JPH09245999A - Heat receiving apparatus with high thermal load - Google Patents

Heat receiving apparatus with high thermal load

Info

Publication number
JPH09245999A
JPH09245999A JP8049813A JP4981396A JPH09245999A JP H09245999 A JPH09245999 A JP H09245999A JP 8049813 A JP8049813 A JP 8049813A JP 4981396 A JP4981396 A JP 4981396A JP H09245999 A JPH09245999 A JP H09245999A
Authority
JP
Japan
Prior art keywords
heat
layer
cooling
target substance
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8049813A
Other languages
Japanese (ja)
Other versions
JP3327102B2 (en
Inventor
Hirofumi Shirakata
弘文 白形
Yasuo Kamiide
泰生 上出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04981396A priority Critical patent/JP3327102B2/en
Publication of JPH09245999A publication Critical patent/JPH09245999A/en
Application granted granted Critical
Publication of JP3327102B2 publication Critical patent/JP3327102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To enhance the cooling performance and improve the economy by introducing a cooling method such that the beam transmissive, diffusive and absorptive phenomena in a substance are converted into an undulation phenomenon, in addition to a conventional heat removing method for a high thermal load heat-receiving apparatus. SOLUTION: The heat absorbed by a target material layer 2 is carried through thermal conduction to a heat-removing cooling layer 5 as the outermost layer in tight attachment with the side face, moved to a cooling water 6 through heat transfer, and carried to the outside. Thus heat removal is made. The energy of the diffused X-rays emitted into the inter-layer gap 3 reduces with collision made thereafter, and the rays are captured and absorbed by/in an absorptive material layer 4 having a good thermal conductivity, and conversion into heat is achieved. The absorbed heat is carried by thermal conduction to the cooling layer 5 in tight attachment to the periphery of the absorptive material layer 4, and heat removal is made by the cooling water 6. In case a large quantity of diffused X-rays intrudes into the layer 4, a porous heat-resistant substance is selected so as to promote the volume heat emission within the target material layer 2, and the cooling effect of this region is heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高熱負荷受熱機器に
係り、特に、高エネルギーの光量子,粒子ビームを発生
・利用する、例えば、加速器,核融合,原子力,医療機
器,工業応用,基礎研究分野に好適な高熱負荷受熱機器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high heat load heat-receiving device, and more particularly, to generate and utilize high-energy photons and particle beams, for example, accelerator, nuclear fusion, nuclear power, medical equipment, industrial application, basic research fields. The present invention relates to a high heat load heat receiving device suitable for.

【0002】[0002]

【従来の技術】従来の高熱負荷受熱機器における除熱技
術は、受熱機器の先端に取り付けられた標的物質に高エ
ネルギーの光量子・粒子ビーム等を照射し、そのビーム
エネルギーを標的物質の表面近傍で吸収・熱化させ、熱
伝導で冷却流路まで運び、水,ガス,液体金属,液体窒
素などの冷却媒体により、そのエネルギーを外部に運び
さる構成となっている。
2. Description of the Related Art The conventional heat removal technology for a high heat load heat-receiving device is to irradiate a target substance attached to the tip of the heat-receiving device with a high-energy photon / particle beam, etc. It is configured so that it is absorbed / heated and transferred to the cooling flow path by heat conduction, and its energy is carried to the outside by a cooling medium such as water, gas, liquid metal, liquid nitrogen.

【0003】また、高熱負荷除熱技術の改善のため、標
的物質照射面積の拡大(ビームの斜入射),標的物質の
移動・回転,ビームを振動させる等の改良技術が加えら
れているが、除熱方法の基本は前述の構成と同じであ
る。
Further, in order to improve the heat removal technique for high heat load, improved techniques such as expansion of the irradiation area of the target substance (oblique incidence of the beam), movement / rotation of the target substance, and vibration of the beam have been added. The basics of the heat removal method are the same as the above-mentioned configuration.

【0004】[0004]

【発明が解決しようとする課題】近年、加速器,放射光
発生装置などの大型化にともない、発生する高エネルギ
ー・高強度の光量子・粒子ビームに照射される設備機器
が、従来手法による除熱限界を越えるような高強度ビー
ムにさらされる場合が多くなってきた。そのため、耐熱
材料の開発や除熱技術開発が多くの研究機関で精力的に
行われている。
In recent years, with the increase in size of accelerators, synchrotron radiation generators, etc., the equipment to be irradiated with the high-energy, high-intensity photons / particle beams generated has a heat removal limit by the conventional method. More often than not, it is exposed to high-intensity beams that exceed the range. Therefore, development of heat resistant materials and development of heat removal technology are energetically carried out in many research institutions.

