JPH05117791A - High strength and high toughness cold workable titanium alloy - Google Patents

High strength and high toughness cold workable titanium alloy

Info

Publication number
JPH05117791A
JPH05117791A JP28153391A JP28153391A JPH05117791A JP H05117791 A JPH05117791 A JP H05117791A JP 28153391 A JP28153391 A JP 28153391A JP 28153391 A JP28153391 A JP 28153391A JP H05117791 A JPH05117791 A JP H05117791A
Authority
JP
Japan
Prior art keywords
alloy
strength
cold
toughness
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28153391A
Other languages
Japanese (ja)
Inventor
Atsuhiko Kuroda
篤彦 黒田
Shiro Kitayama
司郎 北山
Minoru Okada
岡田  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28153391A priority Critical patent/JPH05117791A/en
Publication of JPH05117791A publication Critical patent/JPH05117791A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a cold workable alpha,beta-Ti alloy having excellent strength- toughness balance. CONSTITUTION:This Ti alloy is an alpha,beta-Ti alloy consisting of 1. 5-4.0% Al, 1.5-4.0% V, 0.10-10.0% Nb, <=0.30% Fe, <=0.30% O and the balance Ti. At the time of production, heat treatment is carried out at 350-850 deg.C for >=15min after >=20% cold working. This alloy can be finished to a product shape by cold working and a mechanical working process can considerably be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学工業およびエネル
ギー開発分野において用いられる、あるいは一般工業用
構造材として用いられるチタン合金、特に高強度高靱性
でかつ冷間加工可能なチタン合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium alloy used in the fields of chemical industry and energy development or as a structural material for general industrial use, and particularly to a titanium alloy having high strength and high toughness and capable of being cold worked.

【0002】[0002]

【従来の技術】チタン合金は、比強度 (強度/比重) が
高いことから、従来は、航空・宇宙材料として用いられ
てきた。しかし近年に至り、厳しい環境に耐え得る油井
用材料の要求や軽量化を目的とする自動車用材料の見直
しの気運が高まり、これらエネルギー開発分野や一般工
業用構造材等の非航空・宇宙用途へのチタン合金の適用
が注目されつつある。
2. Description of the Related Art Titanium alloys have been conventionally used as aerospace materials because of their high specific strength (strength / specific gravity). However, in recent years, the demand for materials for oil wells that can withstand harsh environments and the motivation for reviewing automotive materials for the purpose of weight reduction have increased, and these energy development fields and general industrial structural materials, etc. The application of the titanium alloy is getting attention.

【0003】チタン合金は、大きく分けると、α型、α
/β型、β型に分類できるが、強度、靱性が高いこと、
熱的安定性に優れること、実用データが豊富なこと等に
より、チタン合金といえばα/β型チタン合金が最も代
表的である。
Titanium alloys are roughly classified into α type and α type.
/ Β type, β type, but high strength and toughness,
The α / β type titanium alloy is most representative of the titanium alloys because of its excellent thermal stability and rich practical data.

【0004】α/β型チタン合金の実用合金には、Ti-6
Al-4V 、Ti-6Al-2Sn-4Zr-6Mo、Ti-6Al-2Sn-4Zr-2Mo、Ti
-3Al-2.5V 、Ti-8Al-1Mo-1V 等があるが、非航空・宇宙
用途への適用に際しては、単に比強度が高いだけでは不
十分であり、他の要求性能との関係で、これら実用合金
をそのまま使用することはできず、種々の改良がなれて
きている。
Ti-6 is a practical alloy of α / β type titanium alloys.
Al-4V, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo, Ti
-3Al-2.5V, Ti-8Al-1Mo-1V, etc., but when applied to non-aeronautical / space applications, simply having a high specific strength is not sufficient, and in relation to other required performance, These practical alloys cannot be used as they are, and various improvements have been made.

【0005】例えば、本出願人はα/β型チタン合金に
白金族元素の1種以上を0.02〜0.20%添加すること、あ
るいはα/β型チタン合金に0.005 〜0.12%の白金族元
素、およびNi、Co、W、Moのうち1種以上を0.05〜2.0
%添加することにより、過酷な油井環境中でのチタン合
金の耐食性を改善する方法を提案している (特開昭63−
114931号公報) 。
For example, the applicant has added 0.02 to 0.20% of one or more platinum group elements to the α / β type titanium alloy, or 0.005 to 0.12% of the platinum group element to the α / β type titanium alloy, and 0.05 to 2.0 for one or more of Ni, Co, W and Mo
%, It has been proposed to improve the corrosion resistance of titanium alloys in harsh oil well environments (Japanese Patent Laid-Open No. 63-
114931).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、たとえ
これらの性能が改善されても、大部分のα/β型チタン
合金は冷間加工性が乏しいという欠点を有しており、寸
法精度に劣る熱間加工により概ねの形状に仕上げた後
に、長時間かけて機械加工で製品形状にせざるを得ず、
コストが高くなるという根本的な問題点が残っていた。
However, even if these performances are improved, most α / β type titanium alloys have the drawback of poor cold workability, which results in poor dimensional accuracy. After finishing to a general shape by hot working, there is no choice but to machine into a product shape over a long period of time.
There was a fundamental problem that the cost was high.

【0007】ただ、α/β型チタン合金の内でもTi-3Al
-2.5Vは、例外的に冷間加工が可能な合金であることが
知られている。本合金はAMS4943 およびAMS4944 に規格
化されており、その基本的な成分はAlが2.5 〜3.5 %、
Vが2.0 〜3.0 %、Feが0.30%以下、Oが0.12%以下の
主に航空機の油圧配管に用いられている合金である。こ
の合金であれば冷間加工で製品形状に仕上げ、コスト高
の主要因である機械加工費は大幅に削減できる。しか
し、他のα/β型チタン合金に比べ合金元素が少ないた
め、強度が低く、また加工硬化により強化しても靱性が
悪化し、優れた強度・靱性値のバランスを得ることがで
きず、エネルギー開発分野や一般工業用構造材等に用い
るには、望ましい性質を有していると言うことはできな
かった。
However, among the α / β type titanium alloys, Ti-3Al
-2.5V is known to be an exceptionally cold workable alloy. This alloy is standardized to AMS4943 and AMS4944, the basic composition of which is 2.5-3.5% Al,
V is 2.0 to 3.0%, Fe is 0.30% or less, and O is 0.12% or less, which is an alloy mainly used for hydraulic piping of aircraft. With this alloy, the product shape can be finished by cold working, and the machining cost, which is the main factor of the high cost, can be greatly reduced. However, compared with other α / β type titanium alloys, the alloy elements are less, so the strength is low, and the toughness deteriorates even when strengthened by work hardening, and an excellent balance between strength and toughness values cannot be obtained. It could not be said that it has desirable properties for use in the field of energy development and structural materials for general industry.

【0008】本発明の目的は、冷間加工が可能であっ
て、かつ強度・靱性値のバランスに優れたチタン合金、
具体的には従来の冷間加工可能なα/β合金であるTi-3
Al-2.5V より優れた強度靱性値バランスを有するチタン
合金を提供することである。
An object of the present invention is a titanium alloy which can be cold worked and has an excellent balance of strength and toughness.
Specifically, Ti-3, which is a conventional cold-workable α / β alloy
It is to provide a titanium alloy having a strength-toughness value balance superior to that of Al-2.5V.

【0009】さらに、本発明のさらなる目的としては、
50%以上の冷間加工でも割れが発生しない冷間加工性を
有し、室温における0.2 %耐力が90.0 kgf/mm2以上で、
かつ靱性値として室温(25 ℃) でのシャルピー衝撃値が
4.0kg-m/cm2 以上である、冷間加工が可能であって、か
つ強度および靱性値のバランスに優れたチタン合金を提
供することである。
Further, as a further object of the present invention,
It has cold workability such that cracks do not occur even in cold working of 50% or more, 0.2% proof stress at room temperature is 90.0 kgf / mm 2 or more,
In addition, the Charpy impact value at room temperature (25 ° C) is the toughness value.
It is intended to provide a titanium alloy which is 4.0 kg-m / cm 2 or more, which can be cold worked, and which has an excellent balance of strength and toughness values.

【0010】[0010]

【課題を解決するための手段】本発明者らは、かかる課
題を解決するために種々検討を重ね、次のような知見を
得た。 (a) Ti-3Al-2.5V 近傍のAl、V組成の合金に、Nbを添加
することで、Ti-3Al-2.5V の冷間加工性を保持しなが
ら、冷間加工後の強度・靱性値のバランスを向上させる
ことができることを見いだした。
Means for Solving the Problems The inventors of the present invention have made various studies in order to solve such problems, and have obtained the following findings. (a) Strength and toughness after cold working while maintaining cold workability of Ti-3Al-2.5V by adding Nb to the alloy of Al and V composition near Ti-3Al-2.5V We have found that we can improve the balance of values.

【0011】(b) このα/β型チタン合金に、白金族元
素の1種以上を0.02〜0.20%添加するか、あるいはこの
α/β型チタン合金に0.005 〜0.12%の白金族元素およ
びNi、Co、W、Moのうち1種以上を総量で0.05〜2.0 %
添加しても、上記の冷間加工性と優れた強度・靱性値の
バランスを保持しながら、硫化水素を含む環境下におい
ても優れた耐食性を発揮する。
(B) 0.02 to 0.20% of at least one platinum group element is added to the α / β type titanium alloy, or 0.005 to 0.12% of the platinum group element and Ni is added to the α / β type titanium alloy. 0.05% to 2.0% in total of one or more of Co, W, and Mo
Even if added, it exhibits excellent corrosion resistance even in an environment containing hydrogen sulfide while maintaining the above-mentioned balance between cold workability and excellent strength / toughness values.

【0012】ここに、本発明は、重量%にて、Al:1.5
〜4.0 %、V:1.5 〜4.0 %、Nb:0.10〜10.0%、Fe:
0.30%以下、O:0.30%以下、残部Tiおよび不可避的不
純物から成る、高強度高靱性でかつ冷間加工可能なチタ
ン合金である。本発明は、別の面からは、Al:1.5 〜4.
0 %、V:1.5 〜4.0 %、Nb:0.10〜10.0%、Fe:0.30
%以下、O:0.30%以下、さらに白金族元素:0.02〜0.
20%含有し、残部Tiおよび不可避的不純物から成る、高
強度高靱性でかつ冷間加工可能なチタン合金である。
The present invention is based on the weight% Al: 1.5.
~ 4.0%, V: 1.5 to 4.0%, Nb: 0.10 to 10.0%, Fe:
It is a titanium alloy having a high strength and a high toughness and being cold workable, which is composed of 0.30% or less, O: 0.30% or less, the balance Ti and inevitable impurities. The present invention, from another aspect, Al: 1.5 to 4.
0%, V: 1.5 to 4.0%, Nb: 0.10 to 10.0%, Fe: 0.30
% Or less, O: 0.30% or less, and platinum group element: 0.02 to 0.
It is a high-strength, high-toughness, cold-workable titanium alloy containing 20% and the balance Ti and unavoidable impurities.

【0013】本発明は、さらに別の面から、Al:1.5 〜
4.0%、V:1.5 〜4.0 %、Nb:0.10〜10.0%、Fe:0.3
0%以下、O:0.30%以下、さらに白金族元素:0.005
〜0.12%、およびNi、Co、W、Moのうち1種以上を総量
で0.05〜2.0 %含有し、残部Tiおよび不可避的不純物か
ら成る、高強度高靱性でかつ冷間加工可能なチタン合金
である。また、本発明にかかる合金の製造条件について
は、前記の強度と靱性値の目標値を達成するために冷間
で20%以上の加工を加えた後、350 〜850 ℃の温度で15
分以上焼鈍することが望ましい。
The present invention provides, from another aspect, Al: 1.5-
4.0%, V: 1.5 to 4.0%, Nb: 0.1 to 10.0%, Fe: 0.3
0% or less, O: 0.30% or less, and platinum group element: 0.005
To 0.12% and at least one of Ni, Co, W and Mo in a total amount of 0.05 to 2.0%, and a high strength, high toughness and cold workable titanium alloy composed of the balance Ti and inevitable impurities. is there. Regarding the manufacturing conditions of the alloy according to the present invention, after 20% or more cold working is performed to achieve the above target values of strength and toughness, the temperature is set to 350 to 850 ° C for 15 minutes.
It is desirable to anneal for more than a minute.

【0014】[0014]

【作用】以下、本発明での条件の限定理由について記載
する。 (1) Al、V Alはチタン合金にはα相安定化元素であり最も一般的に
用いられる添加元素である。一方、Vはβ相安定化元素
である。これらの元素は固溶強化の目的でチタン合金に
添加される。
The reason for limiting the conditions in the present invention will be described below. (1) Al and V Al are α-phase stabilizing elements and the most commonly used additive elements in titanium alloys. On the other hand, V is a β-phase stabilizing element. These elements are added to the titanium alloy for the purpose of solid solution strengthening.

【0015】まず強化するためにはAl 1.5%以上、また
V 1.5%以上添加することが必要である。しかし、Alの
濃度が4.0 %超になると固溶強化が著しくなり、冷間加
工性が低下するため冷間加工時に割れが生じる。またV
が4.0 %超含まれると強度が著しく上昇するが、これに
ともなって靱性の低下が大きく、前記の強度・靱性値の
目標値を満足することができなくなる。
First, for strengthening, it is necessary to add Al of 1.5% or more and V of 1.5% or more. However, if the Al concentration exceeds 4.0%, the solid solution strengthening becomes remarkable and the cold workability deteriorates, so cracking occurs during cold working. Also V
If the content of Al exceeds 4.0%, the strength is remarkably increased, but the toughness is greatly reduced with this, and it becomes impossible to satisfy the target values of the strength and toughness values.

【0016】(2) Nb Nbは本発明の最も重要な元素であり、冷間加工性を悪化
させずに固溶強化し、チタン合金の強度・靱性値のバラ
ンスを高める効果を有する。Nbの濃度が0.10%未満であ
ると強化の効果がなく、また10.0%超含有すると強度は
上昇するが、靱性が低下してしまい、前述の目標値を満
足することができない。
(2) Nb Nb is the most important element of the present invention, and has the effect of solid solution strengthening without deteriorating cold workability and enhancing the balance of strength and toughness values of titanium alloys. If the concentration of Nb is less than 0.10%, there is no strengthening effect, and if it exceeds 10.0%, the strength increases, but the toughness decreases, and the above target value cannot be satisfied.

【0017】(3) Fe、O Fe、Oは強度向上のために添加される元素であり、通常
Feは0.30%以下、Oは0.30%以下の添加がなされる。し
かしながらこれら元素の前記上限近傍までの添加は強度
の上昇を招き、靱性の低下を促すため、望ましくはFeは
0.20%以下、Oは0.20%以下が推奨できる。
(3) Fe, O Fe, O are elements added to improve the strength, and are usually
Fe is 0.30% or less and O is 0.30% or less. However, addition of these elements up to near the upper limit causes an increase in strength and promotes a decrease in toughness.
It is recommended that 0.20% or less and O be 0.20% or less.

【0018】その他、不可避的不純物としては、C、
H、N、Y等が含有され、これらは通常、次の範囲内に
含まれることが許容される。C:0.10 %以下、H:0.012
5 %以下、N:0.05 %以下、Y:0.005%以下 (4) 白金族元素 (Pd、Ru、Rh、Os、IrおよびPt) これらの元素は、何れも油井環境にみられる高温で高濃
度のH2S やCO2 とClイオンとを含む環境での全面腐食を
防止する要求がなされたのに有効な成分であり、そのた
めに一種以上が添加されるものであるが、その効果は、
Ni、Co、WおよびMoとの複合添加がなされない場合には
合計量が0.02%以上の添加で明確になり、添加量が多い
程良好な結果が得られる。しかし、合計量で0.20%を超
えて添加しても上記効果は飽和してしまい、いたずらに
コスト高を招くことから、白金族元素の添加量は合計で
0.02〜0.20%と定めた。
Other unavoidable impurities are C,
H, N, Y, etc. are contained, and these are usually allowed to be included in the following range. C: 0.10% or less, H: 0.012
5% or less, N: 0.05% or less, Y: 0.005% or less (4) Platinum group elements (Pd, Ru, Rh, Os, Ir and Pt) These elements are all highly concentrated at high temperatures found in oil well environments. H 2 S or CO 2 is an effective component that has been required to prevent general corrosion in an environment containing Cl 2 and Cl ions, and therefore one or more is added, but the effect is
When composite addition with Ni, Co, W and Mo is not made, it becomes clear when the total amount is 0.02% or more, and the larger the addition amount, the better the result obtained. However, even if added in a total amount of more than 0.20%, the above-mentioned effect will be saturated, resulting in costly mischief, so the total amount of platinum group elements added is
It was set at 0.02 to 0.20%.

【0019】一方、Ni、Co、WおよびMoの何れか一種以
上との複合添加がなされる場合には、白金族元素の必要
添加量はより少なくなって経済性は一層向上する。つま
り、この場合には0.005 %以上の添加で白金族元素の添
加効果が明瞭となる。しかし、0.12%を超えて添加して
もコストアップの割にはそれに見合った特性の向上がみ
られないことから、Ni、Co、WおよびMoとの複合添加が
なされる場合には白金族元素の添加量は合計で0.005 〜
0.12%と定めた。
On the other hand, when composite addition with any one or more of Ni, Co, W and Mo is made, the required addition amount of the platinum group element becomes smaller and the economical efficiency is further improved. That is, in this case, the effect of adding the platinum group element becomes clear by adding 0.005% or more. However, even if added in excess of 0.12%, the cost increase does not show the corresponding improvement in properties. Therefore, when complex addition with Ni, Co, W and Mo is made, platinum group elements are added. The total amount added is 0.005 ~
It was set at 0.12%.

【0020】(5) Ni、Co、WおよびMo これらの成分は、その中の一種以上を微量の白金族元素
に複合して添加することで、高温で高濃度のH2S やCO2
とClイオンとを含む環境での耐食性を極めて効果的に向
上させる、白金族元素と同等の作用を有しているが、そ
の添加量が0.05%未満では上記作用に所望の効果が得ら
れず、一方2.0 %を超えて添加しても耐食性改善効果が
飽和することから、Ni、Co、WおよびMoの何れか一種以
上の添加量は合計で0.05〜2.0 %と定めた。
(5) Ni, Co, W and Mo These components can be added in a complex amount to one or more platinum group elements, so that high concentrations of H 2 S and CO 2 at high temperature can be obtained.
And very effectively improve the corrosion resistance in an environment containing Cl ions, it has the same action as the platinum group element, but if the added amount is less than 0.05%, the desired effect cannot be obtained for the above action On the other hand, even if added over 2.0%, the corrosion resistance improving effect is saturated, so the total amount of one or more of Ni, Co, W and Mo added was set to 0.05 to 2.0%.

【0021】本発明にかかるチタン合金の製造方法は、
強度・靱性値の目標値を達成するためには、以下の範囲
内の処理条件で行うことが望ましい。すなわち、冷間で
20%以上の加工を行い、その後350 〜800 ℃の温度範囲
で15分以上保持した後空冷する熱処理を加える。なお、
ここで規定する加工度は以下の式で算出される。
The method for producing a titanium alloy according to the present invention comprises:
In order to achieve the target values of strength and toughness, it is desirable to carry out the treatment under the following treatment conditions. I.e. cold
After processing 20% or more, heat treatment is carried out by holding in the temperature range of 350 to 800 ° C for 15 minutes or more and then air cooling. In addition,
The processing degree specified here is calculated by the following formula.

【0022】 R=100 ×(Ao −Af ) /Ao R : 加工度 (%) Ao : 加工前素材の断面積 Af : 加工後製品の断面 なお、冷間での加工度が20%未満であれば強度目標が達
成されない場合がある。また熱処理温度が350 ℃未満で
は冷間加工による残留応力が除去されず、靱性値の目標
が達成されない。一方800 ℃超の温度では完全に軟化し
強度の目標が達成されなくなる。
R = 100 × (A o −A f ) / A o R: Workability (%) A o : Cross-sectional area of material before processing A f : Cross-section of product after processing Note that the workability in cold is If it is less than 20%, the strength target may not be achieved. On the other hand, if the heat treatment temperature is less than 350 ° C, the residual stress due to cold working is not removed, and the target of the toughness value cannot be achieved. On the other hand, if the temperature exceeds 800 ° C, the strength will be completely softened and the target of strength will not be achieved.

【0023】さらに熱処理時の保持時間が15分未満では
熱処理の効果が発揮されず、残留応力が除去されず靱性
の改善がなされない場合がある。一方熱処理時間の上限
側については特に制限しないが経済的理由を考慮する
と、8時間程度を上限とするのが望ましい。
Further, if the holding time during the heat treatment is less than 15 minutes, the effect of the heat treatment may not be exhibited, the residual stress may not be removed, and the toughness may not be improved. On the other hand, the upper limit of the heat treatment time is not particularly limited, but considering economic reasons, it is desirable to set the upper limit to about 8 hours.

【0024】[0024]

【実施例】 (実施例1)機械的性質に与える添加成分の影響を調査す
る目的で表1に示す成分のチタン合金を溶解し機械的性
質を調査した。本実験での不純物はC=0.05%、H=0.
005 %、N=0.008 %、Y=0.001 %前後であった。実
験素材はインゴット (外径φ100 mm×高さ200 mm) をア
ルゴン雰囲気下でスカル溶解により作製した。インゴッ
トは1100℃に加熱後、幅50mm×厚さ30mmまで鍛造した
後、900 ℃に再加熱して、幅50mm×厚さ7mmまで熱間圧
延を行った。熱間圧延後の素材は850 ℃で1時間の熱処
理を行って完全焼鈍状態とした。
Examples (Example 1) For the purpose of investigating the effect of added components on mechanical properties, titanium alloys having the components shown in Table 1 were melted and the mechanical properties were investigated. Impurities in this experiment were C = 0.05%, H = 0.
It was about 005%, N = 0.008%, and Y = 0.001%. As the experimental material, an ingot (outer diameter φ100 mm × height 200 mm) was prepared by skull melting under an argon atmosphere. The ingot was heated to 1100 ° C., forged to a width of 50 mm × thickness of 30 mm, reheated to 900 ° C., and hot-rolled to a width of 50 mm × thickness of 7 mm. The material after hot rolling was subjected to heat treatment at 850 ° C. for 1 hour to be completely annealed.

【0025】次に熱間加工で発生したスケールを除去す
る目的で厚さ6mmとなるまで機械加工した後、厚さ3mm
まで50%の冷間圧延を行った。添加した成分系によって
はこの冷間圧延で割れが発生する場合があった。冷間圧
延後の製品端部から1mm以上の割れが発生したものは冷
間加工性が乏しいものとして機械的性質の評価対象から
除外した。冷間圧延性の評価で割れの発生したものは
「×」とし、割れのないものを「○」とした。
Next, after machining to a thickness of 6 mm for the purpose of removing scale generated by hot working, the thickness of 3 mm
Up to 50% cold rolling. Depending on the added component system, cracking may occur in this cold rolling. Those that had cracks of 1 mm or more from the edge of the product after cold rolling were excluded from the evaluation targets of mechanical properties because they had poor cold workability. In the evaluation of the cold rolling property, those having cracks were marked with "x", and those without cracks were marked with "○".

【0026】冷間圧延後の素材は550 ℃に加熱後、30分
保持してから空冷する熱処理を施した。熱処理後の素材
より圧延長手方向に平行部の肉厚3mmで幅6.25mm、標点
間距離=25mmの板状試験片を採取しASTMに準拠して室温
で引張性質を調査した。また靱性値を評価する目的で圧
延長手方向に幅2.5 mmのJIS4号1/4 サイズのシャルピー
衝撃試験片(Vノッチ) を採取し、25℃にて試験を行っ
た。この場合シャルピー衝撃試験片の採取方向は圧延方
向に平行で亀裂の進展方向は圧延方向と直角とした。
The material after cold rolling was heated to 550 ° C., held for 30 minutes, and then air-cooled for heat treatment. A plate-shaped test piece having a wall thickness of 3 mm, a width of 6.25 mm, and a gauge length of 25 mm parallel to the rolling longitudinal direction was taken from the heat-treated material, and the tensile properties were investigated at room temperature in accordance with ASTM. For the purpose of evaluating the toughness value, a JIS No. 1/4 size Charpy impact test piece (V notch) having a width of 2.5 mm in the rolling longitudinal direction was sampled and tested at 25 ° C. In this case, the sampling direction of the Charpy impact test piece was parallel to the rolling direction, and the crack propagation direction was perpendicular to the rolling direction.

【0027】表1に試験結果を併せて示す。試験結果の
評価は0.2 %耐力とシャルピー衝撃値に注目して行い、
0.2 %耐力が90.0 kgf/mm2以上、かつシャルピー値が4.
0kg-m/cm2 以上を達成した場合に評価○とした。表1の
結果より本発明の規定する範囲内の成分において、冷間
加工性が充分でありかつ強度・靱性値の目標が達成され
ていることが判る。
Table 1 also shows the test results. The evaluation of the test results was conducted by paying attention to the 0.2% proof stress and the Charpy impact value.
0.2% proof stress is 90.0 kgf / mm 2 or more, and Charpy value is 4.
When 0 kg-m / cm 2 or more was achieved, it was evaluated as ○. From the results in Table 1, it can be seen that the components within the range specified by the present invention have sufficient cold workability and that the targets of strength and toughness are achieved.

【0028】(実施例2)Ti-3.2Al-2.6V-5.0Nb-0.10Fe-
0.11Oの配合成分を基本成分系として、これに表2に示
す各元素を添加した。素材の製造条件は実施例1の条件
と同じで、熱処理製品から切欠付4点曲げ試験片を素材
圧延方向と平行に採取し、応力腐食割れ試験を行った。
試験条件は以下の通りであった。
(Example 2) Ti-3.2Al-2.6V-5.0Nb-0.10Fe-
Each element shown in Table 2 was added to the compounding component of 0.11 O as a basic component system. The production conditions of the material were the same as those of Example 1, and a notched four-point bending test piece was sampled from the heat-treated product in parallel with the material rolling direction, and a stress corrosion cracking test was performed.
The test conditions were as follows.

【0029】すなわち付加応力は0.2 %耐力と等しい応
力とし、試験環境は10atmH2S+10atmCO2+25%NaCl+1g
/1S で温度は232 ℃とした。この条件下でオートクレー
ブに6ヵ月間浸漬し、試験片取り出し後切り欠底を50倍
に拡大して観察し、割れの発生の有無を調査した。
That is, the additional stress is the same as the 0.2% proof stress, and the test environment is 10 atmH 2 S + 10 atmCO 2 + 25% NaCl + 1 g.
The temperature was 232 ° C at / 1S. Under these conditions, the test piece was immersed in an autoclave for 6 months, and after taking out the test piece, the notch bottom was magnified 50 times and observed to examine the occurrence of cracks.

【0030】また機械的性質は実施例1と同じ方法で調
査した。表2に結果を示す。この結果から、本発明の範
囲内のAl、V、Nb、Fe、Oを含み、さらに白金族元素、
あるいは白金族元素とNi、Co、W、Mo等を適当量含む本
発明の合金は、強度と靱性値が高く、さらに良好な耐応
力腐食割れ性が確保できることが判る。
The mechanical properties were investigated by the same method as in Example 1. The results are shown in Table 2. From this result, Al, V, Nb, Fe, and O within the scope of the present invention are further included, and a platinum group element,
Alternatively, it can be seen that the alloy of the present invention containing an appropriate amount of platinum group element and Ni, Co, W, Mo and the like has high strength and toughness and can secure good stress corrosion cracking resistance.

【0031】(実施例3)Ti-3.2Al-2.6V-5.0Nb-0.10Fe-
0.11O合金を用い、真空アーク溶解された150 kgのイン
ゴット (外径φ300 mm) を1150℃に加熱後、鍛造にて幅
50mm×厚さ30mmとした。さらに900 ℃に加熱後、熱間圧
延にて幅50mm×厚さ12mmに仕上げた。圧延後の素材より
厚さ10mmの冷間圧延素材を採取し、冷間加工度を70%ま
で変化させ、冷間加工度の影響を調べた。調査した冷間
加工度については表3に示す。
(Example 3) Ti-3.2Al-2.6V-5.0Nb-0.10Fe-
Using a 0.11O alloy, a vacuum arc melted 150 kg ingot (outer diameter φ300 mm) was heated to 1150 ° C and then forged to a width
50mm x thickness 30mm. After further heating to 900 ° C, it was hot-rolled to a width of 50 mm and a thickness of 12 mm. A cold rolled material with a thickness of 10 mm was sampled from the material after rolling, the cold working degree was changed to 70%, and the effect of the cold working degree was investigated. The cold workability investigated is shown in Table 3.

【0032】冷間圧延後の熱処理条件はすべて500 ℃×
30分である。機械的性質評価のための試験片採取方法お
よび評価方法は実施例1と同じである。ただし引張試験
片の厚みは2mmとした。機械的性質の評価結果を表3に
併せて示す。また表4には、従来合金であるTi-3.2Al-
2.6V-0.10Fe-0.11O合金を、本実施例と同一条件で加工
した場合の機械的性質を示す。
All the heat treatment conditions after cold rolling are 500 ° C. ×
30 minutes. The test piece collecting method and the evaluation method for evaluating the mechanical properties are the same as in Example 1. However, the thickness of the tensile test piece was 2 mm. The evaluation results of mechanical properties are also shown in Table 3. Table 4 shows the conventional alloy Ti-3.2Al-
The mechanical properties of the 2.6V-0.10Fe-0.11O alloy processed under the same conditions as in this example are shown.

【0033】図1には、表3と表4のデータに基づき、
本発明合金と従来合金の強度・靱性値バランスを比較し
た結果を示す。図中の数字は冷間加工度を表わす。図1
より、本発明合金の強度・靱性値バランスは、従来合金
より優れていることが分かる。また、本発明の合金で
は、20%以上の加工度で冷間加工が実施された場合は強
度・靱性値の目標を満足している。一方従来合金では、
冷間加工度を調整しても強度・靱性値の目標値を満足で
きないことがわかる。
In FIG. 1, based on the data in Tables 3 and 4,
The results of comparing the strength / toughness balance of the alloy of the present invention and the conventional alloy are shown. The numbers in the figure represent the cold workability. Figure 1
From this, it is understood that the strength / toughness value balance of the alloy of the present invention is superior to that of the conventional alloy. Further, the alloy of the present invention satisfies the target of strength / toughness values when cold working is carried out at a working ratio of 20% or more. On the other hand, with conventional alloys,
It can be seen that the target values of strength and toughness cannot be satisfied even if the cold workability is adjusted.

【0034】(実施例4)厚さ5mmまで、50%冷間加工し
た素材について、熱処理条件の検討を行った。表5に検
討した熱処理条件を示す。合金組成、冷間加工までの製
造履歴、および評価方法は実施例3の場合と同じであ
る。機械的性質の評価結果を表5に併せて示す。
Example 4 A heat treatment condition was examined for a material cold-worked by 50% to a thickness of 5 mm. Table 5 shows the heat treatment conditions examined. The alloy composition, the manufacturing history up to cold working, and the evaluation method are the same as in Example 3. The evaluation results of mechanical properties are also shown in Table 5.

【0035】また表6には、従来合金であるTi-3.2Al-
2.6V-0.10Fe-0.11O合金を、本実施例と同一条件で熱処
理した場合の機械的性質を示す。図2には表5と表6の
データに基づき、本発明合金と従来合金の強度・靱性値
バランスを比較した結果を示す。白丸が表5の結果を、
黒丸が表6の結果を表わす。
Table 6 shows that the conventional alloy Ti-3.2Al-
The mechanical properties of the 2.6V-0.10Fe-0.11O alloy when heat-treated under the same conditions as in this example are shown. FIG. 2 shows the results of comparing the strength / toughness value balances of the alloy of the present invention and the conventional alloy based on the data of Table 5 and Table 6. The white circles show the results in Table 5,
The black circles represent the results in Table 6.

【0036】図2より、本発明合金の強度・靱性値バラ
ンスは、従来合金より優れていることが分かる。また、
本発明の合金では、350 〜800℃の温度範囲および15分
以上の時間で熱処理された場合に強度・靱性値の目標を
満足している。一方従来合金では熱処理条件にかかわら
ず強度・靱性値の目標を満足できないことがわかる。
From FIG. 2, it is understood that the strength / toughness value balance of the alloy of the present invention is superior to that of the conventional alloy. Also,
The alloy of the present invention satisfies the target of strength / toughness values when heat-treated in the temperature range of 350 to 800 ° C. and the time of 15 minutes or more. On the other hand, it can be seen that conventional alloys cannot satisfy the strength / toughness targets regardless of heat treatment conditions.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【発明の効果】本発明によれば、構造材として用いられ
る高強度で高靱性を有する冷間加工可能なチタン合金が
提供され、チタン合金製の構造材を冷間加工で仕上げる
ことが可能となる。その結果、非航空・宇宙分野にチタ
ン合金を用いる際に実用化の障害となっていた、コスト
アップの主要因である製品形状仕上げのための機械加工
費が大幅に削減でき、化学工業、エネルギー開発分野、
一般工業用の構造材のチタン合金化が今後大幅に促進さ
れるものと考えられる。
According to the present invention, a cold workable titanium alloy used as a structural material having high strength and high toughness is provided, and a structural material made of a titanium alloy can be finished by cold working. Become. As a result, the machining cost for finishing the product shape, which is the main factor of cost increase, which was an obstacle to practical use when using titanium alloys in non-aviation and space fields, can be significantly reduced. Development field,
It is considered that titanium alloying of structural materials for general industry will be greatly promoted in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間加工度を変えた場合の、本発明合金と従来
合金の強度・靱性値バランスの比較図である。
FIG. 1 is a comparison diagram of the strength / toughness value balance between the alloy of the present invention and the conventional alloy when the cold workability is changed.

【図2】熱処理条件を変えた場合の、本発明合金と従来
合金の強度・靱性値バランスの比較図である。
FIG. 2 is a comparison diagram of the strength / toughness value balance between the alloy of the present invention and the conventional alloy when the heat treatment conditions are changed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、Al:1.5 〜4.0 %、V:1.
5 〜4.0 %、Nb:0.10〜10.0%、Fe:0.30%以下、O:
0.30%以下、残部Tiおよび不可避的不純物から成ること
を特徴とする、高強度高靱性で冷間加工可能なチタン合
金。
1. Al: 1.5-4.0% and V: 1.% by weight.
5 to 4.0%, Nb: 0.10 to 10.0%, Fe: 0.30% or less, O:
A high-strength, high-toughness, cold-workable titanium alloy, characterized by comprising 0.30% or less and the balance Ti and inevitable impurities.
【請求項2】 重量%にて、さらに白金族元素:0.02〜
0.20%含有することを特徴とする、請求項1記載の高強
度高靱性で冷間加工可能なチタン合金。
2. A platinum group element: 0.02% by weight.
The high-strength, high-toughness cold-workable titanium alloy according to claim 1, wherein the content is 0.20%.
【請求項3】 重量%にて、さらに白金族元素:0.005
〜0.12%、ならびにNi、Co、W、およびMoのうち1種以
上を総量で0.05〜2.0 %含有することを特徴とする、請
求項1記載の高強度高靱性でかつ冷間加工可能なチタン
合金。
3. Platinum group element: 0.005 by weight%
To 0.12% and at least one of Ni, Co, W, and Mo in a total amount of 0.05 to 2.0%, and high strength and high toughness and cold workable titanium according to claim 1. alloy.
JP28153391A 1991-10-28 1991-10-28 High strength and high toughness cold workable titanium alloy Withdrawn JPH05117791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28153391A JPH05117791A (en) 1991-10-28 1991-10-28 High strength and high toughness cold workable titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28153391A JPH05117791A (en) 1991-10-28 1991-10-28 High strength and high toughness cold workable titanium alloy

Publications (1)

Publication Number Publication Date
JPH05117791A true JPH05117791A (en) 1993-05-14

Family

ID=17640499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28153391A Withdrawn JPH05117791A (en) 1991-10-28 1991-10-28 High strength and high toughness cold workable titanium alloy

Country Status (1)

Country Link
JP (1) JPH05117791A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050324A1 (en) * 2000-12-20 2002-06-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
WO2005118898A1 (en) * 2004-06-02 2005-12-15 Sumitomo Metal Industries, Ltd. Titanium alloy and method of manufacturing titanium alloy material
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
CN106460100A (en) * 2014-01-28 2017-02-22 钛金属公司 Titanium alloys exhibiting resistance to impact or shock loading and method of making a part therefrom
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050324A1 (en) * 2000-12-20 2002-06-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
CN1302135C (en) * 2000-12-20 2007-02-28 株式会社丰田中央研究所 Titanium alloy having high elastic deformation capacity and method for production thereof
US7261782B2 (en) 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
WO2005118898A1 (en) * 2004-06-02 2005-12-15 Sumitomo Metal Industries, Ltd. Titanium alloy and method of manufacturing titanium alloy material
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8834653B2 (en) 2010-07-28 2014-09-16 Ati Properties, Inc. Hot stretch straightening of high strength age hardened metallic form and straightened age hardened metallic form
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN106460100A (en) * 2014-01-28 2017-02-22 钛金属公司 Titanium alloys exhibiting resistance to impact or shock loading and method of making a part therefrom
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Similar Documents

Publication Publication Date Title
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
EP0406638B1 (en) Gamma Titanium aluminum alloys modified by chromium and tantalum and method of peparation
CA2485122C (en) Alpha-beta ti-al-v-mo-fe alloy
EP0408313B1 (en) Titanium base alloy and method of superplastic forming thereof
EP0396338B1 (en) Oxidation resistant titanium base alloy
EP1736560B1 (en) High-strength alpha+beta-type titanium alloy
CN110144496A (en) Titanium alloy with improved performance
EP0405134B1 (en) Gamma titanium aluminum alloys modified by chromium and silicon and method of preparation
AU2019350496B2 (en) Creep resistant titanium alloys
JPH04103737A (en) High strength and high toughness titanium alloy and its manufacture
EP3856944A2 (en) Titanium alloy with moderate strength and high ductility
EP0202791A1 (en) Titanium alloys
JP2797913B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
WO2023009030A1 (en) Titanium-based alloy and article made of same
JP7303434B2 (en) Titanium alloy plates and automotive exhaust system parts
JPH04301044A (en) High toughness titanium alloy capable of cold working
US5228931A (en) Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum
JP2626344B2 (en) Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy
JP2800651B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
RU2772153C1 (en) Creep-resistant titanium alloys
JPH0819501B2 (en) Titanium alloy with excellent heat resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107