JPH0756000A - Micro x-ray target - Google Patents

Micro x-ray target

Info

Publication number
JPH0756000A
JPH0756000A JP20341293A JP20341293A JPH0756000A JP H0756000 A JPH0756000 A JP H0756000A JP 20341293 A JP20341293 A JP 20341293A JP 20341293 A JP20341293 A JP 20341293A JP H0756000 A JPH0756000 A JP H0756000A
Authority
JP
Japan
Prior art keywords
metal plate
ray
light
electron beam
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20341293A
Other languages
Japanese (ja)
Inventor
Hideki Iwata
英樹 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP20341293A priority Critical patent/JPH0756000A/en
Publication of JPH0756000A publication Critical patent/JPH0756000A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control the diffusion of radiated rays by embedding an extrafine tungsten stick into the center of a light-metal plate. CONSTITUTION:A plate made of light metal such as aluminum is about 1 to 2mm in thickness. A tungsten stick whose diameter is about 1 to 10mum is embedded into the center of the plate, or at the point where an electron beam 14 is applied, so that both ends of the stick will match the surface of the light- metal plate 10. Moreover, a cooling passage is formed inside the light-metal plate 10 and a conduit 11 and an exhaust pipe 12 for cooling water are connected to the entrance and the exit of the passage. If the electron beam 14 is applied, it radiates an X-ray 15 by hitting on the tungsten stick 13. Then, the electron beam 14 hitting on the light-metal plate 10 is absorbed, and X-rays are radiated only from the extrafine tungsten stick 13. This realizes an X-ray of point source and restrains the diffusion of the X-ray.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非破壊検査等に用いる
X線を発生させるためのマイクロX線ターゲットに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro X-ray target for generating X-rays used for nondestructive inspection and the like.

【0002】[0002]

【従来の技術】非破壊検査等に用いるX線は、10mm
φのタングステンのターゲットに電子ビームを照射する
ことにより発生させる。
2. Description of the Related Art X-rays used for nondestructive inspection are 10 mm
It is generated by irradiating a tungsten target of φ with an electron beam.

【0003】このX線発生装置においては、発生するX
線がターゲットを中心に円錐状に広がるため、非破壊検
査の精度をよくするためには、できるだけ広がりを押さ
えるようにするのが望ましい。
In this X-ray generator, the generated X
Since the line spreads conically around the target, it is desirable to suppress the spread as much as possible in order to improve the accuracy of the nondestructive inspection.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ターゲ
ットに照射する電子ビームを絞るには限度があり、また
ターゲットから放出されるX線を絞ることも困難であ
る。
However, there is a limit to narrowing down the electron beam with which the target is irradiated, and it is also difficult to narrow down the X-rays emitted from the target.

【0005】そこで、本発明の目的は、上記課題を解決
し、放出されるX線の広がりを押さえることが可能なマ
イクロX線ターゲットを提供することにある。
Therefore, an object of the present invention is to solve the above problems and provide a micro X-ray target capable of suppressing the spread of emitted X-rays.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、アルミニウムなどの軽金属板の中心に極細
のタングステン棒を埋め込んだものであり、タングステ
ン棒としては直径1〜10μmのものを用いる。
In order to achieve the above object, the present invention is a light metal plate of aluminum or the like in which an extremely fine tungsten rod is embedded in the center, and a tungsten rod having a diameter of 1 to 10 μm is used. To use.

【0007】[0007]

【作用】上記構成によれば、軽金属板の中心に極細の1
〜10μmのタングステン棒を埋め込むことで、電子ビ
ームが照射されても極めて細いタングステン棒のみから
X線が放出されるため、点光源のX線が実現できると共
にX線の広がりも押さえることが可能となる。この場
合、直径10μm以上ではX線が拡がり過ぎ、1μm以
下では製作が難しいと共に充分なX線量が得られなく好
ましくない。
According to the above construction, a fine metal 1 is formed at the center of the light metal plate.
By embedding a tungsten rod of 10 μm, X-rays are emitted only from an extremely thin tungsten rod even when irradiated with an electron beam, so that X-rays of a point light source can be realized and the spread of X-rays can be suppressed. Become. In this case, if the diameter is 10 μm or more, the X-ray spreads too much, and if the diameter is 1 μm or less, it is difficult to manufacture, and a sufficient X-ray dose cannot be obtained, which is not preferable.

【0008】[0008]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0009】図1は本発明のマイクロX線ターゲットを
示したものである。
FIG. 1 shows a micro X-ray target according to the present invention.

【0010】図において、10はアルミニウムなど厚さ
tを1〜2mmの軽金属板で、内部には図示していない
が冷却通路が形成され、その出入口に冷却水の導入・排
出管11,12が接続される。
In the figure, 10 is a light metal plate having a thickness t of 1 to 2 mm, such as aluminum, which has a cooling passage (not shown) formed therein, and cooling water introducing / discharging pipes 11 and 12 at its inlet and outlet. Connected.

【0011】この軽金属板10の中心、すなわち電子ビ
ーム14の照射される位置に1〜10μmのタングステ
ン棒13が埋め込まれる。このタングステン棒13は、
軽金属板10の厚さと同じ長さに形成され、その両端面
が軽金属板10の面と一致するように形成される。この
タングステン棒13の埋め込みは、例えば中心にタング
ステン棒13となるタングステン線の周りにアルミニウ
ムを適宜の径に形成し、このアルミニウムの筒体を金属
板10の厚さと同じ長さに切断した後、軽金属板10に
埋め込むようにして形成することで、タングステン棒1
3を軽金属板10の中心に正確に位置させることができ
る。
A tungsten rod 13 of 1 to 10 μm is embedded at the center of the light metal plate 10, that is, at the position where the electron beam 14 is irradiated. This tungsten rod 13
It is formed to have the same length as the thickness of the light metal plate 10, and both end surfaces thereof are formed to match the surface of the light metal plate 10. For embedding the tungsten rod 13, for example, aluminum is formed to have an appropriate diameter around a tungsten wire that becomes the tungsten rod 13 in the center, and the aluminum cylinder is cut to the same length as the thickness of the metal plate 10. The tungsten rod 1 is formed by embedding it in the light metal plate 10.
3 can be accurately positioned in the center of the light metal plate 10.

【0012】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0013】本発明のマイクロX線ターゲットをX線発
生装置に組み込み、電子ビーム14を照射すると、電子
ビーム14は、タングステン棒13に当りそこでX線1
5を放出する。この場合、軽金属板10に当った電子ビ
ーム14は吸収され、1〜10μmのタングステン棒1
3がX線源となるため、常に点光源のX線を放出でき
る。
When the micro X-ray target of the present invention is incorporated into an X-ray generator and the electron beam 14 is irradiated, the electron beam 14 hits the tungsten rod 13 and the X-ray 1 is emitted there.
Release 5. In this case, the electron beam 14 hitting the light metal plate 10 is absorbed, and the tungsten rod 1 of 1 to 10 μm is absorbed.
Since 3 serves as an X-ray source, X-rays of a point light source can always be emitted.

【0014】また電子ビーム14の照射により発生した
熱は、軽金属板10内に形成した冷却通路に冷却水を流
すことで除去できる。
The heat generated by the irradiation of the electron beam 14 can be removed by flowing cooling water through the cooling passage formed in the light metal plate 10.

【0015】[0015]

【発明の効果】以上要するに本発明によれば、軽金属板
の中心に極細のタングステン棒を埋め込むことで、電子
ビームが照射されても極めて細いタングステン棒のみか
らX線が放出されるため、点光源のX線が実現できると
共にX線の広がりも押さえることが可能となる。
In summary, according to the present invention, by embedding an extremely fine tungsten rod in the center of a light metal plate, X-rays are emitted only from an extremely thin tungsten rod even when irradiated with an electron beam. The X-ray can be realized and the spread of the X-ray can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 軽金属板 13 タングステン棒 14 電子ビーム 10 Light metal plate 13 Tungsten rod 14 Electron beam

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムなどの軽金属板の中心に極
細のタングステン棒を埋め込んだことを特徴とするマイ
クロX線ターゲット。
1. A micro X-ray target characterized in that a very thin tungsten rod is embedded in the center of a light metal plate such as aluminum.
【請求項2】 タングステン棒の直径が1〜10μmで
ある請求項1に記載のマイクロX線ターゲット。
2. The micro X-ray target according to claim 1, wherein the tungsten rod has a diameter of 1 to 10 μm.
JP20341293A 1993-08-17 1993-08-17 Micro x-ray target Pending JPH0756000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20341293A JPH0756000A (en) 1993-08-17 1993-08-17 Micro x-ray target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20341293A JPH0756000A (en) 1993-08-17 1993-08-17 Micro x-ray target

Publications (1)

Publication Number Publication Date
JPH0756000A true JPH0756000A (en) 1995-03-03

Family

ID=16473648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20341293A Pending JPH0756000A (en) 1993-08-17 1993-08-17 Micro x-ray target

Country Status (1)

