JP4615460B2 - Beam dump device cooling structure and beam dump device installation building - Google Patents

Beam dump device cooling structure and beam dump device installation building Download PDF

Info

Publication number
JP4615460B2
JP4615460B2 JP2006064449A JP2006064449A JP4615460B2 JP 4615460 B2 JP4615460 B2 JP 4615460B2 JP 2006064449 A JP2006064449 A JP 2006064449A JP 2006064449 A JP2006064449 A JP 2006064449A JP 4615460 B2 JP4615460 B2 JP 4615460B2
Authority
JP
Japan
Prior art keywords
building
concrete
dump
beam dump
dump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006064449A
Other languages
Japanese (ja)
Other versions
JP2007242468A (en
Inventor
武彦 加藤
賢二 吉松
英彦 渡辺
朋岳 梅津
利雄 前川
隆司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2006064449A priority Critical patent/JP4615460B2/en
Publication of JP2007242468A publication Critical patent/JP2007242468A/en
Application granted granted Critical
Publication of JP4615460B2 publication Critical patent/JP4615460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、加速器施設で使用されるビームダンプ装置に関するもので、特に、ダンプターゲットの冷却構造に関する。   The present invention relates to a beam dump device used in, for example, an accelerator facility, and more particularly to a dump target cooling structure.

陽子や電子などを加速して高エネルギーの荷電粒子ビームを取出すリニアックやシンクロトロンなどのような加速器を備えた施設においては、加速された不要の粒子を消滅させるため、上記粒子をカーボンなどのダンプターゲットに衝突させて崩壊させるためのビームダンプ装置が用いられている(例えば、特許文献1参照)。ところで、高速の荷電粒子とダンプターゲットとの衝突時には、放射性物質の生成や熱の発生が伴うので、上記ダンプターゲット内は高温になる。したがって、吸収するビームのエネルギー量が大きい程大きなダンプターゲットを用いる必要がある。そこで、従来は、図2に示すように、ダンプターゲット51の周りを純鉄の板52Pを積層した冷却部材52で囲むとともに、上記ダンプターゲット51を設置する建屋50内を空調装置53で冷却して、粒子導入管20から照射される高速荷電粒子のビームとの衝突により発生する上記ダンプターゲット51の熱を、上記冷却部材52を介して空気中に放出し、上記ダンプターゲット51を冷却するようにしている。
一方、荷電粒子のエネルギーが比較的小さな場合には、ダンプターゲットを支持するハウジングに冷却通路を形成し、この冷却通路に冷却水を循環させて上記ターゲットを水冷する方法が行なわれている(例えば、特許文献2参照)。
特開平7−335398号公報 特開平7−335397号公報
In facilities equipped with accelerators such as linacs and synchrotrons that accelerate protons and electrons to extract high-energy charged particle beams, the above particles are dumped such as carbon in order to eliminate unnecessary accelerated particles. A beam dump device for colliding with a target and causing it to collapse is used (see, for example, Patent Document 1). By the way, at the time of collision between high-speed charged particles and the dump target, generation of radioactive material and generation of heat are accompanied, so that the inside of the dump target becomes high temperature. Therefore, it is necessary to use a larger dump target as the energy amount of the beam to be absorbed is larger. Therefore, conventionally, as shown in FIG. 2, the dump target 51 is surrounded by a cooling member 52 in which pure iron plates 52P are stacked, and the inside of the building 50 in which the dump target 51 is installed is cooled by an air conditioner 53. The heat of the dump target 51 generated by the collision with the beam of high-speed charged particles irradiated from the particle introduction tube 20 is discharged into the air through the cooling member 52 so as to cool the dump target 51. I have to.
On the other hand, when the energy of charged particles is relatively small, a cooling passage is formed in a housing that supports the dump target, and cooling water is circulated through the cooling passage to cool the target (for example, , See Patent Document 2).
JP-A-7-335398 Japanese Patent Laid-Open No. 7-335397

しかしながら、上記ダンプターゲット51を冷却部材52で囲んで空冷する方法では、熱放出が少ないため装置が大型化するだけでなく、空調温度をかなり低くしてやる必要があるので、空調費(ランニングコスト)が嵩んでしまっていた。
また、ダンプターゲットを水冷する方法は、荷電粒子のエネルギーが比較的小さな場合には問題はないが、荷電粒子が加速器施設で用いられるような高エネルギー粒子用のダンプターゲットでは、上記のように、放射性物質が生成されることから、冷却水が放射化されてしまうといった問題点があった。
However, in the method in which the dump target 51 is surrounded by the cooling member 52 and cooled by air, not only the apparatus is increased in size but also the air conditioning temperature needs to be considerably lowered because of less heat release. It was bulky.
In addition, the method of water-cooling the dump target is not a problem when the energy of the charged particles is relatively small, but in the dump target for high energy particles where the charged particles are used in an accelerator facility, as described above, Since radioactive materials are generated, there is a problem that cooling water is activated.

本発明は、従来の問題点に鑑みてなされたもので、簡単な構成でダンプターゲットを効率よく冷却することのできるビームダンプ装置の冷却構造を提供することを目的とする。   The present invention has been made in view of the conventional problems, and an object thereof is to provide a cooling structure for a beam dump device that can efficiently cool a dump target with a simple configuration.

本願の請求項1に記載の発明は、荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置の冷却構造であって、上記熱放出用支持部材と上記ビームダンプ装置を設置する建屋のコンクリート中の鉄筋とを連結する連結用鉄筋を備えたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のビームダンプ装置の冷却構造において、上記コンクリート中の鉄筋同士を結用鋼線により結合したものである。
また、請求項3に記載の発明は、荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置の冷却構造であって、上記ビームダンプ装置を設置する建屋のコンクリート中に予め埋設された冷却フィンと、上記冷却フィンと上記熱放出用支持部材とを連結する連用鉄筋とを備えたものである。
請求項4に記載の発明は、請求項1〜請求項3のいずれかに記載のビームダンプ装置の冷却構造において、上記熱放出用支持部材とコンクリート中の鉄筋とを連結する連結用鉄筋と上記コンクリートとの間、もしくは、上記熱放出用支持部材と冷却フィンとを連結する連結用鉄筋と上記コンクリートとの間に防水処理を施したものである。
The invention according to claim 1 of the present application, the beam dump device including a dump target charged particle beam is irradiated, the heat dissipation support member you supporting plate the dump target formed by laminating a pure iron a cooling structure, is characterized in that a connecting reinforcing bar connecting the rebar building in concrete placing the supporting the heat releasing member and the beam dump device.
According to a second aspect of the invention, the cooling structure of the beam dump device according to claim 1, in which the reinforcing bars to each other in said concrete bound by binding steel wire.
The invention according to claim 3, and dump target charged particle beam is irradiated, the beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating a pure iron a cooling structure, comprising: a pre-embedded cooling fins in the concrete of the building to install the beam dump device, and a consolidated reinforcing bar you connect the the cooling fins and the heat-releasing support member Is.
According to a fourth aspect of the present invention, there is provided the beam dump device cooling structure according to any one of the first to third aspects, wherein the connecting reinforcing bar connecting the heat-dissipating support member and the reinforcing bar in concrete, and the above A waterproof treatment is performed between the concrete and the concrete , or between the connecting rebar for connecting the heat-dissipating support member and the cooling fin and the concrete.

また、請求項5に記載の発明は、荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置を設置するための建屋であって、一端が建屋のコンクリート中の鉄筋に連結され他端が当該建屋内に突出して上記熱放出用支持部材に連結される連結用鉄筋が上記建屋のコンクリート内に埋設されていることを特徴とするものである。
また、請求項6に記載の発明は、荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置を設置するための建屋であって、冷却フィンと、一端が上記冷却フィンに連結され他端が当該建屋内に突出して上記熱放出用支持部材に連結される連結用鉄筋とが上記建屋のコンクリート内に埋設されていることを特徴とするものである。
The invention described in Claim 5, and dump target charged particle beam is irradiated, the beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating a pure iron there in building for installing the concrete connecting reinforcing bars of the building other end is connected to the reinforcing bar in the concrete end building is connected to the support member for the heat released to project to the inside building It is characterized by being embedded inside.
The invention described in Claim 6, and dump target charged particle beam is irradiated, the beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating a pure iron there in building for installing the cold 却Fu fin, and a connecting reinforcing bar having one end other end is connected to the cooling fins is connected to the support member for the heat released to project to the inside building Is embedded in the concrete of the building .

本発明によれば、荷電粒子ビームが照射されるダンプターゲットを支持する熱放出用支持部材と当該ビームダンプ装置を設置する建屋のコンクリート中の鉄筋とを連結する連用鉄筋で連結し、高速荷電粒子のビームとの衝突により発生するダンプターゲットの熱を、上記熱放出用支持部材から上記連結用鉄筋を介して建屋のコンクリート中の鉄筋に伝導させて放出するようにしたので、簡単な構成でダンプターゲットを効率よく冷却できるだけでなく、空調温度を高めに設定できるので、ランニングコストの低減を図ることができる。このとき、上記コンクリート中の鉄筋同士を結用鋼線で結合しておけば、熱の放出が更に容易となり、ダンプターゲットを更に効率よく冷却することができる。
また、当該ビームダンプ装置を設置する建屋のコンクリート中に冷却フィンを予め埋設しておき、この冷却フィンに上記ダンプターゲットからの熱を伝導させるようにしても同様の効果を得ることができる。
なお、上記連結用鉄筋は建屋内に突出するので、上記連結用鉄筋と上記コンクリートとの間に防水処理を施して、上記コンクリートを介して水が浸入するのを防止するようにしておけば、水の汚染を確実に防止することができる。
According to the present invention, coupled with consolidated reinforcing bar to the charged particle beam to couple the reinforcing bars in concrete of the building for installing the heat release for the support member and the bi Mudanpu device for supporting a dump target to be irradiated, high speed Since the heat of the dump target generated by the collision with the charged particle beam is conducted from the heat release support member to the reinforcing bar in the concrete of the building through the connecting reinforcing bar, it is released. Thus, not only can the dump target be cooled efficiently, but also the air conditioning temperature can be set higher, so that the running cost can be reduced. At this time, if combining reinforcing bars to each other in said concrete join steel wire, heat release becomes easier, it is possible to further efficiently cool the dump target.
Further, the same effect can be obtained by embedding cooling fins in the concrete of the building where the beam dump device is installed in advance and conducting heat from the dump target to the cooling fins.
In addition, since the connecting reinforcing bar protrudes into the building, waterproofing is performed between the connecting reinforcing bar and the concrete so as to prevent water from entering through the concrete. Water contamination can be surely prevented.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本発明の最良の形態に係るビームダンプ装置の冷却構造を示す図で、同図において、10は本発明によるビームダンプ装置設置用建屋で、本例では、この建屋10の床11及び壁12を構成する鉄筋コンクリートの主筋11a,11a同士、及び、主筋12a,12a同士をそれぞれ結合用鋼線11b,12bにより互いに結合するとともに、床11のコンクリート内に、アルミニウムなどの熱伝導性の良好な金属から成る冷却フィン13を埋設している。そして、上記主筋11aと上記冷却フィン13には、それぞれ、一端が床11から建屋10内に突出する連結用鉄筋11j,13jの他端側が溶接等により取付けられている。
また、20は図示しない加速器で加速された不要な荷電粒子を上記建屋10内に導くための粒子導入管で、その内部の粒子通路20sは真空に保持されている。21は上記粒子導入管20の周囲に配設され、上記荷電粒子の軌道を上記粒子導入管20内に制限するための電磁石で,上記粒子導入管20内に導かれた高エネルギー荷電粒子は、上記電磁石21により上記粒子通路20sに沿って移動し、粒子導入管20の端部に設けられた人工ダイヤモンド等の薄膜から成るウインドー22からビームダンプ装置30に照射される。なお、符号23は、上記粒子導入管20の外周部に設けられた冷却通路で、上記荷電粒子の一部が上記粒子導入管20の内壁に衝突したときに発生する熱を、上記冷却通路23を循環する冷却水により吸収する。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a view showing a cooling structure of a beam dump device according to the best mode of the present invention, in which 10 is a building for installing a beam dump device according to the present invention, and in this example, a floor 11 of this building 10. The main reinforcing bars 11a, 11a of the reinforced concrete constituting the wall 12 and the main reinforcing bars 12a, 12a are connected to each other by the connecting steel wires 11b, 12b, respectively. Cooling fins 13 made of a good metal are embedded. The main reinforcing bar 11a and the cooling fin 13 are attached to the other end of the connecting reinforcing bars 11j and 13j, one end of which protrudes from the floor 11 into the building 10, by welding or the like.
Reference numeral 20 denotes a particle introduction tube for introducing unnecessary charged particles accelerated by an accelerator (not shown) into the building 10, and the particle passage 20s therein is kept in a vacuum. An electromagnet 21 is disposed around the particle introduction tube 20 and restricts the trajectory of the charged particles within the particle introduction tube 20. The high energy charged particles introduced into the particle introduction tube 20 are: The electromagnet 21 moves along the particle passage 20 s and is irradiated to the beam dump device 30 from a window 22 made of a thin film such as artificial diamond provided at the end of the particle introduction tube 20. Reference numeral 23 denotes a cooling passage provided in the outer periphery of the particle introduction tube 20, and heat generated when a part of the charged particles collides with the inner wall of the particle introduction tube 20 is converted into the cooling passage 23. It is absorbed by the cooling water circulating.

ビームダンプ装置30は、上記粒子導入管20のウインドー22から照射される荷電粒子の軌道上に設置されたダンプターゲット31と、このダンプターゲット31の周りに設けられ、上記ダンプターゲット31を支持する熱放出用支持部材である冷却部材32とを備えている。
上記ダンプターゲット31は、通常、純カーボン等の材料で構成されており、その中央部には、その断面形状が、上記ダンプターゲット31に衝突した荷電粒子がダンプターゲット31の外部に漏れないように設計された形状の凹部(反射部)31hが形成されている。また、上記冷却部材32は多数の純鉄の板32Pを積層したもので、本例では、この冷却部材32に複数個の連結用端子30jを設けるとともに、これらの連結用端子30jと上記主筋11a,12aにそれぞれ連結され、かつ、上記建屋10内に突出する連結用鉄筋11j,12j、及び、連結用端子30jと上記冷却フィン13に連結されている連結用鉄筋13jとを、鉄製または銅製のフレキシブル部材33によりそれぞれ連結するようにしている。
ここで、上記連結用鉄筋11j,12jと床11及び壁12のコンクリートとの間を防水処理しておくことが望ましい。これは、上記コンクリートから浸入してきた水が当該建屋10内に入らないようにするためで、侵入水があると、この侵入水は、ダンプターゲット31で発生した放射性物質により放射化される恐れがある。なお、この防水処理としては、例えば、連結用鉄筋11j,12j及び連結用鉄筋13jの周りを防水コンクリート11k、12kで固めたり、床11の表面に防止シートを敷設しその上に床材を貼るなどの公知の技術を用いることができる。
The beam dump device 30 includes a dump target 31 installed on the trajectory of charged particles irradiated from the window 22 of the particle introduction tube 20, and heat that is provided around the dump target 31 and supports the dump target 31. And a cooling member 32 which is a discharge support member.
The dump target 31 is usually made of a material such as pure carbon, and the central portion thereof has a cross-sectional shape so that charged particles colliding with the dump target 31 do not leak outside the dump target 31. A recessed portion (reflecting portion) 31h having a designed shape is formed. The cooling member 32 is formed by laminating a large number of pure iron plates 32P. In this example, the cooling member 32 is provided with a plurality of connection terminals 30j, and the connection terminals 30j and the main reinforcement 11a. , 12a, and the connecting reinforcing bars 11j, 12j protruding into the building 10 and the connecting terminals 30j and the connecting reinforcing bars 13j connected to the cooling fins 13 are made of iron or copper. The flexible members 33 are connected to each other.
Here, it is desirable to waterproof between the connecting reinforcing bars 11j, 12j and the concrete of the floor 11 and the wall 12. This is to prevent the water that has entered from the concrete from entering the building 10. If there is intrusion water, the intrusion water may be activated by the radioactive material generated in the dump target 31. is there. As this waterproofing treatment, for example, the periphery of the connecting reinforcing bars 11j, 12j and the connecting reinforcing bar 13j is hardened with waterproof concrete 11k, 12k, or a prevention sheet is laid on the surface of the floor 11 and a flooring is applied thereon. A known technique such as can be used.

ビームダンプ装置30の冷却構造を上記のようにすることにより、荷電粒子の衝突により発生し、上記ダンプターゲット31から上記冷却部材32に伝導された熱は、連結用端子30j、フレキシブル部材33、連結用鉄筋11j,12jを介して、建屋10の床11及び壁12を構成する鉄筋コンクリートの主筋11a,12aに伝導されて放熱されるとともに、連結用端子30j、フレキシブル部材33、連結用鉄筋13jを介して、上記鉄筋コンクリート内に埋設された冷却フィン13に伝導されて放熱される。したがって、上記ダンプターゲット31の熱を効率よく放熱することができるので、ビームダンプ装置30を小型化することができる。また、空調の設定温度を従来よりも高くできるので、ランニングコストの問題もなくなるだけでなく、冷却水を使用していないので、水の放射化の問題も発生しない。   By making the cooling structure of the beam dump device 30 as described above, heat generated by collision of charged particles and conducted from the dump target 31 to the cooling member 32 is connected to the connection terminal 30j, the flexible member 33, and the connection. Heat is conducted through the reinforcing bars 11j and 12j to the main reinforcing bars 11a and 12a of the reinforced concrete constituting the floor 11 and the wall 12 of the building 10, and is radiated, and via the connecting terminals 30j, the flexible member 33, and the connecting reinforcing bars 13j. Then, the heat is conducted to the cooling fins 13 embedded in the reinforced concrete and radiated. Therefore, since the heat of the dump target 31 can be efficiently radiated, the beam dump device 30 can be downsized. Moreover, since the set temperature of the air conditioning can be made higher than before, not only the problem of running cost is eliminated, but also the problem of radiation of water does not occur because no cooling water is used.

このように、本最良の形態によれば、ビームダンプ装置30を設置する建屋10の床11及び壁12の主筋11a同士及び主筋12a同士をそれぞれ結合用鋼線11b,12bにより互いに結合し、更に、床11のコンクリート内に、冷却フィン13を埋設するとともに、上記主筋11aと上記冷却フィン13とに、一端が床11から建屋10内に突出する連結用鉄筋11j,13jの他端側が溶接等により取付けられ、この連結用鉄筋11j,13jと、ダンプターゲット31を支持する純鉄の板32Pを積層した冷却部材32とをフレキシブル部材33に連結して、荷電粒子の衝突によりダンプターゲット31に発生する熱を放熱するようにしたので、簡単な構成で、ダンプターゲットを効率よく冷却することができる。したがって、装置を小型化できるとともに、ランニングコストを低減することができる。   Thus, according to this best mode, the floor 11 of the building 10 in which the beam dump device 30 is installed and the main bars 11a of the wall 12 and the main bars 12a are connected to each other by the connecting steel wires 11b and 12b, respectively. The cooling fins 13 are embedded in the concrete of the floor 11, and the other ends of the connecting reinforcing bars 11 j and 13 j whose one ends protrude from the floor 11 into the building 10 are welded to the main reinforcing bars 11 a and the cooling fins 13. The connecting reinforcing bars 11j and 13j and the cooling member 32 on which the pure iron plate 32P supporting the dump target 31 is laminated are connected to the flexible member 33, and are generated in the dump target 31 by collision of charged particles. Since the heat to be radiated is radiated, the dump target can be efficiently cooled with a simple configuration. Therefore, the apparatus can be miniaturized and the running cost can be reduced.

なお、上記最良の形態では、ダンプターゲット31に発生する熱を床11及び壁12の主筋11a,12a、及び、床11のコンクリート内に埋設された冷却フィン13に放熱したが、更に、天井14も上記床11と同様の構成にして、天井14の主筋14aにも上記熱を伝導させて放熱してもよい。また、ダンプターゲット31の発熱量によっては、床11の主筋11a、壁の主筋12a、あるいは、上記冷却フィン13のみを用いてダンプターゲット31から冷却部材32に伝導される熱の放熱を行ってもよい。
また、上記例では、加速器で加速された不要な荷電粒子を消滅させるために用いられるビームダンプ装置30について説明したが、本発明は、荷電粒子ビームの強度測定などの予備実験に用いられるビームダンプ装置などのような、他の用途のビームダンプ装置にも適用可能である。
In the best mode, the heat generated in the dump target 31 is radiated to the main bars 11a and 12a of the floor 11 and the wall 12 and the cooling fins 13 embedded in the concrete of the floor 11, but the ceiling 14 Alternatively, the heat may be dissipated by conducting the heat to the main bar 14a of the ceiling 14 in the same configuration as the floor 11. Further, depending on the amount of heat generated by the dump target 31, the heat conducted from the dump target 31 to the cooling member 32 may be radiated using only the main reinforcement 11 a of the floor 11, the main reinforcement 12 a of the wall, or the cooling fins 13. Good.
In the above example, the beam dump device 30 used for eliminating unnecessary charged particles accelerated by the accelerator has been described. However, the present invention is a beam dump used for preliminary experiments such as intensity measurement of a charged particle beam. The present invention is also applicable to a beam dump device for other purposes such as a device.

このように、本発明によれば、簡単な構成でダンプターゲットを効率よく冷却できるので、小型で冷却効率の高いビームダンプ装置を提供することができるとともに、ランニングコストの低減を図ることができる。   Thus, according to the present invention, since the dump target can be efficiently cooled with a simple configuration, it is possible to provide a small-sized beam dump device with high cooling efficiency and to reduce the running cost.

本発明の最良の形態に係るビームダンプ装置の冷却構造を示す図である。It is a figure which shows the cooling structure of the beam dump apparatus which concerns on the best form of this invention. 従来のビームダンプ装置の冷却構造を示す図である。It is a figure which shows the cooling structure of the conventional beam dump apparatus.

符号の説明Explanation of symbols

10 ビームダンプ装置設置用建屋、11 床、11a 主筋、11b 結合用鋼線、11j 連結用鉄筋、11k 防水コンクリート、12 壁、12a 主筋、
12b 結合用鋼線、12j 連結用鉄筋、12k 防水コンクリート、
13 冷却フィン、13j 連結用鉄筋、20 粒子導入管、20s 粒子通路、
21 電磁石、22 ウインドー、23 冷却通路、30 ビームダンプ装置、
30j 連結用端子、31 ダンプターゲット、31h 凹部、32 冷却部材、
32P 純鉄の板、33 フレキシブル部材。
10 Building for installing beam dumper, 11 floor, 11a main bar, 11b steel wire for connection, 11j connecting bar, 11k waterproof concrete, 12 walls, 12a main bar,
12b steel wire for connection, 12j rebar for connection, 12k waterproof concrete,
13 cooling fins, 13j connecting reinforcing bars, 20 particle introduction pipes, 20s particle passages,
21 Electromagnet, 22 Window, 23 Cooling passage, 30 Beam dump device,
30j connection terminal, 31 dump target, 31h recess, 32 cooling member,
32P pure iron plate, 33 flexible member.

Claims (6)

荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置の冷却構造であって、
上記熱放出用支持部材と上記ビームダンプ装置を設置する建屋のコンクリート中の鉄筋とを連結する連結用鉄筋を備えたことを特徴とするビームダンプ装置の冷却構造。
And dump target charged particle beam is irradiated, a cooling structure of a beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating the pure iron,
A cooling structure for a beam dump device, comprising a connecting reinforcing rod for connecting the heat release support member and a reinforcing bar in concrete of a building where the beam dump device is installed.
上記コンクリート中の鉄筋同士を結用鋼線により結合したことを特徴とする請求項1に記載のビームダンプ装置の冷却構造。 Cooling structure of the beam dump device according to claim 1, characterized in that the reinforcing bars to each other in said concrete bound by binding steel wire. 荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置の冷却構造であって、
上記ビームダンプ装置を設置する建屋のコンクリート中に予め埋設された冷却フィンと、
上記冷却フィンと上記熱放出用支持部材とを連結する連用鉄筋とを備えたことを特徴とするビームダンプ装置の冷却構造。
And dump target charged particle beam is irradiated, a cooling structure of a beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating the pure iron,
A pre-embedded cooling fins in the concrete of the building to install the beam dump device,
Cooling structure of the beam dump device is characterized in that a consolidated reinforcing bar you connect the the cooling fins and the heat-releasing support member.
上記熱放出用支持部材と上記コンクリート中の鉄筋とを連結する連結用鉄筋と上記コンクリートとの間、もしくは、上記熱放出用支持部材と冷却フィンとを連結する連結用鉄筋と上記コンクリートとの間に防水処理を施したことを特徴とする請求項1〜請求項3のいずれかに記載のビームダンプ装置の冷却構造。 Between the rebar for connection between the support member for heat release and the reinforcing bar in the concrete and the concrete, or between the rebar for connection between the support member for heat release and the cooling fin and the concrete. The cooling structure for the beam dump device according to any one of claims 1 to 3, wherein a waterproofing treatment is performed on the beam dump device. 荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置を設置するための建屋であって、
一端が建屋のコンクリート中の鉄筋に連結され他端が当該建屋内に突出して上記熱放出用支持部材に連結される連結用鉄筋が上記建屋のコンクリート内に埋設されていることを特徴とするビームダンプ装置設置用建屋。
There in the dump target charged particle beam is irradiated, for installing the beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating a pure iron building,
And wherein the coupling reinforcing bars having one end other end is connected to the reinforcing bar in the concrete of the building is connected to the support member for the heat released to project to the inside building is embedded in the concrete of the building A building for installing a beam dump device.
荷電粒子ビームが照射されるダンプターゲットと、純鉄のプレートを積層して成り上記ダンプターゲットを支持する熱放出用支持部材とを備えたビームダンプ装置を設置するための建屋であって、
却フィンと、一端が上記冷却フィンに連結され他端が当該建屋内に突出して上記熱放出用支持部材に連結される連結用鉄筋とが上記建屋のコンクリート内に埋設されていることを特徴とするビームダンプ装置設置用建屋。
There in the dump target charged particle beam is irradiated, for installing the beam dump device including a heat dissipation support member you supporting plate the dump target formed by laminating a pure iron building,
And the cold 却Fu fin, one end and a connecting reinforcing bars other end is connected to the cooling fins is connected to the support member for the heat released to project to the inside building is embedded in the concrete of the building A building for installing a beam dump device.
JP2006064449A 2006-03-09 2006-03-09 Beam dump device cooling structure and beam dump device installation building Active JP4615460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064449A JP4615460B2 (en) 2006-03-09 2006-03-09 Beam dump device cooling structure and beam dump device installation building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064449A JP4615460B2 (en) 2006-03-09 2006-03-09 Beam dump device cooling structure and beam dump device installation building

Publications (2)

Publication Number Publication Date
JP2007242468A JP2007242468A (en) 2007-09-20
JP4615460B2 true JP4615460B2 (en) 2011-01-19

Family

ID=38587792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064449A Active JP4615460B2 (en) 2006-03-09 2006-03-09 Beam dump device cooling structure and beam dump device installation building

Country Status (1)

Country Link
JP (1) JP4615460B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893894B2 (en) * 2008-05-27 2012-03-07 株式会社熊谷組 Beam dump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335397A (en) * 1994-06-14 1995-12-22 Power Reactor & Nuclear Fuel Dev Corp Charged particle beam dump device
JPH09245999A (en) * 1996-03-07 1997-09-19 Hitachi Ltd Heat receiving apparatus with high thermal load

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335397A (en) * 1994-06-14 1995-12-22 Power Reactor & Nuclear Fuel Dev Corp Charged particle beam dump device
JPH09245999A (en) * 1996-03-07 1997-09-19 Hitachi Ltd Heat receiving apparatus with high thermal load

Also Published As

Publication number Publication date
JP2007242468A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
CN105073192A (en) Systems and methods for linear accelerator radiotherapy with magnetic resonance imaging
JP4615460B2 (en) Beam dump device cooling structure and beam dump device installation building
JP5227160B2 (en) Radiation shielding structure
WO2011062054A1 (en) Building frame heat storage structure
JP4590536B2 (en) Construction method of neutron beam shielding structure
JP3969663B2 (en) Mobile accelerator system and radionuclide production method
JP2017138266A (en) Shield wall made of ferroconcrete
JP2014052266A (en) Neutron beam shield structure
JP2004333345A (en) Construction method of radiation shielding concrete structure
JP7033961B2 (en) Self-shielding cyclotron system, cyclotron system, and cyclotron
JP4278824B2 (en) Radioactive material storage equipment
JP2016090277A (en) Radiation shielding panel and shielding structure
JP2000002448A (en) Laying structure of cooling heating panel
Brown Main Injector Collimation System Hardware
JP2000088995A (en) Shield that is difficult to activate and method for constructing this shield
CN216865602U (en) Concrete wall with radiation protection function
JP4893894B2 (en) Beam dump
Meier Engineering considerations of the advanced free-electron laser facility
Bieler et al. Design of a high power synchrotron radiation absorber for HERA
Yoshioka et al. Installation and radiation maintenance scenario for J-PARC 50 GeV synchrotron
JP2022089463A (en) Radiation shield structure
Francia et al. Design and early operation of a new-generation internal beam dump for CERN’s Super Proton Synchrotron
JP3852526B2 (en) Charged particle storage device
JP2009007850A (en) Electromagnetic shield room
Munekawa et al. A vacuum protection system for the front end of SPring‐8

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101020

R150 Certificate of patent or registration of utility model

Ref document number: 4615460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350