of carbon having a selectively oriented structure, and has the above-mentioned physicochemical properties. Here, the interplanar spacing of 0.337 to 0,355 nm is a value determined by X-ray diffraction method, and the crystallite size in the C-axis direction of the crystallite is determined from the half-width of this diffraction peak. The size is from 2.00 nm to 10. It is preferable that it is OOnm. Further, the orientation of the carbon body can be determined by reflection high-speed electron diffraction. This diffraction pattern has a broad ring shape, reflecting the fact that the crystallites are very small. To explain in more detail, a broad ring is not uniform but has an arc shape or a broad spot, and the relative inclination of each crystallite in the C-axis direction is within a range of ±75 degrees, preferably within a range of ±60 degrees. It can be characterized as

即ち、上記炭素体は、平面網状六員環面間隔が、0.3
37nn+から0.355nmと天然黒鉛(例えばマダ
ガスカル産)の0,335nmに比べ幾分長い。また回
折ピークは、半値幅として、例えば2θ= 2.0’と
いったように黒鉛にみられるものに比べかなり幅広いも
のである。このように平面網状六員環面の間隔が天然黒
鉛に比べ若干床いためリチウム、ナトリウム等の電子供
与性物質である軽金属と電気化学的に可逆な層間化合物
を良好に作り得る。
That is, the carbon body has a planar network six-membered ring plane spacing of 0.3.
37nn+ to 0.355nm, which is somewhat longer than the 0.335nm of natural graphite (for example, from Madagascar). Furthermore, the half-width of the diffraction peak is considerably wider than that seen in graphite, for example, 2θ=2.0'. As described above, since the spacing between the six-membered ring planes in the planar network is slightly wider than that of natural graphite, it is possible to form electrochemically reversible intercalation compounds with light metals such as lithium and sodium which are electron donating substances.

また、ラマン散乱法は、黒鉛化の進行度を知る指標とし
て一般に用いられ、一般に平面網状六員環面を有する炭
素材料は、1360an−’付近に平面網状六員環面の
伸縮振動に帰因するうマン散乱ピークと、1580an
−’付近に平面網状六員環面同志の振動に帰因する散乱
ピークとを有する。炭素材料の黒鉛化の進行に伴ない1
360cm−’のピークは減少し、1580aa−’の
ピークが増大する。本発明に使用される炭素体は、15
80an−’のラマン強度に対する1360ロー1のラ
マン強度の比が0.4から 1.0にあり、リチウム、
ナトリウム等の電子供与性物質である軽金属と電気化学
的に可逆的な層間化合物を作る炭素材料として優れてい
る。
In addition, the Raman scattering method is generally used as an indicator to know the progress of graphitization, and in general, carbon materials having a planar network-like six-membered ring surface are attributable to stretching vibrations of the planar network-like six-membered ring surface in the vicinity of 1360an-'. Surumann scattering peak and 1580an
There is a scattering peak near -' that is attributable to the vibration of the planar reticular six-membered ring planes. With the progress of graphitization of carbon materials1
The peak at 360 cm-' decreases and the peak at 1580 aa-' increases. The carbon body used in the present invention is 15
The ratio of the Raman intensity of 1360 rho1 to the Raman intensity of 80 an-' is between 0.4 and 1.0, and lithium,
It is an excellent carbon material that forms electrochemically reversible intercalation compounds with light metals that are electron-donating substances such as sodium.

また、平面網状六員環面を有する炭素の(002)面の
X線回折ピークの半値幅から、平面網状六員環面の垂直
方向に相当するC軸方向の結晶子の大きさを求める方法
によれば、平面網状六員環面の平均面間隔が、上記0.
337nmから0,355nmを有するもので、さらに
平面網状六員環面の垂直方向に相当するC軸方向の結晶
子の大きさが2,00nn+から10.OOnmのもの
がより優れた特性を示す。そして、平面網状六員環面と
水平方向に相当するab軸方向の(110)面の回折ピ
ークが、はとんど現われないか、又は非常にブロードあ
ることから、ab軸方向の結晶子は小さいものであるこ
とも判明している。
Also, a method for determining the size of crystallites in the C-axis direction, which corresponds to the perpendicular direction of the plane network six-member ring plane, from the half-width of the X-ray diffraction peak of the (002) plane of carbon having a plane network six-member ring plane. According to the above, the average interplanar spacing of the planar reticular six-membered ring surface is 0.
337 nm to 0,355 nm, and the crystallite size in the C-axis direction, which corresponds to the vertical direction of the planar reticular six-membered ring plane, is from 2,00 nn+ to 10. OOnm exhibits better properties. The diffraction peak of the (110) plane in the ab-axis direction, which corresponds to the horizontal direction of the plane network six-membered ring plane, rarely appears or is very broad, so the crystallites in the ab-axis direction It also turns out to be small.

一方、炭素材料の配向性を調べる手段としてよく用いら
れることがある反射高速電子線回折法により得られる回
折ピークより求められる配向性として、各結晶子間のC
軸方向の相対的な傾きが、±15度以内の範囲で規定さ
れる炭素体が良好な特性を示す。回折パターンがブロー
ドなリング状のものが特に良好な特性を示し、またこの
リングが均一ではなく弧状、又はブロードなスポットと
して得られたものが良好な特性を示した。これらのリン
グは、平面網状六員環面を有する炭素体の(002)、
(004)、(006)の各面反射が主となったもので
あり、リングの形状より、該炭素体は、各結晶子のC軸
が特性の方向に良くそろっているものである。
On the other hand, the orientation determined from the diffraction peak obtained by reflection high-speed electron diffraction, which is often used as a means of examining the orientation of carbon materials, is the C between each crystallite.
A carbon body in which the relative inclination in the axial direction is defined within a range of ±15 degrees exhibits good characteristics. A ring-shaped diffraction pattern with a broad diffraction pattern exhibited particularly good characteristics, and a diffraction pattern in which the ring was not uniform but had an arc shape or a broad spot showed good characteristics. These rings are made of (002) carbon material having a planar network six-membered ring surface.
The (004) and (006) plane reflections are the main ones, and due to the shape of the ring, the C axes of each crystallite in the carbon body are well aligned in the characteristic direction.

本発明の二次電池の正極活物質として用いられる導電性
有機ポリマーは、ハロゲン、ハロゲン化合物等の電子受
容性物質と電気化学的に可逆的な電荷移動錯体を形成し
、n型の導電性有機ポリマーとなり得るものであればよ
く、例えば、ポリアセン、ポリアセノアセン、ポリフエ
ナントUフェナントレン、ポリペリレン、ポリフェナン
トレン等のボリアセン骨格構造を有する有機ポリマー及
びポリアセチレン、ポリメチルアセチレン、ポリフェニ
ルアセチレン、ポリクロロフェニルアセチレン、ポリジ
アセチレン、ポリフェニレン、ポリフェニレンスルフィ
ド、ポリジフェニレンスルフィド、ポリ−パラフェニレ
ンスルフィド、ポリアニリン、ポリピロール、ポリイン
ドール、ポリチオフエン、ポリフラン等の一次元共役二
重結合鎖を有するポリマーが挙げられる。ポリアセン骨
格構造を有する有機ポリマーは、フェノール樹脂等の芳
香環を有する高分子樹脂を窒素、アルゴン、ヘリウム等
の不活性雰囲気中で約800℃の温度で熱処理すること
により得られるものであり、−次元共役二重結合鎖を有
するポリマーは、該高分子のモノマーを熱重合、電解重
合等の方法により重合することにより得られるものであ
る。
The conductive organic polymer used as the positive electrode active material of the secondary battery of the present invention forms an electrochemically reversible charge transfer complex with an electron-accepting substance such as a halogen or a halogen compound, and forms an n-type conductive organic polymer. Any organic polymer having a boriacene skeleton structure such as polyacene, polyacenoacene, polyphenanthrene, polyperylene, polyphenanthrene, polyacetylene, polymethylacetylene, polyphenylacetylene, polychlorophenylacetylene, polydiacetylene, etc. may be used as long as it can be a polymer. Examples include polymers having one-dimensional conjugated double bond chains such as polyphenylene, polyphenylene sulfide, polydiphenylene sulfide, poly-paraphenylene sulfide, polyaniline, polypyrrole, polyindole, polythiophene, and polyfuran. The organic polymer having a polyacene skeleton structure is obtained by heat-treating a polymer resin having an aromatic ring such as a phenol resin at a temperature of about 800°C in an inert atmosphere such as nitrogen, argon, helium, etc. A polymer having a dimensional conjugated double bond chain is obtained by polymerizing monomers of the polymer by a method such as thermal polymerization or electrolytic polymerization.

これらの導電性有機ポリマーを、前記した負極体の電極
支持体と同様な適当な支持体に被覆や含浸して正極体を
構成することができる。
A positive electrode body can be constructed by coating or impregnating a suitable support similar to the electrode support of the negative electrode body described above with these conductive organic polymers.

本発明の二次電池の非水電解液としては、ジメチルスル
フオキシド、γ−ブヂルラクトン、プロピレンカーボネ
ート、スルフオラン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、1,2−ジメトキシエタン、1,
3−ジオキソラン等の非プロトン系有機溶媒に電解質と
して過塩素酸リチウム、六フッ化ヒ酸リチウム、ホウフ
ッ化リチウム、トリフルオロメタンスルホン酸リチウム
等の軽金属イオンをカチオンとする塩を溶解して得られ
る単一の溶液又は混合した溶液が用いられる。
Examples of the non-aqueous electrolyte for the secondary battery of the present invention include dimethyl sulfoxide, γ-butyral lactone, propylene carbonate, sulfolane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 1,
A monomer obtained by dissolving a salt having a light metal ion as a cation such as lithium perchlorate, lithium hexafluoroarsenate, lithium borofluoride, or lithium trifluoromethanesulfonate as an electrolyte in an aprotic organic solvent such as 3-dioxolane. A single solution or a mixture of solutions can be used.

ただし、電解質としては、該電池負極に用いる炭素体と
電気化学的に可逆的な層間化合物を作り得るカチオンと
、該当電池正極に用いる有機ポリマーと電気化学的に可
逆的な電荷移動錯体を形成し得るアニオンとを含んでい
れば如何なるものでもかまわない。また溶媒には、前述
の電解質を溶解し得るものであれば如何なる非プロトン
性の有機物であってもかまわない。
However, the electrolyte includes a cation that can form an electrochemically reversible intercalation compound with the carbon material used in the negative electrode of the battery, and a charge transfer complex that forms an electrochemically reversible charge transfer complex with the organic polymer used in the positive electrode of the battery. Any material may be used as long as it contains the anion to be obtained. Further, the solvent may be any aprotic organic substance as long as it can dissolve the above-mentioned electrolyte.

本発明の二次電池のセパレータには、ポリエチレン製樹
脂、ポリプロピレン製樹脂、ガラスウール、ガラスペー
パー、セラミックスペーパー等の電気絶縁特性を示し、
かつ、電解液を保持する能力を有し、伯の電池構成要素
と反応しないものであれば何を用いてもかまわない。
The separator of the secondary battery of the present invention has electrical insulation properties such as polyethylene resin, polypropylene resin, glass wool, glass paper, ceramic paper, etc.
In addition, any material may be used as long as it has the ability to hold the electrolyte and does not react with the battery components.

(ホ)作 用 負極体の電極活物質は高度に配向された黒鉛構造からな
る炭素体よりわずかに乱層構造を有しかつ選択的配向構
造を有する炭素体を主成分とするため、非水電解液中の
リチウム、ナトリウム等の軽金属活物質イオンのドープ
・非ドープが円滑に行なわれ電気容量が改善されること
となる。一方、正極体の電極活物質として電気受容性物
質と電気化学的な電荷移動錯体を形成しうる導電性有機
ポリマーを主成分とする有機高分子系活物質が用いられ
ているため、正極におけるハロゲンイオン等の陰イオン
のドープ・非ドープも円滑に行なわれ、これらの負極体
と正極体の作用が相俟って種々の放電特性が改善される
こととなる。
(e) Function The electrode active material of the negative electrode body is composed mainly of a carbon body having a slightly turbostratic structure and a selectively oriented structure, rather than a carbon body consisting of a highly oriented graphite structure. Doping and undoping of light metal active material ions such as lithium and sodium in the electrolytic solution is performed smoothly, and the electric capacity is improved. On the other hand, since an organic polymer active material whose main component is a conductive organic polymer that can form an electrochemical charge transfer complex with an electroreceptive substance is used as the electrode active material of the positive electrode, halogen Doping and undoping of anions such as ions is also smoothly performed, and the effects of these negative and positive electrode bodies work together to improve various discharge characteristics.

(へ)実施例 実施例1 負極活物質にベンゼンを出発原料として、低温熱分解法
で形成される炭素体を用い、正極活物質にフェノール樹
脂を高温重合して得られるポリアセン系骨格構造を有す
る有機ポリマーを用い、セパレータにポリエチレン製樹
脂を用い、又、電解液に1Mの過塩素酸リチウムを溶解
したプロピレンカーボネートを用いた非水電解液二次電
池を実施例1とし、本発明を以下に詳細に説明する。
(F) Examples Example 1 The negative electrode active material has a carbon body formed by low-temperature pyrolysis using benzene as a starting material, and the positive electrode active material has a polyacene-based skeleton structure obtained by high-temperature polymerization of a phenol resin. Example 1 is a nonaqueous electrolyte secondary battery using an organic polymer, a polyethylene resin for the separator, and propylene carbonate in which 1M lithium perchlorate is dissolved in the electrolyte. Explain in detail.

負極活物質である炭素体は、第1図に示した反応装置を
用いて作製した。−旦、脱水処理を施し、さらに真空移
送による蒸留精製操作を行なったベンゼンを収納した容
器1内にアルゴンガス供給器2よりアルゴンガスを供給
し、ベンゼンのバブルを行ない、パイレックス製ガラス
管3を介し、石英製反応管4ヘベンゼンを給送した。こ
の際、容器1をベンゼンの蒸発による吸熱分だけ加熱す
ることにより温度を一定に保ち、又、ニードル弁5゜6
によりベンゼン量を最適化した。反応管4には、発泡状
ニッケルからなる直径15 mmφ、厚さ 1 、5 
mmの三次元構造体く電極支持体)の載置されたホルダ
ー7が設置されており、反応管4の外周囲には加熱炉8
が周設されている。この加熱炉8によりホルダー7及び
三次元構造体を約1000℃に維持し、パイレックス製
ガラス管3より供給されるベンゼンを熱分解し、60分
かけて三次元構造体に炭素体を堆積させた。熱分解反応
後に反応管4内に残留するガスは、排気設備9.10を
通して除去した。
A carbon body, which is a negative electrode active material, was produced using the reaction apparatus shown in FIG. - First, argon gas is supplied from the argon gas supply device 2 into the container 1 containing the benzene that has been dehydrated and then subjected to the distillation purification operation by vacuum transfer, and the benzene is bubbled to form a Pyrex glass tube 3. Hebenzene was fed through four quartz reaction tubes. At this time, the temperature is kept constant by heating the container 1 by the amount of heat absorbed by the evaporation of benzene.
The amount of benzene was optimized. The reaction tube 4 is made of foamed nickel and has a diameter of 15 mmφ and a thickness of 1 and 5 mm.
A holder 7 on which a three-dimensional structure (electrode support) with a diameter of
are provided around the area. The holder 7 and the three-dimensional structure were maintained at approximately 1000° C. in the heating furnace 8, and the benzene supplied from the Pyrex glass tube 3 was thermally decomposed, and carbon bodies were deposited on the three-dimensional structure over a period of 60 minutes. . The gas remaining in the reaction tube 4 after the pyrolysis reaction was removed through exhaust equipment 9.10.

上記工程で得られる炭素体を堆積させた三次元構造体を
プレス機で成形し、本実施例1の電池の負極体とした。
The three-dimensional structure in which the carbon bodies obtained in the above steps were deposited was molded using a press machine to form the negative electrode body of the battery of Example 1.

ここで得られた炭素体のCIIKαの線を光源にしたX
線回折図を第2図に、アルゴンレーザーによるラマンス
ペクトル図を第3図に示した。これらの図から、本実施
例の炭素体は、平均面間隔が0.345nmであり、ラ
マンスペクトルによる1580mm ’のラマン強度に
対する1360ao−1のラマン強度の比が、0.80
であることがわかる。また第2図のX線回折図の回折ピ
ークの半値幅より求められるC軸方向の結晶子の大きさ
は2.72nmであった。
X using the CIIKα line of the carbon body obtained here as a light source
A line diffraction diagram is shown in Figure 2, and a Raman spectrum diagram using an argon laser is shown in Figure 3. From these figures, the average interplanar spacing of the carbon body of this example is 0.345 nm, and the ratio of the Raman intensity at 1360 ao-1 to the Raman intensity at 1580 mm' according to the Raman spectrum is 0.80.
It can be seen that it is. Further, the size of the crystallite in the C-axis direction determined from the half-width of the diffraction peak in the X-ray diffraction diagram shown in FIG. 2 was 2.72 nm.

反射高速電子線回折法により得られる回折パターンは弧
状のブロードなリングをなしている。この回折パターン
より求められる結晶子の配向性は、各結晶子のC軸方向
の相対的な傾きが±18度以内と求められ、高い配向性
を有している。マダガスカル産の天然黒鉛についても、
X線回折及びラマン散乱の実験を行なったところ平均面
間隔は0.336nmであり、1580cnI−1のラ
マン強度に対する1360cm−”のラマン強度の比は
0.1であった。X線回折から得られた結果からは、0
,342nm、  0,336nmと大きな差異が見出
せないが、ラマン散乱による1580cm−’のラマン
強度に対する1360cm−”のラマン強度の比がol
go、 o、iと明らかな相違がみられ、両者は構造上
相異なるものであることがわかる。
The diffraction pattern obtained by reflection high-speed electron diffraction has a broad arcuate ring. The orientation of the crystallites determined from this diffraction pattern is such that the relative inclination of each crystallite in the C-axis direction is within ±18 degrees, and has high orientation. Regarding natural graphite from Madagascar,
When X-ray diffraction and Raman scattering experiments were conducted, the average interplanar spacing was 0.336 nm, and the ratio of the Raman intensity at 1360 cm-'' to that at 1580 cnI-1 was 0.1. From the result, 0
, 342 nm, and 0,336 nm, but the ratio of the Raman intensity at 1360 cm-'' to the Raman intensity at 1580 cm-'' due to Raman scattering is ol.
There is a clear difference between go, o, and i, and it can be seen that the two are structurally different.

黒鉛構造を有する炭素体については、ラマン散乱法によ
り得られる1360cm−’のラマンピークは結晶構造
の乱れに反映するピークに帰属されることから本実施例
での炭素体は、天然黒鉛に比べ乱層構造を有している。
Regarding the carbon body having a graphite structure, the Raman peak at 1360 cm-' obtained by the Raman scattering method is attributed to a peak that reflects the disorder of the crystal structure. It has a layered structure.

すなわち、本実施例での炭素体は、高度に配向された黒
鉛構造よりなる炭素よりもわずかに乱層構造を有した炭
素を主成分とした炭素体であることが判った。
That is, it was found that the carbon body in this example was a carbon body whose main component was carbon having a slightly turbostratic structure rather than carbon having a highly oriented graphite structure.

正極活物質であるポリアセン系骨格構造を有する有機ポ
リマーは、以Fの順により作製した。
An organic polymer having a polyacene skeleton structure, which is a positive electrode active material, was prepared in the following order.

約65%濃度の水溶液性レゾール型フェノール樹脂と水
と塩化亜鉛とを重量比にして2対1対5の割合で混合し
た溶液を作製した。この溶液をあらかじめ不活性雰囲気
中300℃の温度で4時間熱処理を施したフェノール繊
維に含浸させた。この混合溶液含浸繊維を温度100℃
に保たれた加圧成形機により約10分間加圧、成形硬化
し、約500.iの厚さの複合成形体を得た。この複合
成形体を不活性雰囲気中で1時間に40℃程度の昇温速
度で550℃まで加熱し、熱処理を施した。この熱処理
物を室温まで冷却した後、沸騰水を用いて約5時間洗浄
し、残存している塩化亜鉛を取り除き120℃の温度で
ロータリーポンプを用いて減圧乾燥することにより、本
実施例1の正極体を得た。該正極体について、XRF(
蛍光X線分析装置)を用い、塩素及び亜鉛の分析を行な
ったところ、塩素、亜鉛の痕跡としてのピークしかみら
れなかった。すなわち、該正極活物質中に、塩化亜鉛が
ほとんど残存していないことが判明した。
A solution was prepared by mixing an aqueous resol type phenolic resin with a concentration of about 65%, water, and zinc chloride in a weight ratio of 2:1:5. This solution was impregnated into phenol fibers that had been heat treated in advance at 300° C. for 4 hours in an inert atmosphere. This mixed solution impregnated fiber was heated to 100°C.
Pressure was applied and molded for about 10 minutes using a pressure molding machine maintained at a temperature of about 500. A composite molded body having a thickness of i was obtained. This composite molded body was heated to 550° C. at a temperature increase rate of about 40° C. per hour in an inert atmosphere to perform heat treatment. After cooling this heat-treated product to room temperature, it was washed with boiling water for about 5 hours to remove remaining zinc chloride and dried under reduced pressure using a rotary pump at a temperature of 120°C. A positive electrode body was obtained. Regarding the positive electrode body, XRF (
When chlorine and zinc were analyzed using a fluorescent X-ray analyzer, only peaks as traces of chlorine and zinc were observed. That is, it was found that almost no zinc chloride remained in the positive electrode active material.

該正極体のCuKαの線によるX線回折を行なったとこ
ろ2θで20°〜22°及び416〜46°にブロード
なピークが存在し、ポリアセン系骨格構造を有している
ことが確認された。
When the positive electrode body was subjected to X-ray diffraction using the CuKα line, broad peaks were present at 20° to 22° and 416° to 46° in 2θ, and it was confirmed that the positive electrode body had a polyacene skeleton structure.

実施例2 負極活物質にベンゼンを出発原料として、低温熱分解法
で形成される炭素体を用い、正極活物質にポリアニリン
を用い、セパレータにポリエチレン製樹脂を用い、又、
電解液に1Mの過塩素酸リチウムを溶解したプロピレン
カーボネートを用いた非水電解液二次電池を作製し、本
発明を説明する。
Example 2 A carbon body formed by low-temperature pyrolysis using benzene as a starting material was used as the negative electrode active material, polyaniline was used as the positive electrode active material, and polyethylene resin was used as the separator.
The present invention will be described by producing a non-aqueous electrolyte secondary battery using propylene carbonate in which 1M lithium perchlorate is dissolved in the electrolyte.

負極活物質である炭素体は、実施例1と同様の方法で作
製し、本実施例2の電池の負極体とした。
A carbon body serving as a negative electrode active material was produced in the same manner as in Example 1, and was used as the negative electrode body of the battery of Example 2.

正極活物質であるポリアニリン電極は、以下に示す通り
電解重合法により作製した。
A polyaniline electrode, which is a positive electrode active material, was produced by an electrolytic polymerization method as shown below.

1Mのアニリンと2Mの過塩素酸リチウムを溶解した水
溶液に、20mm X 22mmの白金板を飽和カロメ
ル電極に対し0.8Vに保ち定電位電解することにより
、ポリアニリンを合成した。白金板に付着したポリアニ
リンを水洗、乾燥した後、粉末状として回収した。この
ポリアニリン粉末を400℃の温度で8時間真空乾燥し
た。ポリアニリン粉末10重量部に対しポリエチレン粉
末1重量部を混合し、この混合粉末を発泡性ニッケル板
に充填し、120℃の温度、300 kg/ cm ’
の加圧力でホットプレスし、本実施例2の正極体とした
Polyaniline was synthesized by subjecting an aqueous solution containing 1M aniline and 2M lithium perchlorate to constant potential electrolysis using a 20 mm x 22 mm platinum plate held at 0.8 V with respect to a saturated calomel electrode. The polyaniline adhered to the platinum plate was washed with water, dried, and then recovered as a powder. This polyaniline powder was vacuum dried at a temperature of 400° C. for 8 hours. 1 part by weight of polyethylene powder was mixed with 10 parts by weight of polyaniline powder, this mixed powder was filled into a foamable nickel plate, and the mixture was heated to 300 kg/cm' at a temperature of 120°C.
The positive electrode body of Example 2 was obtained by hot pressing at a pressure of .

以上のようにして得られた負極体及び正極体を用いて、
第4図に示した電池を作製した。図中、11は負極体、
12は正極体、13はポリエチレン樹脂製セパレータ、
14は1Mの過塩素酸リチウムを溶質として含むプロピ
レンカーボネートよりなる電解液、15は電池容器、1
6.16’ は負極東電体、正極集電体、17.17’
 は負極端子、正極端子である。
Using the negative electrode body and positive electrode body obtained as above,
A battery shown in FIG. 4 was produced. In the figure, 11 is a negative electrode body,
12 is a positive electrode body, 13 is a polyethylene resin separator,
14 is an electrolytic solution made of propylene carbonate containing 1M lithium perchlorate as a solute; 15 is a battery container; 1
6.16' is the negative electrode Toden body, positive electrode current collector, 17.17'
are the negative terminal and the positive terminal.

負極、正極の充放電可能な容量をそれぞれ調べたところ
、負極、正極それぞれ5.0IIIAhであった。これ
ら電池について1.25111Aの充電電流で4Vまで
充電し、また1、25mAの放電電流でOVまで放電し
た充放電特性図を第5図に示した。前記の充放電サイク
ルを繰り返したときの放電容量のサイクル依存を第6図
に示した。図中、Aは実施例1の電池ついてのものであ
り、Bは実施例2についてのものである。
When the charge/discharge capacities of the negative electrode and positive electrode were examined, they were each 5.0IIIAh. FIG. 5 shows the charging and discharging characteristics of these batteries when they were charged to 4V with a charging current of 1.25111A and discharged to OV with a discharge current of 1.25mA. FIG. 6 shows the cycle dependence of the discharge capacity when the above charge/discharge cycles were repeated. In the figure, A is for the battery of Example 1, and B is for Example 2.

このように上記電池は、充電・放電を繰り返すことが可
能な二次電池としての特性を有し、過酷な条件における
充電・放電を繰り返しても、放電可能な容量が減少しな
いサイクル特性の優れた電池であることが判る。
In this way, the above-mentioned battery has the characteristics of a secondary battery that can be repeatedly charged and discharged, and has excellent cycle characteristics such that the dischargeable capacity does not decrease even after repeated charging and discharging under harsh conditions. Turns out it's a battery.

(ト)発明の効果 本発明の非水電解液二次電池は、高容量でかつ充放電サ
イクルの寿命が優れたものであり、しかも深い充電深度
の充放電にも耐えうるちのである。
(G) Effects of the Invention The non-aqueous electrolyte secondary battery of the present invention has a high capacity and an excellent charge/discharge cycle life, and can withstand charging and discharging at a deep depth of charge.

従って、その工業的価値は著しく大きなものである。Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非水電解液二次電池の負極体の作製装
置に係るものであり、実施例において負極体の作製の説
明に供する炭素体作製装置の構成説明図、第2図は本発
明の電池の実施例に係る炭素体のX線回折図、第3図は
本発明の電池の実施例に係る炭素体のラマンスペクトル
図、第4図は本発明の電池の一実施例を示す断面説明図
、第5図は本発明の電池の一実施例の充放電特性図、第
6図は本発明の電池の放電可能な容量と充放電サイクル
の繰り返し回数との関係を例示するグラフ図である。 1・・・・・・バブル容器、 2・・・・・・アルゴンガス供給器、 3・・・・・・パイレックスガラス管、4・・・・・・
反応管、 5.6・・・・・・ニードル弁、1・・・・・・試料ホ
ルダー、8・・・・・・加熱炉、    9.10・・
・・・・排気設備、11・・・・・・負極体、   1
2・・・・・・正極体、13・・・・・・セパレータ、
 14・・・・・・電解液、15・・・・・・電池容器
、  16.16’・・・・・・集電体、17.17’
・・・・・・端子。 第3図 □2 特開日、ffG3−124380 (8)第5図 第6図 争 づイグノl欠
Fig. 1 relates to a manufacturing apparatus for a negative electrode body of a non-aqueous electrolyte secondary battery of the present invention, and Fig. 2 is an explanatory diagram of the configuration of a carbon body manufacturing apparatus used to explain the manufacture of a negative electrode body in Examples. FIG. 3 is an X-ray diffraction diagram of a carbon body according to an embodiment of the battery of the present invention. FIG. 4 is a Raman spectrum diagram of a carbon body according to an embodiment of the battery of the present invention. 5 is a charge/discharge characteristic diagram of an embodiment of the battery of the present invention, and FIG. 6 is a graph illustrating the relationship between the dischargeable capacity of the battery of the present invention and the number of repetitions of charge/discharge cycles. It is a diagram. 1... Bubble container, 2... Argon gas supply device, 3... Pyrex glass tube, 4...
Reaction tube, 5.6... Needle valve, 1... Sample holder, 8... Heating furnace, 9.10...
... Exhaust equipment, 11 ... Negative electrode body, 1
2... Positive electrode body, 13... Separator,
14... Electrolyte, 15... Battery container, 16.16'... Current collector, 17.17'
...Terminal. Figure 3□2 Unexamined Publication Day, ffG3-124380 (8) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、リチウム、ナトリウム等の軽金属を活物質として含
有する非水電解液を用いかつセパレータを介して負極体
と正極体を配設してなる非水電解液二次電池であって、 上記負極体の電極活物質として、平均面間隔が0.33
7〜0.355nmで、アルゴンレーザーラマンスペク
トルにおける1580cm^−^1に対する1360c
m^−^1のラマン強度比が0.4〜1.0でかつ選択
的配向性を有する平面網状六員環構造の炭素体を主成分
とする炭素系活物質を用い、かつ正極体の電極活物質と
して電子受容性物質と電気化学的に可逆的な電荷移動錯
体を形成し得る導電性有機ポリマーを主成分とする有機
高分子系活物質を用いたことを特徴とする非水電解液二
次電池。
[Claims] 1. A non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing a light metal such as lithium or sodium as an active material and disposing a negative electrode body and a positive electrode body through a separator. The electrode active material of the negative electrode body has an average interplanar spacing of 0.33.
7 to 0.355 nm, 1360c to 1580cm^-^1 in argon laser Raman spectrum
A carbon-based active material whose main component is a carbon body having a planar network six-membered ring structure with a Raman intensity ratio of 0.4 to 1.0 and selective orientation is used, and the positive electrode body is A non-aqueous electrolytic solution characterized by using an organic polymer active material whose main component is a conductive organic polymer capable of forming an electrochemically reversible charge transfer complex with an electron-accepting substance as an electrode active material. Secondary battery.
JP61269425A 1986-11-11 1986-11-11 Nonaqueous electrolyte secondary battery Pending JPS63124380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269425A JPS63124380A (en) 1986-11-11 1986-11-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269425A JPS63124380A (en) 1986-11-11 1986-11-11 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS63124380A true JPS63124380A (en) 1988-05-27

Family

ID=17472242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269425A Pending JPS63124380A (en) 1986-11-11 1986-11-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS63124380A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
US5350648A (en) * 1992-04-02 1994-09-27 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US20110189544A1 (en) * 2010-02-02 2011-08-04 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2013137907A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Negative electrode active material for sodium ion battery and sodium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
US5350648A (en) * 1992-04-02 1994-09-27 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US20110189544A1 (en) * 2010-02-02 2011-08-04 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
US8334072B2 (en) * 2010-02-02 2012-12-18 Samsung Sdi Co., Ltd. Negative active material having a core coated with a low crystalline carbon layer for rechargeable lithium battery and rechargeable lithium battery including same
JP2013137907A (en) * 2011-12-28 2013-07-11 Toyota Motor Corp Negative electrode active material for sodium ion battery and sodium ion battery

Similar Documents

Publication Publication Date Title
Zhao et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na‐ion batteries beyond Li‐ion and K‐ion counterparts
CA1275437C (en) Secondary battery using non-aqueous solvent
US10727002B2 (en) Lithium ion-based internal hybrid electrochemical energy storage cell
US10170749B2 (en) Alkali metal battery having an integral 3D graphene-carbon-metal hybrid foam-based electrode
US10566668B2 (en) Sodium ion-based internal hybrid electrochemical energy storage cell
JP2991884B2 (en) Non-aqueous secondary battery
JP3359220B2 (en) Lithium secondary battery
WO1993010566A1 (en) Carbon-based material
Tsao et al. Vulcanized polymeric cathode material featuring a polyaniline skeleton for high-rate rechargeability and long-cycle stability lithium-sulfur batteries
US20170110728A1 (en) Carbonaceous molded article for electrodes and method of manufacturing the same
WO2014078846A2 (en) Sulfur-infused carbon for secondary battery materials
KR20220013544A (en) super capacitor
JP2005209498A (en) Nonaqueous electrolyte secondary battery
JPS63121265A (en) Nonaqueous battery
JP2004134658A (en) Chargeable and dischargeable electrochemical element
JPS63124380A (en) Nonaqueous electrolyte secondary battery
JPH0782836B2 (en) Electrode material
EP4213239A1 (en) Negative electrode and method for manufacturing same
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JP2004207252A (en) Anode material for non-aqueous solvent secondary battery
CN114516964A (en) Octafluorobiphenyl-containing material as well as preparation method and application thereof
Xu et al. Preparation of polyaniline/FeFe (CN) 6 composite and its electrochemical performance as cathode material of lithium ion battery
KR101875674B1 (en) Positive active material, method for prepare the same and sodium rechargeable battery including the same
JP2656003B2 (en) Non-aqueous secondary battery
JP3581631B2 (en) Anode materials for non-aqueous solvent secondary batteries