Country Link
JP (1) JPH0756000A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039792A3 (en) * 2000-11-09 2002-08-22 Steris Inc Target for production of x-rays
WO2013168468A1 (en) * 2012-05-11 2013-11-14 浜松ホトニクス株式会社 X-ray generation device and x-ray generation method
JP2013541803A (en) * 2010-08-25 2013-11-14 ジーエーエムシー バイオテック デベロップメント カンパニー リミテッド Thick target for transmission X-ray tube
US20150110252A1 (en) * 2013-09-19 2015-04-23 Wenbing Yun X-ray sources using linear accumulation
CN105396894A (en) * 2015-11-12 2016-03-16 中国工程物理研究院激光聚变研究中心 Preparing method for non-bending ultrathin tungsten wires for Z-pinch torispherical wire array
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6463123B1 (en) 2000-11-09 2002-10-08 Steris Inc. Target for production of x-rays
JP2004514120A (en) * 2000-11-09 2004-05-13 ステリス インコーポレイテッド X-ray target for products
WO2002039792A3 (en) * 2000-11-09 2002-08-22 Steris Inc Target for production of x-rays
JP2013541803A (en) * 2010-08-25 2013-11-14 ジーエーエムシー バイオテック デベロップメント カンパニー リミテッド Thick target for transmission X-ray tube
JPWO2013168468A1 (en) * 2012-05-11 2016-01-07 浜松ホトニクス株式会社 X-ray generator and X-ray generation method
WO2013168468A1 (en) * 2012-05-11 2013-11-14 浜松ホトニクス株式会社 X-ray generation device and x-ray generation method
US9390881B2 (en) * 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US10416099B2 (en) 2013-09-19 2019-09-17 Sigray, Inc. Method of performing X-ray spectroscopy and X-ray absorption spectrometer system
US10976273B2 (en) 2013-09-19 2021-04-13 Sigray, Inc. X-ray spectrometer system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US20150110252A1 (en) * 2013-09-19 2015-04-23 Wenbing Yun X-ray sources using linear accumulation
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10653376B2 (en) 2013-10-31 2020-05-19 Sigray, Inc. X-ray imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US10349908B2 (en) 2013-10-31 2019-07-16 Sigray, Inc. X-ray interferometric imaging system
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
CN105396894A (en) * 2015-11-12 2016-03-16 中国工程物理研究院激光聚变研究中心 Preparing method for non-bending ultrathin tungsten wires for Z-pinch torispherical wire array
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
US10466185B2 (en) 2016-12-03 2019-11-05 Sigray, Inc. X-ray interrogation system using multiple x-ray beams
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
US10658145B2 (en) 2018-07-26 2020-05-19 Sigray, Inc. High brightness x-ray reflection source
US10991538B2 (en) 2018-07-26 2021-04-27 Sigray, Inc. High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
US10962491B2 (en) 2018-09-04 2021-03-30 Sigray, Inc. System and method for x-ray fluorescence with filtering
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure

Similar Documents

Publication Publication Date Title
JPH0756000A (en) Micro x-ray target
Mallozzi et al. Laser‐generated plasmas as a source of x rays for medical applications
Farley et al. Radiative jet experiments of astrophysical interest using intense lasers
EP0815582B1 (en) Microfocus x-ray device
CN101506927A (en) Electron beam control method, electron beam generating apparatus, apparatus using the same, and emitter
EP0118955A2 (en) High power X-ray source with improved anode cooling
US8565381B2 (en) Radiation source and method for the generation of X-radiation
Cooperstein et al. Impedance characteristics of diodes operating in the self− pinch mode
JPH0390900A (en) Neutron radiographic apparatus
JP2637546B2 (en) X-ray exposure equipment
JPS6318960Y2 (en)
JP2007093315A (en) X-ray focusing arrangement
JP2004214130A (en) Device for uniformly irradiating x-ray
Bullock et al. 10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility
Terai et al. Lateral transport of hot electrons on a spherical target by 10.6‐μm CO2 laser irradiation
US3792269A (en) Slit screen for x-ray apparatus used in determining crystal topography
JPH0429179B2 (en)
JPH1123800A (en) X-ray source for analyzing microscopic part
VanDervort et al. Development of a backlit-multi-pinhole radiography source
DK1418610T3 (en) Focus micro-röntgenrör
US7292676B1 (en) System for phase-contrast x-ray radiography using X pinch radiation and a method thereof
Brooksbank A method of testing an X-ray tube for definition
Fortov et al. Shock wave excitation by soft X rays
JPS60183599A (en) X-ray collimator
JPH09245999A (en) Heat receiving apparatus with high thermal load