【0005】しかしながら、従来手法による除熱技術開
発は既に高度化された領域に達しており、従来手法の延
長上での大幅な除熱性能の向上へのアプローチは相当の
困難をともなう。
However, the development of heat removal technology by the conventional method has already reached a sophisticated area, and an approach to greatly improve the heat removal performance as an extension of the conventional method involves considerable difficulty.

【0006】本発明は上述の点に鑑みなされたもので、
その目的とするところは、高強度光量子・粒子ビーム照
射下の標的物質の除熱冷却を、ビームの物質中での透
過,散乱,吸収現象を波動現象に置き換えて考えた光学
的手法(以下、光学冷却法と略称する)の導入によっ
て、大幅な除熱性能の向上を図ることのできる高熱負荷
受熱機器を提供するにある。
The present invention has been made in view of the above points,
The purpose is to use an optical method that considers the heat removal cooling of the target substance under irradiation of high-intensity photon / particle beam by replacing the transmission, scattering, and absorption phenomena of the beam with the wave phenomenon (hereinafter, The introduction of the optical cooling method) provides a high-heat-load heat-receiving device that can significantly improve heat removal performance.

【0007】[0007]

【課題を解決するための手段】本発明では、高強度光量
子・粒子ビーム照射下にある受熱構造体を光学的に機能
させるため、標的物質層を多層構成とし下記の3種類の
解決手段を採用した。 (1)各標的物質層を厚さ1mfp (平均自由行路)以下
の薄い透過・散乱性物質で構成する。
In the present invention, in order to make the heat-receiving structure under the irradiation of high-intensity photon / particle beam optically function, the target substance layer has a multi-layer structure and the following three kinds of solving means are adopted. did. (1) Each target substance layer is composed of a thin transmissive / scattering substance having a thickness of 1 mfp (mean free path) or less.

【0008】(2)標的物質層間に真空、又は希薄ガス
の空隙層を設ける。
(2) A vacuum layer or a void layer of a dilute gas is provided between the target substance layers.

【0009】(3)最終標的物質層及び光量子・粒子ビ
ーム照射領域外に取り付けた外周層を熱伝導のよい吸収
性物質及び除熱冷却物質で構成する。
(3) The final target substance layer and the outer peripheral layer attached outside the photon / particle beam irradiation region are made of an absorptive substance and a heat removal cooling substance having good thermal conductivity.

【0010】まず、本発明の原点となった光量子・粒子
ビーム照射下にある受熱機器の光学冷却法の基本的な考
え方について、以下、光量子・粒子ビームの代表例とし
てX線を取り上げ説明する。
First, the basic idea of the optical cooling method for the heat-receiving device under irradiation of the photon / particle beam, which is the origin of the present invention, will be described below by taking X-rays as a typical example of the photon / particle beam.

【0011】X線ビームが標的物質層を通過するとき、
標的物質との衝突によって、X線の吸収,散乱,透過現
象を生ずることはよく知られている。これらの物質通過
にともなう現象は、下記に示すごとく、左辺の粒子的描
像を、右辺の光学的描像に置き換えて考えることができ
る。
When the X-ray beam passes through the target material layer,
It is well known that X-ray absorption, scattering and transmission phenomena are caused by collision with a target substance. The phenomena associated with the passage of these substances can be considered by replacing the particle image on the left side with the optical image on the right side, as shown below.

【0012】 無衝突透過X線エネルギー束 ⇔ 直進透過光 前方散乱X線エネルギー束 ⇔ 屈折透過光 後方散乱X線エネルギー束 ⇔ 反射光 真の吸収X線エネルギー束 ⇔ 吸収光 この光学的類推の基に高熱負荷受熱機器の除熱冷却設計
が可能であるということに、はじめて気がついたこと
が、本発明の発端である。
Collisionless transmitted X-ray energy flux ⇔ Straight transmitted light Forward scattered X-ray energy flux ⇔ Refractive transmitted light Backscattered X-ray energy flux ⇔ Reflected light True absorbed X-ray energy flux ⇔ Absorbed light On the basis of this optical analogy It was the origin of the present invention that we first noticed that heat removal cooling design of high heat load heat receiving equipment was possible.

【0013】光学冷却法の説明に先立って、標的物質
を、その性質に応じて、次の3種類に分類する。
Prior to the explanation of the optical cooling method, the target substances are classified into the following three types according to their properties.

【0014】 透過性物質・・・・X線の吸収,散乱が少ないもの、 散乱性物質・・・・X線の前方散乱,後方散乱が多いも
の、 吸収性物質・・・・真のX線吸収が多いもの。
Permeable substance: ・ X-ray absorption and scattering are small, Scattering substance: ・ X-ray forward and backward scattering is large, Absorbing substance: True X-ray Those that absorb a lot.

【0015】ここで、光学冷却法を有効に機能させるた
めには、上記3種類の性質を有する標的物質の選択が重
要である。まず、透過性物質は、利用目的にかなった標
的物質の中から選択し、その物質層の厚さを設計上の代
表的X線エネルギー(例えば、入射X線エネルギー)の
1mfp 以下に薄くしたものを採用する。
Here, in order to effectively function the optical cooling method, it is important to select the target substance having the above-mentioned three kinds of properties. First, the transmissive substance is selected from the target substances suitable for the purpose of use, and the thickness of the substance layer is thinned to 1 mfp or less of the typical design X-ray energy (eg incident X-ray energy). To adopt.

【0016】なお、透過性物質層の厚さの変化によっ
て、物質層内のX線吸収量を加減制御することが本発明
の要点の一つであるので、今後の材料技術開発の進展に
よっては、層厚の上限値が1mfp を越える場合があるこ
とも予想される。
It is one of the main points of the present invention to control the amount of X-ray absorption in the material layer by changing the thickness of the permeable material layer. Therefore, depending on the progress of material technology development in the future, It is expected that the upper limit of the layer thickness may exceed 1 mfp.

【0017】次に、散乱性及び吸収性物質の選択につい
ては、X線ビームの物質通過にともなう散乱・吸収現象
の基本原理によって、その選択が可能となる。例えば、
本発明の利用対象となる放射光装置などで用いられるX
線エネルギーは数keV 〜数100keV であり、この領域
における散乱・吸収現象の主な原因はコンプトン効果で
あるから、標的物質の真の散乱と吸収の割合とX線エネ
ルギーとの関係は計算によって求めることができる。
Next, regarding the selection of the scattering and absorbing substances, the selection can be made according to the basic principle of the scattering / absorption phenomenon accompanying the passage of the X-ray beam through the substance. For example,
X used in a synchrotron radiation device to which the present invention is applied
The line energy is several keV to several hundred keV, and the main cause of the scattering / absorption phenomenon in this region is the Compton effect. Therefore, the relation between the true scattering and absorption ratio of the target substance and the X-ray energy is calculated. be able to.

【0018】具体例として、炭素(C)は、X線エネル
ギーが10数keV 以上で散乱性物質としての性質を示
し、それ以下では吸収性物質としての性質を示す。ま
た、鉄(Fe)は、100keV 程度以上のエネルギー領
域で散乱性物質としての挙動を示し、それ以下のエネル
ギー領域では吸収性物質としての働きをすることがわか
る。これらの性質を理解することによって、利用対象機
器に適した散乱性物質と吸収性物質の選択ができる。な
お、散乱性物質と吸収性物質の分類は、元素固有の性質
ではないことに留意する必要がある。
As a specific example, carbon (C) exhibits a property as a scattering substance when the X-ray energy is at least 10 and several keV, and exhibits a property as an absorptive substance when the energy is less than that. Further, it is understood that iron (Fe) behaves as a scattering substance in the energy region of about 100 keV or more, and acts as an absorbing substance in the energy region of less than that. By understanding these properties, it is possible to select a scattering material and an absorbing material that are suitable for the target device. It should be noted that the classification of the scattering substance and the absorbing substance is not a property peculiar to the element.

【0019】光学冷却法とは、多層受熱構造体の除熱冷
却において、従来の熱化・吸収による除熱法に加え、新
たにX線の透過・散乱現象を利用して光学的類推の基に
機能させ、電磁波エネルギーを媒体として熱輸送し除熱
する機構を追加することによって、受熱構造体の除熱冷
却性能を向上させる方法であり、以下、各請求項に示し
た手段の働きについて述べる。
The optical cooling method is a basis of optical analogy in the heat removal cooling of the multilayer heat-receiving structure, in addition to the conventional heat removal method by thermalization / absorption, by newly utilizing the transmission / scattering phenomenon of X-rays. It is a method of improving the heat removal cooling performance of the heat receiving structure by adding a mechanism for carrying out heat transfer by using electromagnetic wave energy as a medium to remove heat, and the function of the means described in each claim will be described below. .

【0020】請求項1に記載の標的物質を多層構成とす
る受熱構造体においては、X線照射下にある各標的物質
層を1mfp 以下の厚さの薄い透過・散乱性物質とするこ
とによって、各物質層あたりの吸収エネルギーを入射量
の数%程度以下に低減させることができ、さらに、薄い
標的物質層内での熱エネルギーへの変換は体積発熱であ
るので、物質層内の発熱分布を局所化させない働きをす
る。また、各標的物質の種類及び層構成を選択すること
によって、X線ビームの透過,散乱,吸収量を制御でき
るので、標的物質に吸収される熱負荷を、熱伝導によっ
て従来手法により除熱できる領域まで低減する選択の幅
が広がる。
In the heat-receiving structure having a multi-layer structure of the target substance according to claim 1, each target substance layer under X-ray irradiation is a thin transmission / scattering substance having a thickness of 1 mfp or less, The absorbed energy per each material layer can be reduced to about several% of the incident amount or less, and furthermore, since the conversion into heat energy in the thin target material layer is volumetric heat generation, the heat generation distribution in the material layer can be reduced. It works to prevent localization. Moreover, since the transmission, scattering, and absorption of the X-ray beam can be controlled by selecting the type and layer structure of each target substance, the heat load absorbed by the target substance can be removed by the conventional method by heat conduction. The range of choices to reduce the area is expanded.

【0021】請求項2に記載の多層受熱構造体におい
て、各標的物質間に真空又は希薄ガスの空隙層を設ける
ことにより、各標的物質層間を断熱するとともに、物質
層外に放出された散乱X線ビームエネルギーを光速で
(粒子ビームの場合は粒子の速度で)照射領域外に運び
さる働きをする。また、標的物質層材料として散乱性物
質を使用することにより、X線ビームの反射特性を向上
させることができる。
In the multilayer heat-receiving structure according to claim 2, by providing a vacuum layer or a void layer of a dilute gas between each target substance, each target substance layer is thermally insulated and the scattering X emitted to the outside of the substance layer. It serves to carry the linear beam energy out of the illuminated area at the speed of light (or particle velocity in the case of particle beams). Further, by using the scattering substance as the target substance layer material, the reflection characteristic of the X-ray beam can be improved.

【0022】請求項3に記載の多層受熱構造体の最外層
を構成する熱伝導のよい吸収性物質及び除熱冷却物質の
働きについては、標的物質との多重衝突で低エネルギー
化したX線ビームを捕獲し吸収・熱化させるとともに、
標的物質層内に発生した吸収熱を熱伝導によって受熱す
る働きをする。
With respect to the functions of the absorptive substance having good thermal conductivity and the heat removal cooling substance which form the outermost layer of the multilayer heat receiving structure according to claim 3, the X-ray beam is reduced in energy by multiple collisions with the target substance. Capture, absorb and heat,
It serves to receive the absorption heat generated in the target substance layer by heat conduction.

【0023】さらに、これらの受熱量は、最外層構成材
内に組み込まれた冷却流路を通る水などの冷却媒体によ
って、熱伝達現象により受熱構造体外に運ばれ除熱され
る。なお、最外層構成材は、その大部分がX線ビーム照
射領域外に取り付けられているため、熱交換断面積を充
分大きくとれるので、従来手法による除熱冷却が可能と
なる。
Further, the amount of heat received is carried to the outside of the heat receiving structure by a heat transfer phenomenon by a cooling medium such as water passing through a cooling flow path incorporated in the outermost layer constituent material, and the heat is removed. Since most of the outermost layer constituent material is attached to the outside of the X-ray beam irradiation region, the heat exchange cross-sectional area can be made sufficiently large, so that heat removal cooling by the conventional method becomes possible.

【0024】[0024]

【発明の実施の形態】図1に、高強度X線照射下にある
多層構成の受熱構造体に関する光学冷却法の基本的な実
施構造例を示し、併せてその機能を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a basic working structure of an optical cooling method for a heat-receiving structure having a multi-layer structure under irradiation with high-intensity X-rays, and the function thereof will be described together.

【0025】まず、高強度のX線ビーム1は、多層構成
の標的物質層2に入射され、標的物質との衝突によっ
て、散乱,透過,吸収現象を生ずる。各標的物質層2
は、その層厚を1mfp 以下に薄くすることによって、X
線ビーム1の透過性を良くし吸収熱量を低く抑えてい
る。また、標的物質の種類として、X線散乱効率の良い
物質を選び、層間空隙3に放出されるX線量を多くして
いる。各標的物質層2に吸収された熱量は、側面に密着
した最外層の除熱冷却層5(冷却流路内蔵)に熱伝導で
運ばれ、冷却水6に熱伝達で熱量移動し、外部に運ばれ
除熱される。なお、標的物質層2内の吸収熱量は少量で
あり、且つ、層間空隙3によって断熱されているので、
従来手法による除熱が可能である。
First, the high-intensity X-ray beam 1 is incident on the target material layer 2 having a multi-layer structure, and when it collides with the target material, scattering, transmission, and absorption phenomena occur. Each target substance layer 2
Reduces the layer thickness to less than 1 mfp
The transparency of the line beam 1 is improved and the amount of absorbed heat is kept low. Further, a substance having a high X-ray scattering efficiency is selected as the type of the target substance to increase the X-ray dose emitted to the interlayer void 3. The amount of heat absorbed by each target substance layer 2 is transferred by heat conduction to the outermost heat removal cooling layer 5 (with a built-in cooling flow path) that is in close contact with the side surface, and the amount of heat is transferred to the cooling water 6 by heat transfer to the outside. It is carried and removed from heat. Since the amount of absorbed heat in the target substance layer 2 is small and is insulated by the interlayer gap 3,
It is possible to remove heat by the conventional method.

【0026】次に、層間空隙3に放出された散乱X線
は、その後の衝突によってエネルギーを下げつつ、良熱
伝導体の吸収性物質層4に捕獲吸収,熱化される。その
吸収熱量は、吸収性物質層4の周囲に密着した除熱冷却
層5に熱伝導で運ばれ、冷却水6により除熱される。な
お、吸収性物質層4に入る散乱X線量が多い場合には、
吸収性物質層4の材料として多孔タングステン(W)の
ような多孔性耐熱物質を選択することによって、層間空
隙3によるX線散乱効果を併用して標的物質層2内の体
積発熱を助長し、この領域の冷却効果を高めるような工
夫も本発明の範疇である。
Next, the scattered X-rays emitted to the interlayer void 3 are trapped and absorbed in the absorptive material layer 4 of a good heat conductor while being reduced in energy by the subsequent collision, and then heat-treated. The absorbed heat amount is transferred by heat conduction to the heat removal cooling layer 5 that is in close contact with the periphery of the absorbent substance layer 4, and is removed by the cooling water 6. When the amount of scattered X-rays entering the absorptive material layer 4 is large,
By selecting a porous heat-resistant substance such as porous tungsten (W) as the material of the absorptive substance layer 4, the X-ray scattering effect of the interlayer void 3 is also used to promote volumetric heat generation in the target substance layer 2. A device that enhances the cooling effect in this region is also within the scope of the present invention.

【0027】図2は、高エネルギー・高強度のX線を発
生・利用する放射光装置に用いるX線光学素子の冷却に
本発明の光学冷却法を適用した例である。
FIG. 2 shows an example in which the optical cooling method of the present invention is applied to cooling an X-ray optical element used in a synchrotron radiation device that generates and utilizes X-rays of high energy and high intensity.

【0028】該図に示すごとく、高強度のX線ビーム1
は、多層受熱構造体の標的物質層2の正面側の側面に入
射される。標的物質層2,層間空隙3,吸収性物質層
4,冷却水6、及び両横に配置された除熱冷却層5の機
能は、前述の図1の説明と同じである。
As shown in the figure, a high intensity X-ray beam 1
Is incident on the front side surface of the target substance layer 2 of the multilayer heat receiving structure. The functions of the target substance layer 2, the interlayer gap 3, the absorptive substance layer 4, the cooling water 6, and the heat removal cooling layer 5 arranged on both sides are the same as those described above with reference to FIG.

【0029】ここで、光学冷却法の有効性を示すため、
図2のX線光学素子鳥瞰図に示した多層受熱構造体を具
体例として設計を行った結果を説明する。
Here, in order to show the effectiveness of the optical cooling method,
The results of designing the multilayer heat receiving structure shown in the bird's-eye view of the X-ray optical element in FIG. 2 as a specific example will be described.

【0030】基本的設計条件として、先端的放射光研究
開発分野で重要視されている領域のパラメータを取り上
げ、下記の条件を設定した。
As the basic design conditions, the parameters of the region which is regarded as important in the advanced synchrotron radiation research and development field were taken up and the following conditions were set.

【0031】まず、入射X線の設計条件としては、
(1)入射X線エネルギー:50keV ,(2)全流入X
線エネルギー量:20kW,(3)照射面積:縦2cm×
横1cm=2cm2,(4)照射X線エネルギー束:10k
W/cm2=100MW/m2,(5)標的物質第1層への
X線入射方向:垂直入射を仮定した。
First, the design conditions for incident X-rays are:
(1) Incident X-ray energy: 50 keV, (2) Total inflow X
Linear energy amount: 20 kW, (3) Irradiated area: Vertical 2 cm x
Horizontal 1 cm = 2 cm 2 , (4) Irradiated X-ray energy flux: 10 k
W / cm 2 = 100 MW / m 2 , (5) Direction of X-ray incidence on first layer of target substance: vertical incidence was assumed.

【0032】次に、標的物質層2及び除熱冷却層5の材
料として、それぞれ耐熱性があり散乱性物質である炭素
繊維強化炭素複合材料(C/C材)、及び熱伝導性の良
い銅(Cu)材を選んだ。C/C材からなる各標的物質
層2の寸法は、縦2cm,横1cm,厚さ0.5cm(〜0.2
mfp )を仮定した。
Next, as materials for the target substance layer 2 and the heat removal cooling layer 5, a carbon fiber reinforced carbon composite material (C / C material), which is a heat-resistant and scattering substance, and copper, which has good thermal conductivity, are used. (Cu) material was selected. The dimensions of each target substance layer 2 made of C / C material are 2 cm in length, 1 cm in width, and 0.5 cm in thickness (up to 0.2 cm).
mfp) was assumed.

【0033】これらの条件下で計算した、各C/C標的
物質層2に吸収されるX線エネルギー量は最大700W
となる。各標的物質層2の厚さは平均自由行路に比べて
薄いので、標的物質層2内に吸収されるX線エネルギー
は厚さ方向に等分配され、体積発熱となる。各C/C標
的物質層2で吸収・熱化した熱量は、標的物質層2の横
方向の両端(断面積2cm×0.5cm)からCu除熱冷却
層5に350W/cm2の熱流束で流入する。この程度の
熱流束は、Cu除熱冷却層5内の冷却流路を流れる水の
強制対流熱伝達によって除熱することが可能である。
The amount of X-ray energy absorbed in each C / C target substance layer 2 calculated under these conditions is 700 W at maximum.
Becomes Since the thickness of each target substance layer 2 is thinner than the mean free path, the X-ray energy absorbed in the target substance layer 2 is evenly distributed in the thickness direction, resulting in volumetric heat generation. The amount of heat absorbed / heated by each C / C target substance layer 2 is 350 W / cm 2 of heat flux from both ends (cross sectional area 2 cm × 0.5 cm) in the lateral direction of the target substance layer 2 to the Cu heat removal cooling layer 5. Flows in. The heat flux of this degree can be removed by forced convection heat transfer of water flowing through the cooling flow path in the Cu heat removal cooling layer 5.

【0034】ここで、冷却流路までのCu層の厚さを
0.5cm とし、冷却水流速10m/s程度の平滑管を用
いて除熱するとして、多層受熱構造体の熱計算を行つた
結果、最も温度の高い標的物質層の中央部と冷却水温と
の温度差は200K弱であった。この結果は、C/C材
からなる標的物質層2は、100MW/m2 の高強度X
線の定常照射を受けても、相当の余裕を持って耐えるこ
とができることを示している。
Here, the heat calculation of the multi-layer heat-receiving structure was performed assuming that the thickness of the Cu layer up to the cooling channel is 0.5 cm and heat is removed using a smooth tube with a cooling water flow rate of about 10 m / s. As a result, the temperature difference between the central portion of the target substance layer having the highest temperature and the cooling water temperature was slightly less than 200K. This result shows that the target substance layer 2 made of C / C material has a high strength X of 100 MW / m 2.
It shows that it can withstand a certain amount of radiation even if it receives steady irradiation of a line.

【0035】以上の設計検討の結果、本発明の光学冷却
法を用いた多層受熱構造体は、100MW/m2を越える高
強度X線の局部的な定常照射に対して、X線吸収エネル
ギーの除熱冷却が可能であると結論できる。
As a result of the above design examination, the multilayer heat-receiving structure using the optical cooling method of the present invention has a high X-ray absorption energy of X-ray absorption energy against local steady irradiation of high intensity X-rays exceeding 100 MW / m 2 . It can be concluded that heat removal cooling is possible.

【0036】近年、核融合・放射光分野などの多くの研
究機関で、従来手法による高熱負荷除熱技術開発が実施
されているが、短期間定格で数10MW/m2 ,長期間
定格で数MW/m2 を越える高熱負荷除熱材料・機器開
発の困難さが指摘されていることを考えると、本発明の
光学冷却法の採用によって、高熱負荷受熱機器の除熱冷
却性能の大幅な向上が期待できる。
In recent years, many research institutes in the fields of nuclear fusion and synchrotron radiation have developed high-heat-load heat removal technology by conventional methods. However, short-term rating is several tens of MW / m 2 , long-term rating is few. Considering that it is pointed out that it is difficult to develop high heat load heat removal materials / equipment exceeding MW / m 2 , adoption of the optical cooling method of the present invention significantly improves heat removal cooling performance of high heat load heat receiving equipment. Can be expected.

【0037】図3は、高エネルギー・高強度のX線・粒
子線を発生・利用する装置のビームストッパの冷却に光
学冷却法を適用した例である。
FIG. 3 shows an example in which an optical cooling method is applied to the cooling of a beam stopper of an apparatus for generating and utilizing high energy and high intensity X-rays and particle beams.

【0038】該図に示すごとく、高強度のX線・粒子線
ビーム1は、多層構成の傘状の標的物質層2に入射され
る。各標的物質層2は、傘状の熱伝導の良い透過・散乱
性物質で構成され、入射X線ビーム等を斜入射させるこ
とによって、照射面積拡大による単位面積あたりの吸収
熱負荷量の軽減と、散乱X線の周辺への分散効率の向上
を図っている。また、標的物質層2の外周は冷却水6に
よって冷却されている。
As shown in the figure, the high-intensity X-ray / particle beam 1 is incident on the umbrella-shaped target substance layer 2 having a multilayer structure. Each target material layer 2 is composed of an umbrella-shaped transparent / scattering material with good thermal conductivity, and by obliquely incident an incident X-ray beam or the like, the absorbed heat load per unit area can be reduced by expanding the irradiation area. , The dispersion efficiency of scattered X-rays to the periphery is improved. The outer periphery of the target substance layer 2 is cooled by the cooling water 6.

【0039】なお、これら標的物質層2は、照射領域外
に置かれた支持棒8によって支持されている。層間空隙
3は、層間のほか標的物質層2の周辺にもあり、外周部
にある吸収性物質層4に流入する散乱X線による単位面
積あたりの吸収熱負荷量を軽減する働きをしている。こ
れは、散乱X線エネルギー量が多い場合に有効である。
入射口近くの散乱性物質層7は、比較的エネルギーの高
い一次散乱X線を反射させ、そのエネルギーを低下させ
る働きをする。なお、物質層の表面に凹凸をつけてX線
の散乱効率を上げるような試みも本発明の範疇である。
最外層の除熱冷却層5の構成と働きは、前述の例と同様
である。
The target substance layer 2 is supported by a support rod 8 placed outside the irradiation area. The inter-layer voids 3 are present not only between the layers but also around the target substance layer 2 and have a function of reducing the absorbed heat load per unit area due to scattered X-rays flowing into the absorptive substance layer 4 in the outer peripheral portion. . This is effective when the amount of scattered X-ray energy is large.
The scattering material layer 7 near the entrance serves to reflect the primary scattered X-rays having a relatively high energy and lower the energy. It should be noted that an attempt to increase the scattering efficiency of X-rays by making the surface of the material layer uneven is also within the scope of the present invention.
The structure and function of the outermost heat removal cooling layer 5 are the same as those in the above-described example.

【0040】[0040]

【発明の効果】以上説明した本発明の高熱負荷受熱機器
によれば、従来の熱化・吸収による除熱法に加え、新た
にビームの物質中での透過,散乱,吸収現象を波動現象
に置き換えて考えた光学的手法に基づく冷却法を導入し
たものであるから、この光学冷却法の採用によって従来
方式を上回る除熱冷却性能の向上が期待でき、また、受
熱機器材料の種類や配置の選択の幅が広がるので、経済
性の向上も期待できる。
According to the high heat load heat-receiving device of the present invention described above, in addition to the conventional heat removal method by thermalization / absorption, the transmission, scattering, and absorption phenomena of the beam in the substance are changed to the wave phenomenon. Since the cooling method based on the optical method that was considered as a replacement was introduced, it is expected that the adoption of this optical cooling method will improve the heat removal cooling performance over the conventional method, and the type and arrangement of the heat receiving equipment materials As the range of choices is expanded, it is possible to expect improved economic efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高熱負荷受熱機器における多層受熱構
造体の基本的な構成を示す断面図である。
FIG. 1 is a cross-sectional view showing a basic configuration of a multilayer heat receiving structure in a high heat load heat receiving device of the present invention.

【図2】本発明の光学冷却多層受熱構造を採用したX線
光学素子を示す部分斜視図である。
FIG. 2 is a partial perspective view showing an X-ray optical element adopting the optical cooling multilayer heat receiving structure of the present invention.

【図3】本発明の光学冷却多層受熱構造を採用したX線
・粒子線ビームストッパを示す断面図である。
FIG. 3 is a cross-sectional view showing an X-ray / particle beam stopper that employs the optically cooled multilayer heat receiving structure of the present invention.

【符号の説明】[Explanation of symbols]

1…X線ビーム、2…標的物質層、3…層間空隙、4…
吸収性物質層、5…除熱冷却層、6…冷却水、7…散乱
性物質層、8…支持棒。
1 ... X-ray beam, 2 ... Target substance layer, 3 ... Interlayer void, 4 ...
Absorbent substance layer, 5 ... Heat removal cooling layer, 6 ... Cooling water, 7 ... Scattering substance layer, 8 ... Support rod.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】受熱機器の先端部分に取り付けられた標的
物質に高強度光量子・粒子ビームを照射し、その時のビ
ームエネルギーを標的物質の内部で吸収・熱化させ、熱
伝導で冷却流路まで運び冷却媒体により前記ビームエネ
ルギーを外部に運びさる構成の高熱負荷受熱機器におい
て、 前記標的物質を多層構造の受熱構造体とし、該各標的物
質層を厚さ1mfp (平均自由行路)以下の透過・散乱性
物質で構成したことを特徴とする高熱負荷受熱機器。
1. A high-intensity photon / particle beam is applied to a target substance attached to the tip of a heat-receiving device, and the beam energy at that time is absorbed / heated inside the target substance, and heat conduction leads to a cooling channel. In a high heat load heat-receiving device configured to carry the beam energy to the outside by a carrying cooling medium, the target substance is a multi-layer heat-receiving structure, and each target substance layer has a thickness of 1 mfp (mean free path) or less A high heat load heat-receiving device characterized by being composed of a scattering material.
【請求項2】前記各標的物質層間に真空、又はガスの空
隙層を設けたことを特徴とする請求項1記載の高熱負荷
受熱機器。
2. The high heat load heat-receiving device according to claim 1, wherein a vacuum or gas void layer is provided between the target substance layers.
【請求項3】前記多層の標的物質層の最終層、及び前記
光量子・粒子ビームの照射領域外に取り付けた外周層を
熱伝導の良い吸収性物質、及び除熱冷却物質で構成した
ことを特徴とする請求項1、又は2に記載の高熱負荷受
熱機器。
3. The final layer of the multi-layered target substance layer, and the outer peripheral layer attached outside the irradiation region of the photon / particle beam are composed of an absorptive substance having good thermal conductivity and a heat removal cooling substance. The high heat load heat-receiving device according to claim 1 or 2.
JP04981396A 1996-03-07 1996-03-07 High heat load heat receiving equipment Expired - Fee Related JP3327102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04981396A JP3327102B2 (en) 1996-03-07 1996-03-07 High heat load heat receiving equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04981396A JP3327102B2 (en) 1996-03-07 1996-03-07 High heat load heat receiving equipment

Publications (2)

Publication Number Publication Date
JPH09245999A true JPH09245999A (en) 1997-09-19
JP3327102B2 JP3327102B2 (en) 2002-09-24

Family

ID=12841575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04981396A Expired - Fee Related JP3327102B2 (en) 1996-03-07 1996-03-07 High heat load heat receiving equipment

Country Status (1)

Country Link
JP (1) JP3327102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242468A (en) * 2006-03-09 2007-09-20 Kumagai Gumi Co Ltd Cooling structure of beam dump device, and building for beam dump device installation
CN113035377A (en) * 2021-02-25 2021-06-25 中国科学院合肥物质科学研究院 Power absorption target plate suitable for high-power particle beams

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242468A (en) * 2006-03-09 2007-09-20 Kumagai Gumi Co Ltd Cooling structure of beam dump device, and building for beam dump device installation
JP4615460B2 (en) * 2006-03-09 2011-01-19 株式会社熊谷組 Beam dump device cooling structure and beam dump device installation building
CN113035377A (en) * 2021-02-25 2021-06-25 中国科学院合肥物质科学研究院 Power absorption target plate suitable for high-power particle beams
CN113035377B (en) * 2021-02-25 2024-03-12 中国科学院合肥物质科学研究院 Power absorbing target plate suitable for high-power particle beam

Also Published As

Publication number Publication date
JP3327102B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
Mallozzi et al. Laser‐generated plasmas as a source of x rays for medical applications
Stephens et al. K α fluorescence measurement of relativistic electron transport in the context of fast ignition
RU2280966C2 (en) Fission device for creating neutrons
Fujioka et al. Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications
Kieffer et al. Future of laser-based X-ray sources for medical imaging
JP2006047115A (en) Neutron generating apparatus, target and neutron irradiation system
Colvin et al. A computational study of X-ray emission from laser-irradiated Ge-doped foams
Girard et al. Multi-keV x-ray conversion efficiencies of laser-preexploded titanium foils
US6438208B1 (en) Large surface area x-ray tube window and window cooling plenum
Garban-Labaune et al. Experimental results and theoretical analysis of the effect of wavelength on
Jin et al. Thermal analysis of the first ultra-high heat-load front-end absorbers for the ultra-hard multi-functional X-ray beam-line at SSRF
JPH09245999A (en) Heat receiving apparatus with high thermal load
Molteni X-ray imaging: fundamentals of x-ray
Ihsan et al. Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube
Kieffer et al. Hot-Electron Energy Deposition in C O 2-Laser-Irradiated Targets Consistent with Magnetic-Field-Induced Surface Transport
Andreev et al. Picosecond X-ray radiography of superdense high-temperature laser plasma
Dahmani et al. Laser-intensity and wavelength dependence of mass-ablation rate, ablation pressure, and heat-flux inhibition in laser-produced plasmas
JP3866558B2 (en) X-ray generator
Bugrov et al. Investigation of light absorption, energy transfer, and plasma dynamic processes in laser-irradiated targets of low average density
Rudakov et al. Pulsed‐plasma‐based x‐ray source and new x‐ray optics
JP2006017653A (en) Radiation generator
Tompkins et al. Use of capillary optics as a beam intensifier for a Compton x‐ray source
Benson et al. Opportunities and Challenges of a Low-energy Positron Source in the LERF
Hager et al. Study of Rayleigh–Taylor growth in directly driven cryogenic-deuterium targets
Jaski et al. Design and Application of CVD Diamond Windows for X‐Rays at the Advanced Photon Source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees