JPH0754084A - Highly corrosion resistant titanium alloy excellent in cold processibility and weldability - Google Patents

Highly corrosion resistant titanium alloy excellent in cold processibility and weldability

Info

Publication number
JPH0754084A
JPH0754084A JP20219793A JP20219793A JPH0754084A JP H0754084 A JPH0754084 A JP H0754084A JP 20219793 A JP20219793 A JP 20219793A JP 20219793 A JP20219793 A JP 20219793A JP H0754084 A JPH0754084 A JP H0754084A
Authority
JP
Japan
Prior art keywords
alloy
weldability
strength
cold
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20219793A
Other languages
Japanese (ja)
Other versions
JP2800651B2 (en
Inventor
Manabu Nishimoto
学 西元
Atsuhiko Kuroda
篤彦 黒田
Shiro Kitayama
司郎 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20219793A priority Critical patent/JP2800651B2/en
Publication of JPH0754084A publication Critical patent/JPH0754084A/en
Application granted granted Critical
Publication of JP2800651B2 publication Critical patent/JP2800651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly corrosion resistant Ti alloy excellent in cold processibility and weldability. CONSTITUTION:This Ti alloy consists of 1.0 to <3.0% Al, 1.5-4.5% V, 0.1-6.0% Mo, 0.1-1.5% Ni and the balance Ti with inevitable impurities. This Ti alloy has high strength and high corrosion resistance and is also excellent in cold processibility and weldability (strength of its weld zone). Since the weldability is satisfactory, a Ti alloy tube, etc., suitable for use in a corrosive environment or atmosphere in the chemical industry, the field of energy exploitation, etc., can be produced at a low cost without adopting mechanical cutting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学工業(配管な
ど)、エネルギー開発(アンビリカルチューブ、石油開
発用油井管など)および航空機関連(油圧配管など)な
どで用いられる高耐食性チタン合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly corrosion-resistant titanium alloy used in the chemical industry (piping, etc.), energy development (umbilical tube, oil well pipe for oil development, etc.) and aircraft (hydraulic piping, etc.).

【0002】[0002]

【従来の技術】チタンは比強度(強度/比重)が大き
く、耐食性に優れているという長所を持つ。従来、これ
らの長所を各々別個に改良する方向でチタン合金の開発
が行われてきた。これらの改良方法として、Al、V、Ni
などの元素を添加することが挙げられるが、冷間加工性
については十分な配慮が行われていない場合が多く、強
度や耐食性が改善されても冷間加工性を損ねることが多
かった。
2. Description of the Related Art Titanium has the advantages of high specific strength (strength / specific gravity) and excellent corrosion resistance. Conventionally, titanium alloys have been developed in the direction of individually improving these advantages. As methods for improving these, Al, V, Ni
However, in many cases, sufficient consideration was not given to cold workability, and cold workability was often impaired even if strength and corrosion resistance were improved.

【0003】チタン合金は一般的に冷間加工性や溶接性
に乏しく、熱間加工後、機械加工で仕上げなければなら
ない場合が多い。しかし、チタン合金は切削性が悪く、
そのため製品歩留りの低下、切削の長時間化などにより
コスト高を招く。
Titanium alloys generally have poor cold workability and weldability, and in many cases they must be finished by machining after hot working. However, titanium alloy has poor machinability,
As a result, the product yield is lowered and the cutting time is prolonged, resulting in higher costs.

【0004】チタンおよびチタン合金の中で冷間加工が
可能な合金としては、α型チタンである純Ti、α+β型
チタン合金であるTi−3Al− 2.5V、および多くのβ型
チタン合金が挙げられる。
Among titanium and titanium alloys, alloys that can be cold worked include pure Ti which is α-type titanium, Ti-3Al-2.5V which is α + β-type titanium alloy, and many β-type titanium alloys. To be

【0005】これらのうち、β型チタン合金は冷間加工
は可能であるものの、熱間における変形抵抗が大き
く、従来工程では製造が困難である。高温域(100〜 4
00℃前後) で使用した場合には、α相やω相の析出によ
り脆化し、熱的安定性に欠ける、という問題がある。
Among these, the β-type titanium alloy can be cold worked, but has a large deformation resistance during hot working and is difficult to manufacture by the conventional process. High temperature range (100-4
When it is used at around 00 ° C), there is a problem that it becomes brittle due to the precipitation of α phase and ω phase and lacks thermal stability.

【0006】Ti−3Al− 2.5Vは代表的な冷間加工可能
なα+β型チタン合金であり、その基本的な成分はAlが
2.5〜3.5 重量%、Vが 2.0〜3.0 重量%である (この
合金はAMSに規格化されている) 。この合金も純Tiと
同様に冷間加工は可能であるものの、多くの他のチタン
合金と比べて強度が低い上に耐食性も十分とは言えず、
実用的な用途が狭められている。
Ti-3Al-2.5V is a typical cold workable α + β type titanium alloy, the basic component of which is Al
2.5-3.5% by weight and V 2.0-3.0% by weight (this alloy is standardized to AMS). Although this alloy can be cold worked like pure Ti, its strength is lower and corrosion resistance is not sufficient compared to many other titanium alloys.
Practical use is narrowed.

【0007】特開昭50−25418 号公報には、Al、Zr、M
o、V、Cr、NiおよびFeを含有するチタン合金が示され
ているが、これは強度および破壊靱性向上を目的として
発明されたものであり、冷間加工性や溶接性について
は、ほとんどまたは全く検討されていない。
Japanese Patent Laid-Open No. 25418/1975 discloses Al, Zr, M
A titanium alloy containing o, V, Cr, Ni and Fe is shown, but it was invented for the purpose of improving strength and fracture toughness, and it has little or no cold workability or weldability. Not considered at all.

【0008】チタンは周知のように、耐食性に優れた材
料であるという長所を持つが、苛酷な腐食環境での使用
にはさらなる耐食性の向上が必要であり、用途によって
は高い強度も要求される。これらの要求に対して、例え
ば特開昭61−257448号公報には、Al、Ni、Zrなどを添加
し、NiとZrの複合作用により高い耐食性と高強度を付与
したチタン合金が開示されている。また、特開昭63−17
9033号公報には、Al、Ni、Moなどを添加し、高強度と高
耐食性を達成したチタン合金が開示されている。しか
し、これらのチタン合金では、冷間加工性と溶接性につ
いて十分な検討がなされていない。特に前者の発明で
は、冷間圧延の圧下率が30%のときの耳割れの発生程度
を冷間加工性良否の判断基準としている。しかし、この
30%という圧下率はかなり低い基準であって、さらに高
い圧下率の場合でも冷間加工性に優れたチタン合金は示
されていない。
As is well known, titanium has an advantage that it is a material excellent in corrosion resistance, but further improvement in corrosion resistance is required for use in a severe corrosive environment, and high strength is also required for some applications. . To meet these requirements, for example, JP-A-61-257448 discloses a titanium alloy to which Al, Ni, Zr, etc. are added, and which has a high corrosion resistance and high strength due to the combined action of Ni and Zr. There is. In addition, JP-A-63-17
Japanese Patent No. 9033 discloses a titanium alloy to which high strength and high corrosion resistance are achieved by adding Al, Ni, Mo and the like. However, these titanium alloys have not been sufficiently examined for cold workability and weldability. In particular, in the former invention, the degree of occurrence of edge cracking when the reduction ratio of cold rolling is 30% is used as a criterion for determining the quality of cold workability. But this
The reduction rate of 30% is a fairly low standard, and even if the reduction rate is higher, a titanium alloy excellent in cold workability is not shown.

【0009】特開平3−166350号公報および特開平3−
274238号公報には、β相安定化元素( Fe、Ni、Co、Cr、
Mo 、V )の添加によりβ相率を増加させて、高い冷間
加工性と固溶強化による強度向上を達成したチタン合金
が示されている。また本発明者らは、特開平5−117791
号公報において、Ti−3Al− 2.5V合金にNbを 0.1%以
上10.0%以下添加し、良好な冷間加工性を維持しながら
高強度と高靱性を有するチタン合金を開示した。しか
し、これらの発明では、耐食性および溶接性については
明らかとなっていない。
Japanese Unexamined Patent Publication No. 3-166350 and Japanese Unexamined Patent Publication No. 3-166350
No. 274238 discloses a β-phase stabilizing element (Fe, Ni, Co, Cr,
It is shown that titanium alloys which increase the β phase ratio by adding Mo, V) and achieve high cold workability and strength improvement by solid solution strengthening. The inventors of the present invention have disclosed in Japanese Patent Laid-Open No. 5-117791.
In the publication, Nb is added to Ti-3Al-2.5V alloy in an amount of 0.1% or more and 10.0% or less, and a titanium alloy having high strength and high toughness while maintaining good cold workability is disclosed. However, in these inventions, the corrosion resistance and weldability have not been clarified.

【0010】[0010]

【発明が解決しようとする課題】チタン合金は、高耐食
性、高比強度の特性を活かし、腐食環境用構造材として
用いることが期待されている。しかし、多くのチタン合
金は苛酷な腐食環境での使用に耐え得る耐食性があると
は言い難い。また、一般的に冷間加工性と溶接性に乏し
いためにチタン合金を構造材として使用する場合、熱間
仕上げの状態から機械加工によって製品を製造する必要
がある。そのため、製品歩留りの低下とコスト上昇を招
いている。
Titanium alloys are expected to be used as structural materials for corrosive environments by taking advantage of the characteristics of high corrosion resistance and high specific strength. However, it is hard to say that many titanium alloys have sufficient corrosion resistance to withstand use in harsh corrosive environments. Further, when a titanium alloy is used as a structural material because it is generally poor in cold workability and weldability, it is necessary to manufacture a product by machining from a state of hot finish. Therefore, the product yield is lowered and the cost is increased.

【0011】本発明は、チタン合金から構造用部材を製
造する際の製品歩留りを向上させ、生産コストを低減す
るために、冷間加工性と溶接性にも優れた高耐食性チタ
ン合金を提供することを目的としてなされたものであ
る。
The present invention provides a highly corrosion resistant titanium alloy excellent in cold workability and weldability in order to improve the product yield when manufacturing structural members from a titanium alloy and reduce the production cost. It was made for the purpose.

【0012】具体的な目標は次の〜のとおりとし
た。
The specific goals are as follows.

【0013】冷間加工性は、後述の冷間加工性試験に
おいてTi−3Al− 2.5V合金以上であること。
The cold workability should be Ti-3Al-2.5V alloy or more in the cold workability test described later.

【0014】溶接性を示す室温の溶接部の0.2 %耐力
が600 MPa 以上であり、室温の母材部の0.2 %耐力に
おいても 600MPa 以上であること。
The 0.2% proof stress of the welded portion at room temperature showing weldability is 600 MPa or more, and the 0.2% proof stress of the base material portion at room temperature is also 600 MPa or more.

【0015】室温における溶接部の破断強度が母材部
のそれの90%以上であること。
The fracture strength of the weld at room temperature is 90% or more of that of the base metal.

【0016】構造材などに適用する実用面から、溶接
性を示す伸びについても下限値を設け、室温での溶接部
の引張伸びが 5.0%以上であり、室温での母材部の引張
伸びにおいても10.0%以上であること。
From the practical aspect of application to structural materials, a lower limit is set for the elongation indicating weldability, and the tensile elongation of the welded portion at room temperature is 5.0% or more. Is also 10.0% or more.

【0017】腐食減量は、後述の耐食性試験において
0.5mm/年以下であること。
The corrosion weight loss is determined by the corrosion resistance test described later.
0.5mm / year or less.

【0018】[0018]

【課題を解決するための手段】本発明者らは種々の添加
元素が冷間加工性、強度、溶接性および耐食性に与える
影響を検討し、耐食性と冷間加工性、強度および溶接性
を高度にバランスさせたチタン合金を開発した。
[Means for Solving the Problems] The present inventors have examined the effects of various additive elements on cold workability, strength, weldability and corrosion resistance, and have made it possible to improve the corrosion resistance and cold workability, strength and weldability. We have developed a balanced titanium alloy.

【0019】本発明の要旨は次のチタン合金にある。The gist of the present invention lies in the following titanium alloys.

【0020】重量%で、Al: 1.0%〜3.0 %未満、V:
1.5〜4.5 %、Mo: 0.1〜6.0 %およびNi: 0.1〜1.5
%を含有し、残部はTiおよび不可避的不純物からなる冷
間加工性および溶接性に優れた高耐食性チタン合金。
% By weight, Al: 1.0% to less than 3.0%, V:
1.5-4.5%, Mo: 0.1-6.0% and Ni: 0.1-1.5
%, The balance is Ti and unavoidable impurities, and is a highly corrosion resistant titanium alloy with excellent cold workability and weldability.

【0021】[0021]

【作用】本発明のチタン合金は、TiにAl、VおよびMoを
数%添加し、さらにNiを添加することによって、耐食
性、冷間加工性および溶接性の向上を図ったものであ
る。
The titanium alloy of the present invention improves the corrosion resistance, cold workability, and weldability by adding Al, V, and Mo in several% to Ti and further adding Ni.

【0022】化学組成を前記のように限定した理由につ
いて説明する。以下、%は重量%を意味する。
The reason for limiting the chemical composition as described above will be explained. Hereinafter,% means% by weight.

【0023】Al: 1.0%〜3.0 %未満 Alはα相安定化元素である。固溶強化と耐食性向上の目
的で含有させるが、目標の強度と耐食性を得るには、Al
を1.0 %以上含有させる必要がある。一方、Al含有量が
3.0 %以上になると冷間加工性が低下するために、目標
とするTi−3Al− 2.5V合金以上の冷間加工性が達成で
きない。よって、Al含有量の範囲は 1.0%〜3.0 %未満
とした。好ましいのは 1.5〜2.5 %の範囲である。
Al: 1.0% to less than 3.0% Al is an α-phase stabilizing element. Although it is contained for the purpose of solid solution strengthening and corrosion resistance improvement, in order to obtain the target strength and corrosion resistance, Al
Must be contained at 1.0% or more. On the other hand, if the Al content is
If it exceeds 3.0%, the cold workability deteriorates, so that the target cold workability of Ti-3Al-2.5V alloy or more cannot be achieved. Therefore, the range of Al content is set to 1.0% to less than 3.0%. The preferred range is 1.5 to 2.5%.

【0024】V: 1.5〜4.5 % Vはβ相安定化元素である。固溶強化の目的で含有させ
るが、目標強度を得るには1.5 %以上含有させる必要が
ある。一方、V含有量が4.5 %を超えると冷間加工性と
耐食性を劣化させる。よって、V含有量の範囲は 1.5〜
4.5 %とした。
V: 1.5 to 4.5% V is a β-phase stabilizing element. Although it is contained for the purpose of solid solution strengthening, it is necessary to contain 1.5% or more to obtain the target strength. On the other hand, if the V content exceeds 4.5%, the cold workability and corrosion resistance deteriorate. Therefore, the range of V content is 1.5-
It was set to 4.5%.

【0025】好ましいのは 2.5〜3.5 %の範囲である。
またVは、Moと同様に溶接性を劣化させる元素である
が、その程度はMoに比べて小さく、上記の範囲内であれ
ば問題はない。
The preferred range is 2.5-3.5%.
Further, V is an element that deteriorates weldability like Mo, but the degree thereof is smaller than that of Mo, and there is no problem if it is within the above range.

【0026】Mo: 0.1〜6.0 % Moは冷間加工性、強度および耐食性の向上に寄与する
が、Mo含有量が0.1 %未満ではその効果は小さい。しか
し、Moは高融点金属であり、多量に含有させると偏析を
生じる懸念があること、伸びが低下すること、および溶
接性が劣化することなどを考慮すると、Mo含有量は6.0
%以下に抑えるべきである。このため、Mo含有量の範囲
は0.1 %〜6.0 %とした。好ましいのは 0.8〜3.0 %の
範囲である。
Mo: 0.1-6.0% Mo contributes to the improvement of cold workability, strength and corrosion resistance, but if the Mo content is less than 0.1%, its effect is small. However, Mo is a refractory metal, and if it is contained in a large amount, segregation may occur, elongation may decrease, and weldability may deteriorate.
% Should be kept below. Therefore, the range of the Mo content is set to 0.1% to 6.0%. The preferred range is 0.8 to 3.0%.

【0027】なお、VとMoは単体の金属として添加して
もよいが、Al−V母合金、Al−Mo母合金またはAl−Mo−
V母合金という形で添加してもよい。
Although V and Mo may be added as simple metals, they are Al-V master alloy, Al-Mo master alloy or Al-Mo-.
You may add in the form of V mother alloy.

【0028】Ni: 0.1〜1.5 % Niは少量でも、強度と耐食性の向上に寄与する元素であ
る。Ni含有量が0.1 %未満では、その効果が小さい。一
方、 1.5%を超えると脆化相であるTi2Ni が生成し、冷
間加工性を著しく劣化させる。このために、Ni含有量の
範囲は 0.1〜1.5 %とした。好ましいのは 0.2〜0.8 %
の範囲である。
Ni: 0.1 to 1.5% Ni is an element that contributes to the improvement of strength and corrosion resistance even in a small amount. If the Ni content is less than 0.1%, the effect is small. On the other hand, if it exceeds 1.5%, Ti 2 Ni, which is an embrittlement phase, is formed, and cold workability is significantly deteriorated. For this reason, the Ni content range was 0.1 to 1.5%. 0.2-0.8% preferred
Is the range.

【0029】その他:不可避的な不純物とは、C、H、
O、N、FeおよびYなどを指すが、通常の含有量レベル
であれば特に問題はない。
Others: Inevitable impurities include C, H,
It refers to O, N, Fe, Y and the like, but there is no particular problem as long as it is a normal content level.

【0030】Oも固溶強化度が大きく、少量でも強度向
上に寄与するが、その反面、冷間加工性を劣化させる。
そのため、O含有量は0.2 %以下とすることが望まし
い。
O also has a large degree of solid solution strengthening, and even a small amount contributes to the improvement of strength, but on the other hand, it deteriorates cold workability.
Therefore, the O content is preferably 0.2% or less.

【0031】上記の化学組成とすることで、前記の目標
とする強度、伸び、冷間加工性、溶接性および耐食性を
備えたチタン合金を得ることができる。
With the above chemical composition, it is possible to obtain a titanium alloy having the above-mentioned target strength, elongation, cold workability, weldability and corrosion resistance.

【0032】本発明の合金は、これらの特性によって腐
食環境用構造材などに適用することが可能であり、特に
溶接性、強度、冷間加工性および耐食性などが要求され
るアンビリカルチューブ用素材として好適である。アン
ビリカルチューブとは、海底の油田と海上のプラットホ
ームを結ぶ制御管のことであり、管中に油圧を制御する
電線などが通されるものである。
The alloy of the present invention can be applied to a structural material for corrosive environment due to these characteristics, and particularly as a material for umbilical tube which is required to have weldability, strength, cold workability and corrosion resistance. It is suitable. An umbilical tube is a control pipe that connects an oil field on the sea floor and a platform on the sea, and an electric wire for controlling hydraulic pressure is passed through the pipe.

【0033】[0033]

【実施例】表1と表2に示す組成の合金を真空溶解法に
よって溶製し、直径 120mm×長さ300mm の円柱状インゴ
ットとした。表1の合金 No.1〜11が本発明例、表2の
合金 No.12〜20が本発明範囲外の組成の比較例、表2の
合金 No.21、22が既存の冷間加工可能な純Ti、Ti−3Al
− 2.5V合金である。
EXAMPLE Alloys having the compositions shown in Tables 1 and 2 were melted by a vacuum melting method to obtain a cylindrical ingot having a diameter of 120 mm and a length of 300 mm. Alloy Nos. 1 to 11 in Table 1 are examples of the present invention, Alloys Nos. 12 to 20 in Table 2 are comparative examples having compositions outside the scope of the present invention, and Alloys Nos. 21 and 22 in Table 2 are existing cold workable Pure Ti, Ti-3Al
-2.5V alloy.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】これらのインゴットを1100℃に加熱した
後、 850℃以上で鍛造を行い、厚さ60mm×幅70mm×長さ
680mm の角状とした。その後、熱間圧延(900℃加熱、 7
50℃打ち上げ) を施して厚さ15mm×幅70mmの板材にした
後、 750℃で焼鈍を行った。
After heating these ingots to 1100 ° C., they are forged at 850 ° C. or higher, and the thickness is 60 mm × width 70 mm × length
It has a 680 mm square shape. After that, hot rolling (900 ℃ heating, 7
(Up to 50 ° C) was applied to form a plate material having a thickness of 15 mm and a width of 70 mm, and then annealed at 750 ° C.

【0037】熱間加工性の評価は、上記の熱間鍛造、熱
間圧延によって割れが生じた場合を熱間加工性が劣悪
「×」、割れが生じない場合を良好「○」とした。
In the evaluation of hot workability, the hot workability was poor when the crack was caused by the above-mentioned hot forging and hot rolling, and "Good" when the crack was not caused.

【0038】このようにして得られた各供試材から、冷
間圧延試験片 (厚さ12mm×幅35mm×長さ200mm)と冷間据
え込み加工試験片 (φ6mm×長さ9mm) および塩酸腐食
試験片 (厚さ10mm×幅20mm×長さ20mm) を切り出し、冷
間加工性と耐食性の各試験に供した。
From each of the test materials thus obtained, a cold rolling test piece (thickness 12 mm × width 35 mm × length 200 mm), a cold upsetting test piece (φ6 mm × length 9 mm) and hydrochloric acid A corrosion test piece (thickness 10 mm x width 20 mm x length 20 mm) was cut out and subjected to each test of cold workability and corrosion resistance.

【0039】また、熱間圧延後の板材から切り出した供
試材 (厚さ4mm×幅70mm) に、TIG溶接 (Ar雰囲気
中、両面各1パス、溶接棒も熱間圧延後の板材から切り
出したもの) を行った後、溶接部と母材部からそれぞれ
平行部寸法:厚さ2mm×幅6.25mm×長さ32mmの板引張試
験片を切り出し、引張強度を測定した。
Further, TIG welding (in Ar atmosphere, one pass on each side of both sides, a welding rod was also cut out from the sheet material after hot rolling, to a test material (thickness 4 mm × width 70 mm) cut out from the sheet material after hot rolling. Test piece), a plate tensile test piece having dimensions of parallel part: thickness 2 mm x width 6.25 mm x length 32 mm was cut out from the welded part and the base metal part, and the tensile strength was measured.

【0040】表3に示す組成の本発明合金を、前記と同
じ方法で溶製と熱間加工を行い、前記の冷間加工試験と
耐食性試験を実施した。さらに、母材としての熱的安定
性をみるために、熱間圧延後の板材から切り出した試験
片(平行部寸法:厚さ2mm×幅6.25mm×長さ32mm)を用
いて、室温と高温で引張試験を実施した。
The alloys of the present invention having the compositions shown in Table 3 were melted and hot worked by the same method as described above, and the cold working test and the corrosion resistance test were carried out. Furthermore, in order to check the thermal stability of the base material, a test piece (parallel part size: thickness 2 mm x width 6.25 mm x length 32 mm) cut out from the sheet material after hot rolling was used, and the room temperature and high temperature were used. The tensile test was carried out.

【0041】[0041]

【表3】 [Table 3]

【0042】次に各試験の詳細な内容について述べる。Next, the detailed contents of each test will be described.

【0043】〔冷間圧延試験〕厚さ12mm×幅35mm×長さ
200mm の前記試験片を、ロールで1パスあたり 0.5mmづ
つ減厚し、板端部から3mm以上の長さの耳割れが板側面
に沿って5cm以内の間隔で生じた場合を限界冷間加工度
とし、下記 (1)式に従い算出した。
[Cold Rolling Test] Thickness 12 mm × width 35 mm × length
The 200 mm test piece is reduced by 0.5 mm per pass with a roll, and the limit cold working is performed when edge cracks with a length of 3 mm or more from the plate edge occur at intervals of 5 cm or less along the plate side surface. Was calculated according to the following formula (1).

【0044】[0044]

【数1】 [Equation 1]

【0045】〔冷間据え込み加工試験〕φ6mm×長さ9
mmの前記試験片を、歪速度= 1.0×10-2 sec-1で加工フ
ォーマスター試験装置により冷間据え込み加工を行い、
割れが発生した加工度を限界冷間加工度とした。なお、
この据え込み加工試験は各合金につき3回試験を行い、
その平均値を限界冷間加工度とし、下記 (2)式に従い算
出した。
[Cold upsetting processing test] φ6 mm × length 9
The above-mentioned test piece of mm is subjected to cold upsetting by a processing master tester at a strain rate of 1.0 × 10 -2 sec -1 ,
The workability at which cracks occurred was defined as the limit cold workability. In addition,
This upsetting test is done three times for each alloy,
The average value was used as the limit cold workability and calculated according to the following equation (2).

【0046】[0046]

【数2】 [Equation 2]

【0047】〔塩酸腐食試験〕厚さ10mm×幅20mm×長さ
20mmの前記試験片を、2重量%HCl沸騰溶液中に20時間
浸漬して腐食減量を測定し、腐食減量をmm/年に換算し
て耐食性を評価した。
[Hydrochloric acid corrosion test] Thickness 10 mm x width 20 mm x length
The 20 mm test piece was immersed in a 2 wt% HCl boiling solution for 20 hours to measure the corrosion weight loss. The corrosion weight loss was converted into mm / year to evaluate the corrosion resistance.

【0048】〔引張試験〕母材部と溶接部から切り出し
た平行部寸法:厚さ2mm×幅6.25mm×長さ32mmの前記試
験片に、0.2 %耐力までは 0.5%歪/min、耐力後は15%
歪/minの引張速度を与えて破断させ、強度を測定して溶
接性を評価した。この引張試験は室温で行い、強度、伸
びを比較した。
[Tensile test] Parallel part dimension cut out from the base metal part and the welded part: 0.5% strain / min up to 0.2% proof stress, after proof stress on the above test piece of thickness 2 mm x width 6.25 mm x length 32 mm Is 15%
Weldability was evaluated by applying a tensile rate of strain / min to rupture and measuring the strength. This tensile test was performed at room temperature to compare strength and elongation.

【0049】〔高温引張試験〕平行部寸法:厚さ2mm×
幅6.25mm×長さ32mmの前記試験片を用いて、室温および
400 ℃で行った。
[High temperature tensile test] Dimension of parallel part: thickness 2 mm x
Using the test piece of width 6.25 mm × length 32 mm, at room temperature and
It was carried out at 400 ° C.

【0050】以上の各評価試験の結果を表4、表5およ
び表6に示す。
The results of the above evaluation tests are shown in Table 4, Table 5 and Table 6.

【0051】[0051]

【表4】 [Table 4]

【0052】[0052]

【表5(1)】 [Table 5 (1)]

【0053】[0053]

【表5(2)】 [Table 5 (2)]

【0054】[0054]

【表6(1)】 [Table 6 (1)]

【0055】[0055]

【表6(2)】 [Table 6 (2)]

【0056】表4〜表6の結果から以下のことが明らか
である。
The following are clear from the results of Tables 4-6.

【0057】合金 No.1〜3および No.12、13の結果に
よれば、Alは固溶強化による強度向上に大きく寄与する
が、含有量が少ないとその効果は小さい (合金 No.12で
は、Alは0.5 %であり強度が低い) 。また、過度のAl含
有は冷間加工性を低下させる( 合金No.13 では同じく4.
0 %であり冷間加工性が劣悪 )。
According to the results of Alloy Nos. 1 to 3 and Nos. 12 and 13, Al greatly contributes to the strength improvement by solid solution strengthening, but the effect is small when the content is small (in Alloy No. 12, , Al is 0.5% and the strength is low). Further, excessive Al content deteriorates cold workability (Alloy No. 13 also has 4.
0% and poor cold workability).

【0058】合金 No.4、5および No.14、15の結果に
よれば、Vも固溶強化による強度向上に寄与する。しか
し、含有量が少ないとその効果は小さい (合金 No.14で
は、Vは0.5 %であり強度が低い) 。また、過度のV含
有は冷間加工性を低下させる( 合金 No.15では、同じく
6.0 %であり、冷間加工性はTi-3Al-2.5V合金の場合以
下に低下している)。
According to the results of alloys Nos. 4 and 5 and Nos. 14 and 15, V also contributes to the strength improvement by solid solution strengthening. However, if the content is small, the effect is small (in Alloy No. 14, V is 0.5% and the strength is low). Also, excessive V content deteriorates cold workability (alloy No. 15 has the same problem.
It is 6.0%, and the cold workability is lower than that of Ti-3Al-2.5V alloy).

【0059】Moは、合金 No.6、7および No.16、17の
結果によれば、冷間加工性、強度および耐食性の向上に
寄与することがわかる。しかし、合金 No.16の結果によ
れば、Mo含有量が 0.1%未満であると、上記の三種類の
特性の向上に対する寄与は小さい。また、過度のMo含有
は溶接性の低下をもたらし、好ましくない (合金 No.17
では、Moは 8.0%であり伸びが低い) 。
According to the results of Alloys Nos. 6 and 7 and Nos. 16 and 17, Mo contributes to the improvement of cold workability, strength and corrosion resistance. However, according to the results of Alloy No. 16, when the Mo content is less than 0.1%, the contribution to the improvement of the above-mentioned three types of properties is small. Further, excessive Mo content causes a decrease in weldability, which is not preferable (alloy No. 17
Then, Mo is 8.0% and the growth is low).

【0060】合金 No.8、9および No.18の結果によれ
ば、酸素は強度向上に大きく寄与するものの、冷間加工
性と溶接性を低下させる。しかし、通常の量(0.2%以
下) なら問題はない。
According to the results of Alloys No. 8, 9 and No. 18, although oxygen greatly contributes to the improvement of strength, it deteriorates cold workability and weldability. However, there is no problem with the normal amount (0.2% or less).

【0061】合金 No.10、11および No.19、20の結果に
よれば、Niは強度と耐食性の向上に大きく寄与するが、
その含有量が過少であるとその寄与は小さい (例えば、
合金No.19 ではNi:0.05 %) 。また、過度のNi含有は冷
間加工性を著しく低下させ、熱間加工すら困難である
(例えば、合金 No.20ではNi:2.5%) 。しかし、本発明
で定める範囲内であれば冷間加工性を損ねることなく、
強度と耐食性を向上させる効果がある。
According to the results of Alloys Nos. 10 and 11 and Nos. 19 and 20, Ni greatly contributes to the improvement of strength and corrosion resistance.
If its content is too small, its contribution is small (for example,
Alloy No. 19 has Ni: 0.05%). Further, excessive Ni content significantly deteriorates cold workability, and even hot working is difficult (for example, alloy No. 20 has Ni: 2.5%). However, within the range defined by the present invention, without impairing the cold workability,
It has the effect of improving strength and corrosion resistance.

【0062】合金 No.21、22の既存の純TiやTi−3Al−
2.5V合金では、本発明合金に比べて強度が低く、耐食
性も悪い。
Existing pure Ti and Ti-3Al-of alloy Nos. 21 and 22
The 2.5V alloy has lower strength and poorer corrosion resistance than the alloy of the present invention.

【0063】合金 No.23〜25はいずれも、前記の本発明
合金の母材部と同様の良好な冷間加工性と耐食性を示し
ている。400 ℃での引張伸びはいずれも、20%以上を示
しており、本発明のチタン合金は熱的にも安定してい
る。
Alloys Nos. 23 to 25 all exhibit the same good cold workability and corrosion resistance as the base metal part of the alloy of the present invention. The tensile elongations at 400 ° C. all show 20% or more, and the titanium alloy of the present invention is thermally stable.

【0064】[0064]

【発明の効果】本発明の合金は、冷間加工性および溶接
性(溶接部強度)にも優れた高強度高耐食性チタン合金
である。溶接性が良好であるから、機械切削によること
なく、化学工業、エネルギー開発、一般工業などの分野
の腐食環境雰囲気で用いるのに好適なチタン合金チュー
ブ材などを、低コストで製造することができる。
The alloy of the present invention is a high strength and high corrosion resistance titanium alloy excellent in cold workability and weldability (welding strength). Since it has good weldability, it is possible to manufacture, at low cost, titanium alloy tube materials suitable for use in corrosive environment atmospheres in fields such as chemical industry, energy development, and general industry, without using mechanical cutting. .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Al: 1.0%〜3.0 %未満、V:
1.5〜4.5 %、Mo: 0.1〜6.0 %およびNi: 0.1〜1.5
%を含有し、残部はTiおよび不可避的不純物からなる冷
間加工性および溶接性に優れた高耐食性チタン合金。
1. By weight%, Al: 1.0% to less than 3.0%, V:
1.5-4.5%, Mo: 0.1-6.0% and Ni: 0.1-1.5
%, The balance is Ti and unavoidable impurities, and is a highly corrosion resistant titanium alloy with excellent cold workability and weldability.
JP20219793A 1993-08-16 1993-08-16 High corrosion resistance titanium alloy with excellent cold workability and weldability Expired - Fee Related JP2800651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20219793A JP2800651B2 (en) 1993-08-16 1993-08-16 High corrosion resistance titanium alloy with excellent cold workability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20219793A JP2800651B2 (en) 1993-08-16 1993-08-16 High corrosion resistance titanium alloy with excellent cold workability and weldability

Publications (2)

Publication Number Publication Date
JPH0754084A true JPH0754084A (en) 1995-02-28
JP2800651B2 JP2800651B2 (en) 1998-09-21

Family

ID=16453581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20219793A Expired - Fee Related JP2800651B2 (en) 1993-08-16 1993-08-16 High corrosion resistance titanium alloy with excellent cold workability and weldability

Country Status (1)

Country Link
JP (1) JP2800651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531091B2 (en) 2000-02-16 2003-03-11 Kobe Steel, Ltd. Muffler made of a titanium alloy
JP2017508882A (en) * 2014-01-28 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation Titanium alloy exhibiting resistance to impact or impact load and method for producing parts from the titanium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531091B2 (en) 2000-02-16 2003-03-11 Kobe Steel, Ltd. Muffler made of a titanium alloy
JP2017508882A (en) * 2014-01-28 2017-03-30 テイタニウム メタルス コーポレイシヨンTitanium Metals Corporation Titanium alloy exhibiting resistance to impact or impact load and method for producing parts from the titanium alloy

Also Published As

Publication number Publication date
JP2800651B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
JPS6389637A (en) Corrosion resistant high strength nickel base alloy
EP1736560B1 (en) High-strength alpha+beta-type titanium alloy
JP5661938B2 (en) Ni-Fe-Cr-Mo-alloy
US5076858A (en) Method of processing titanium aluminum alloys modified by chromium and niobium
US5424029A (en) Corrosion resistant nickel base alloy
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
JPH028017B2 (en)
JP2018518594A (en) Beta titanium alloy sheet for high temperature applications
JP2797913B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
EP0396821B1 (en) Zirconium alloy having improved corrosion resistance in nitric acid and good creep strength
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
EP0476043B1 (en) Improved nickel aluminide alloy for high temperature structural use
US3627511A (en) High chromium alloys of improved workability
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
SE431660B (en) FORMABLE AUSTENITIC Nickel Alloy
JP2800651B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
JP2797914B2 (en) High strength titanium alloy with excellent cold workability and weldability
GB2271576A (en) Gamma titanium aluminium alloys modified by chromium and tungsten and method of preparation.
JPH0372698B2 (en)
JPH0210212B2 (en)
GB1570026A (en) Iron-nickel-chromium alloys
US3212886A (en) High temperature alloy
JPS59133341A (en) High strength cu alloy with superior corrosion resistance and hot workability
JPH03197638A (en) High strength and high corrosion-resistant titanium base alloy
JPH083668A (en) Nickel-base alloy excellent in strength and corrosion resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees