JP2797913B2 - High corrosion resistance titanium alloy with excellent cold workability and weldability - Google Patents

High corrosion resistance titanium alloy with excellent cold workability and weldability

Info

Publication number
JP2797913B2
JP2797913B2 JP19871693A JP19871693A JP2797913B2 JP 2797913 B2 JP2797913 B2 JP 2797913B2 JP 19871693 A JP19871693 A JP 19871693A JP 19871693 A JP19871693 A JP 19871693A JP 2797913 B2 JP2797913 B2 JP 2797913B2
Authority
JP
Japan
Prior art keywords
weldability
cold workability
corrosion resistance
strength
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19871693A
Other languages
Japanese (ja)
Other versions
JPH0754081A (en
Inventor
学 西元
篤彦 黒田
司郎 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19871693A priority Critical patent/JP2797913B2/en
Publication of JPH0754081A publication Critical patent/JPH0754081A/en
Application granted granted Critical
Publication of JP2797913B2 publication Critical patent/JP2797913B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、化学工業(配管な
ど)、エネルギー開発(アンビリカルチューブ、石油開
発用油井管など)および航空機関連(油圧配管など)な
どで用いられる高耐食性チタン合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly corrosion-resistant titanium alloy used in the chemical industry (such as piping), energy development (such as umbilical tubes, oil well pipes for oil development) and aircraft (such as hydraulic piping).

【0002】[0002]

【従来の技術】チタンは比強度(強度/比重)が大き
く、耐食性に優れているという長所を持つ。従来、これ
らの長所を各々別個に改良する方向でチタン合金の開発
が行われてきた。これらの改良方法として、Al、V、Ni
などの元素を添加することが挙げられるが、冷間加工性
については十分な配慮が行われていない場合が多く、強
度や耐食性が改善されても冷間加工性を損ねることが多
かった。
2. Description of the Related Art Titanium has the advantages of high specific strength (strength / specific gravity) and excellent corrosion resistance. Heretofore, titanium alloys have been developed in the direction of individually improving each of these advantages. These improvements include Al, V, Ni
However, sufficient consideration has not been given to the cold workability, and the cold workability is often impaired even if the strength or corrosion resistance is improved.

【0003】チタン合金は一般的に冷間加工性や溶接性
に乏しく、熱間加工後、機械加工で仕上げなければなら
ない場合が多い。しかし、チタン合金は切削性が悪く、
そのため製品歩留りの低下、切削の長時間化などにより
コスト高を招く。
[0003] Titanium alloys generally have poor cold workability and weldability, and in many cases, must be finished by machining after hot working. However, titanium alloy has poor machinability,
For this reason, the cost is increased due to a decrease in product yield and a prolonged cutting.

【0004】チタンおよびチタン合金の中で冷間加工が
可能な合金としては、α型チタンである純Ti、α+β型
チタン合金であるTi−3Al− 2.5V、および多くのβ型
チタン合金が挙げられる。
[0004] Among titanium and titanium alloys, alloys which can be cold worked include pure Ti which is α-type titanium, Ti-3Al-2.5V which is α + β-type titanium alloy, and many β-type titanium alloys. Can be

【0005】これらのうち、β型チタン合金は冷間加工
は可能であるものの、熱間における変形抵抗が大き
く、従来工程では製造が困難であり、高温域(100〜 4
00℃前後) で使用した場合には、α相やω相の析出によ
り脆化し、熱的安定性に欠ける、という問題がある。
[0005] Of these, β-type titanium alloys can be cold-worked, but have a large hot deformation resistance, are difficult to manufacture by conventional processes, and have a high temperature range (100 to 4).
(Approximately 00 ° C.), there is a problem that embrittlement occurs due to precipitation of an α phase and an ω phase, and thermal stability is lacking.

【0006】Ti−3Al− 2.5Vは代表的な冷間加工可能
なα+β型チタン合金であり、その基本的な成分はAlが
2.5〜3.5 重量%、Vが 2.0〜3.0 重量%である (この
合金はAMSに規格化されている) 。この合金も純Tiと
同様に冷間加工は可能であるものの、多くの他のチタン
合金と比べて強度が低い上に耐食性も十分とは言えず、
実用的な用途が狭められている。
[0006] Ti-3Al-2.5V is a typical cold workable α + β type titanium alloy, the basic component of which is Al
2.5-3.5% by weight, V 2.0-3.0% by weight (this alloy is standardized to AMS). This alloy can be cold-worked like pure Ti, but it has lower strength than many other titanium alloys, and its corrosion resistance is not enough.
Practical applications are being narrowed.

【0007】特開昭50−25418 号公報には、Al、Zr、M
o、V、Cr、NiおよびFeを含有するチタン合金が示され
ているが、これは強度および破壊靱性向上を目的として
発明されたものであり、冷間加工性や溶接性について
は、ほとんどまたは全く検討されていない。
[0007] JP-A-50-25418 discloses Al, Zr, M
Although a titanium alloy containing o, V, Cr, Ni and Fe is shown, this was invented for the purpose of improving strength and fracture toughness, and almost no cold workability or weldability was observed. Not considered at all.

【0008】チタンは周知のように、耐食性に優れた材
料であるという長所を持つが、苛酷な腐食環境での使用
にはさらなる耐食性の向上が必要であり、用途によって
は高い強度も要求される。これらの要求に対して、例え
ば特開昭61−257448号公報には、Al、Ni、Zrなどを添加
し、NiとZrの複合作用により高い耐食性と高強度を付与
したチタン合金が開示されている。また、特開昭63−17
9033号公報には、Al、Ni、Moなどを添加し、高強度と高
耐食性を達成したチタン合金が開示されている。しか
し、これらのチタン合金では、冷間加工性と溶接性につ
いて十分な検討がなされていない。特に前者の発明で
は、冷間圧延の圧下率が30%のときの耳割れの発生程度
を冷間加工性良否の判断基準としている。しかし、この
30%という圧下率はかなり低い基準であって、さらに高
い圧下率の場合でも冷間加工性に優れたチタン合金は示
されていない。
[0008] As is well known, titanium has the advantage of being a material having excellent corrosion resistance. However, use in a severe corrosive environment requires further improvement in corrosion resistance, and high strength is required in some applications. . In response to these requirements, for example, JP-A-61-257448 discloses a titanium alloy to which Al, Ni, Zr, etc. are added to impart high corrosion resistance and high strength by a combined action of Ni and Zr. I have. Also, JP-A-63-17
No. 9033 discloses a titanium alloy which achieves high strength and high corrosion resistance by adding Al, Ni, Mo and the like. However, these titanium alloys have not been sufficiently studied on cold workability and weldability. In particular, in the former invention, the degree of occurrence of edge cracks when the rolling reduction of the cold rolling is 30% is used as a criterion for determining the quality of the cold workability. But this
The rolling reduction of 30% is a considerably low standard, and even at a higher rolling reduction, a titanium alloy having excellent cold workability is not shown.

【0009】特開平3−166350号公報および特開平3−
274238号公報には、β相安定化元素( Fe、Ni、Co、Cr、
Mo 、V )の添加によりβ相率を増加させて、高い冷間
加工性と固溶強化による強度向上を達成したチタン合金
が示されている。また本発明者らは、特開平5−117791
号公報において、Ti−3Al− 2.5V合金にNbを 0.1%以
上10.0%以下添加し、良好な冷間加工性を維持しながら
高強度と高靱性を有するチタン合金を開示した。しか
し、これらの発明では、耐食性および溶接性については
明らかとなっていない。
JP-A-3-166350 and JP-A-3-166350
No. 274238 discloses a β-phase stabilizing element (Fe, Ni, Co, Cr,
There is disclosed a titanium alloy in which the ratio of β phase is increased by the addition of Mo, V) to achieve high cold workability and strength improvement by solid solution strengthening. The present inventors have also disclosed in Japanese Patent Laid-Open No.
In Patent Document 1, a titanium alloy having high strength and high toughness while maintaining good cold workability by adding 0.1% to 10.0% of Nb to a Ti-3Al-2.5V alloy was disclosed. However, in these inventions, corrosion resistance and weldability have not been clarified.

【0010】[0010]

【発明が解決しようとする課題】チタン合金は、高耐食
性、高比強度の特性を活かし、腐食環境用構造材として
用いることが期待されている。しかし、多くのチタン合
金は苛酷な腐食環境での使用に耐え得る耐食性があると
は言い難い。また、一般的に冷間加工性と溶接性に乏し
いためにチタン合金を構造材として使用する場合、熱間
仕上げの状態から機械加工によって製品を製造する必要
がある。そのため、製品歩留りの低下とコスト上昇を招
いている。
SUMMARY OF THE INVENTION Titanium alloys are expected to be used as structural materials for corrosive environments by utilizing the characteristics of high corrosion resistance and high specific strength. However, many titanium alloys are not sufficiently corrosion resistant to withstand use in harsh corrosive environments. Further, in general, when a titanium alloy is used as a structural material due to poor cold workability and weldability, it is necessary to manufacture a product by machining from a hot finished state. As a result, the product yield is reduced and the cost is increased.

【0011】本発明は、チタン合金から構造用部材を製
造する際の製品歩留りを向上させ、生産コストを低減す
るために、冷間加工性と溶接性にも優れた高耐食性チタ
ン合金を提供することを目的としてなされたものであ
る。
The present invention provides a highly corrosion-resistant titanium alloy excellent in cold workability and weldability in order to improve the product yield and reduce the production cost when manufacturing structural members from a titanium alloy. It is done for the purpose of.

【0012】具体的な目標は次の〜のとおりとし
た。
The specific goals are as follows.

【0013】冷間加工性は、後述の冷間加工性試験に
おいてTi−3Al− 2.5V合金以上であること。
The cold workability must be at least Ti-3Al-2.5V alloy in a cold workability test described later.

【0014】溶接性を示す室温の溶接部の0.2 %耐力
が 600MPa 以上であり、室温の母材部の0.2 %耐力に
おいても 600MPa 以上であること。
The 0.2% proof stress of the welded portion at room temperature that exhibits weldability is 600 MPa or more, and the 0.2% proof stress of the base material portion at room temperature is 600 MPa or more.

【0015】室温における溶接部の破断強度が母材部
のそれの90%以上であること。
The breaking strength of the weld at room temperature is 90% or more of that of the base metal.

【0016】構造材などに適用する実用面から、溶接
性を示す伸びについても下限値を設け、室温での母材部
と溶接部の引張伸びが、それぞれ10.0%以上、 5.0%以
上であること。
From the practical point of application to structural materials, etc., a lower limit is set for the elongation indicating weldability, and the tensile elongation of the base material and the weld at room temperature is 10.0% or more and 5.0% or more, respectively. .

【0017】後述の曲げ試験において溶接部に割れが
発生しないこと。
In the bending test described later, no crack occurs in the welded portion.

【0018】耐食性は、後述の耐食性試験において純
チタンの倍以上であること。
The corrosion resistance is at least twice that of pure titanium in a corrosion resistance test described later.

【0019】[0019]

【課題を解決するための手段】本発明者らは種々の添加
元素が冷間加工性、強度、溶接性および耐食性に与える
影響を検討し、耐食性と冷間加工性、強度および溶接性
を高度にバランスさせたチタン合金を開発した。
Means for Solving the Problems The present inventors studied the effects of various additional elements on cold workability, strength, weldability and corrosion resistance, and advanced the corrosion resistance, cold workability, strength and weldability. Developed a titanium alloy balanced to

【0020】本発明の要旨は次のチタン合金にある。The gist of the present invention resides in the following titanium alloy.

【0021】(1)重量%で、Al: 1.5〜4.5 %、V: 1.
5〜4.5 %およびMo: 0.1%〜2.5 %未満を含有し、残
部はTiおよび不可避的不純物からなる冷間加工性および
溶接性に優れた高耐食性チタン合金。
(1) Al: 1.5 to 4.5% by weight, V: 1.
High corrosion resistance titanium alloy containing 5 to 4.5% and Mo: 0.1% to less than 2.5%, with the balance being Ti and unavoidable impurities and having excellent cold workability and weldability.

【0022】(2)上記(1) 記載の成分に加えてさらに、
重量%で、Zr: 0.1〜10.0%を含有し、残部はTiおよび
不可避的不純物からなる冷間加工性および溶接性に優れ
た高耐食性チタン合金。
(2) In addition to the components described in (1) above,
A highly corrosion-resistant titanium alloy containing 0.1 to 10.0% by weight of Zr, with the balance being Ti and unavoidable impurities, and having excellent cold workability and weldability.

【0023】[0023]

【作用】本発明のチタン合金は、TiにAl、VおよびMoを
数%添加し、さらに必要に応じてZrを添加し、さらなる
強度、冷間加工性および溶接性の向上を図ったものであ
る。化学組成を前記のように限定した理由について説明
する。以下、%は重量%を意味する。
The titanium alloy of the present invention is obtained by adding Al, V and Mo to Ti by several%, and further adding Zr as necessary, thereby further improving strength, cold workability and weldability. is there. The reason for limiting the chemical composition as described above will be described. Hereinafter,% means% by weight.

【0024】Al: 1.5〜4.5 % Alはα相安定化元素である。固溶強化と耐食性向上の目
的で含有させるが、目標の強度と耐食性を得るには、Al
を1.5 %以上含有させる必要がある。一方、Al含有量が
4.5 %を超えると冷間加工性が低下するために、冷間加
工時に割れを生じる。よって、Al含有量の範囲は1.5 〜
4.5%とした。好ましいのは2.5 〜 3.5%の範囲であ
る。
Al: 1.5 to 4.5% Al is an α-phase stabilizing element. Although it is included for the purpose of solid solution strengthening and corrosion resistance improvement, to obtain the target strength and corrosion resistance, Al
Must be contained at least 1.5%. On the other hand, when the Al content is
If it exceeds 4.5%, the cold workability is reduced, so that cracks occur during cold work. Therefore, the range of the Al content is 1.5 to
4.5%. Preferred is the range 2.5-3.5%.

【0025】V: 1.5〜4.5 % Vはβ相安定化元素である。固溶強化の目的で含有させ
るが、目標強度を得るには1.5 %以上含有させる必要が
ある。一方、V含有量が4.5 %を超えると冷間加工性と
耐食性を劣化させる。よって、V含有量の範囲は 1.5〜
4.5 %とした。
V: 1.5 to 4.5% V is a β-phase stabilizing element. Although it is contained for the purpose of solid solution strengthening, it is necessary to contain 1.5% or more to obtain the target strength. On the other hand, when the V content exceeds 4.5%, the cold workability and corrosion resistance deteriorate. Therefore, the range of the V content is 1.5 to
4.5%.

【0026】好ましいのは 2.5〜3.5 %の範囲である。
またVは、Moと同様に溶接性を劣化させる元素である
が、その程度はMoに比べて小さく、上記の範囲内であれ
ば問題はない。
The preferred range is 2.5-3.5%.
V is an element that deteriorates the weldability like Mo, but its degree is smaller than that of Mo, and there is no problem as long as it is within the above range.

【0027】Mo: 0.1%〜2.5 %未満 Moは冷間加工性、強度および耐食性の向上に寄与する
が、Mo含有量が0.1 %未満ではその効果は小さい。しか
し、Moを多量に含有させると、溶接性が劣化し、また高
融点金属であるため偏析を生じる懸念があること、伸び
が低下することなどを考慮すると、Mo含有量は2.5 %未
満に抑えるべきである。このため、Mo含有量の範囲は0.
1 %〜2.5 %未満とした。好ましい下限は0.8 %であ
る。
Mo: 0.1% to less than 2.5% Mo contributes to improvement of cold workability, strength and corrosion resistance, but its effect is small when the content of Mo is less than 0.1%. However, when Mo is contained in a large amount, the weldability is deteriorated, and considering that there is a concern that segregation may occur due to the high melting point metal and that elongation is reduced, the Mo content is suppressed to less than 2.5%. Should. Therefore, the range of the Mo content is 0.
1% to less than 2.5%. A preferred lower limit is 0.8%.

【0028】なお、VとMoは単体の金属として添加して
もよいが、Al−V母合金、Al−Mo母合金またはAl−Mo−
V母合金という形で添加してもよい。
V and Mo may be added as a single metal, but may be an Al-V master alloy, an Al-Mo master alloy or an Al-Mo- alloy.
It may be added in the form of a V master alloy.

【0029】Zr: 0.1〜10.0% Zrは、耐食性、冷間加工性および強度の向上に寄与し、
特に冷間加工性の向上効果が大きい元素である(後述の
図2参照)から、必要に応じて含有させる。Zr含有量が
0.1 %未満ではその効果は小さい。一方、10.0%を超え
ると耐食性と強度は上昇するが、伸び、冷間加工性およ
び溶接性が著しく劣化する。このために、Zrを含有させ
る場合の範囲は 0.1〜10.0%とすべきである。好ましい
のは 0.5〜7.0 %の範囲である。
Zr: 0.1-10.0% Zr contributes to improvement of corrosion resistance, cold workability and strength,
Particularly, since it is an element having a large effect of improving cold workability (see FIG. 2 described later), it is contained as necessary. Zr content
Below 0.1%, the effect is small. On the other hand, if it exceeds 10.0%, the corrosion resistance and strength are increased, but the elongation, cold workability and weldability are significantly deteriorated. For this reason, the range when Zr is contained should be 0.1 to 10.0%. Preferred is a range of 0.5-7.0%.

【0030】その他:不可避的な不純物とは、C、H、
O、N、FeおよびYなどを指すが、通常の含有量レベル
であれば特に問題はない。
Others: Inevitable impurities include C, H,
It refers to O, N, Fe, Y, etc., but there is no particular problem as long as it is a normal content level.

【0031】Feは、スポンジTiや添加元素原料に幾分か
含まれているため、不可避的に混入するが、0.5 %以下
であれば問題はない。Feは固溶強化度が大きく、少量で
も強度向上に寄与するが、その含有量が0.5 %を超える
と、Tiと反応して金属間化合物を生成し、冷間加工性を
著しく劣化させる。また、耐食性を劣化させたり、イン
ゴット中の偏析に起因するβフレック(Feのマクロ偏
析)の生成をもたらしたりするので好ましくない。その
ため、Fe含有量は0.5 %以下とするのがよい。
Fe is inevitably incorporated because it is contained in the sponge Ti and the additive element raw material to some extent, but there is no problem if it is 0.5% or less. Fe has a high degree of solid solution strengthening, and even a small amount contributes to the improvement of strength. However, if its content exceeds 0.5%, it reacts with Ti to form an intermetallic compound and significantly deteriorates cold workability. Further, it is not preferable because it degrades corrosion resistance and causes generation of β fleck (macrosegregation of Fe) due to segregation in the ingot. Therefore, the Fe content is preferably set to 0.5% or less.

【0032】Oも固溶強化度が大きく、少量でも強度向
上に寄与するが、その反面、冷間加工性を劣化させる。
そのため、O含有量は0.2 %以下とすることが望まし
い。
O also has a high degree of solid solution strengthening, and even a small amount contributes to strength improvement, but on the other hand, it deteriorates cold workability.
Therefore, it is desirable that the O content be 0.2% or less.

【0033】上記の化学組成とすることで、前記の目標
とする強度、伸び、冷間加工性、溶接性および耐食性を
備えたチタン合金を得ることができる。
With the above chemical composition, a titanium alloy having the above-mentioned target strength, elongation, cold workability, weldability and corrosion resistance can be obtained.

【0034】本発明の合金は、これらの特性によって腐
食環境用構造材などに適用することが可能であり、特に
溶接性、強度、冷間加工性および耐食性などが要求され
るアンビリカルチューブ用素材として好適である。アン
ビリカルチューブとは、海底の油田と海上のプラットホ
ームを結ぶ制御管のことであり、管中に油圧を制御する
電線などが通されるものである。
The alloy of the present invention can be applied to a structural material for a corrosive environment or the like due to these characteristics. In particular, it is used as a material for an umbilical tube which is required to have weldability, strength, cold workability and corrosion resistance. It is suitable. The umbilical tube is a control pipe that connects an oil field on the sea floor and a platform on the sea, through which electric wires for controlling hydraulic pressure are passed.

【0035】[0035]

【実施例】表1と表2に示す組成の合金を真空溶解法に
よって溶製し、直径 120mm×長さ300mm の円柱状インゴ
ットとした。表1の合金 No.1〜13が本発明例、表2の
合金 No.14〜22が本発明範囲外の組成の比較例、表2の
合金 No.23、24が既存の冷間加工可能な純Ti、Ti−3Al
− 2.5V合金である。
EXAMPLE An alloy having the composition shown in Tables 1 and 2 was melted by a vacuum melting method to obtain a cylindrical ingot having a diameter of 120 mm and a length of 300 mm. Alloy Nos. 1 to 13 in Table 1 are examples of the present invention, Alloy Nos. 14 to 22 in Table 2 are comparative examples of compositions outside the scope of the present invention, and alloys Nos. 23 and 24 in Table 2 are for existing cold work Pure Ti, Ti-3Al
-2.5V alloy.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】これらのインゴットを1100℃に加熱した
後、 850℃以上で鍛造を行い、厚さ60mm×幅70mm×長さ
680mm の角状とした。その後、熱間圧延(900℃加熱、 7
50℃打ち上げ) を施して厚さ15mm×幅70mmの板材にした
後、 750℃で焼鈍を行った。
After heating these ingots to 1100 ° C., forging is performed at 850 ° C. or more, and the thickness is 60 mm × width 70 mm × length.
It was 680 mm square. After that, hot rolling (heating at 900 ℃, 7
(Launched at 50 ° C) to obtain a plate having a thickness of 15 mm and a width of 70 mm, and then annealed at 750 ° C.

【0039】熱間加工性の評価は、上記の熱間鍛造、熱
間圧延によって割れが生じた場合を熱間加工性が劣悪
「×」、割れが生じない場合を良好「○」とした。
The hot workability was evaluated as poor when the cracks occurred due to the hot forging and hot rolling, and evaluated as poor when the cracks did not occur.

【0040】このようにして得られた各供試材から、冷
間圧延試験片 (厚さ12mm×幅35mm×長さ200mm)と冷間据
え込み加工試験片 (φ6mm×長さ9mm) および塩酸腐食
試験片 (厚さ10mm×幅20mm×長さ20mm) を切り出し、冷
間加工性と耐食性の各試験に供した。
From each of the test materials thus obtained, a cold-rolled test piece (thickness 12 mm × width 35 mm × length 200 mm), a cold upsetting test piece (φ6 mm × length 9 mm) and hydrochloric acid Corrosion test pieces (thickness 10 mm × width 20 mm × length 20 mm) were cut out and subjected to cold workability and corrosion resistance tests.

【0041】また、熱間圧延後の板材から切り出した供
試材 (厚さ3mm×幅70mm) に、TIG溶接 (Ar雰囲気
中、両面各1パス、溶接棒も熱間圧延後の板材から切り
出したもの) を行った後、溶接部と母材部からそれぞれ
平行部寸法:厚さ2mm×幅6.25mm×長さ32mmの板引張試
験片を切り出し、引張強度を測定した。さらに各供試材
の溶接部の曲げ加工性を調べるために曲げ試験片 (厚さ
2mm×幅15mm×長さ100mm)を切り出し、曲げ試験を実施
した。
TIG welding (one pass each on both sides in an Ar atmosphere, welding rod) was also cut from the hot-rolled sheet material to the test material (thickness 3 mm x width 70 mm) cut from the hot-rolled sheet material. After that, a plate tensile test piece having dimensions of 2 mm in thickness, 6.25 mm in width and 32 mm in length was cut out from the welded portion and the base material portion, respectively, and the tensile strength was measured. Further, a bending test piece (2 mm thick × 15 mm wide × 100 mm long) was cut out to examine the bending workability of the welded portion of each test material, and a bending test was performed.

【0042】次に各試験の詳細な内容について述べる。Next, the details of each test will be described.

【0043】〔冷間圧延試験〕厚さ12mm×幅35mm×長さ
200mm の前記試験片を、ロールで1パスあたり 0.5mmづ
つ減厚し、板端部から3mm以上の長さの耳割れが板側面
に沿って5cm以内の間隔で生じた場合を限界冷間加工度
とし、下記 (1)式に従い算出した。
[Cold rolling test] 12 mm thick x 35 mm wide x length
The 200mm test piece was reduced by 0.5mm per pass with a roll, and the limit of cold working was when the ear cracks with a length of 3mm or more from the edge of the plate occurred within 5cm along the side of the plate. And calculated according to the following equation (1).

【0044】[0044]

【数1】 (Equation 1)

【0045】〔冷間据え込み加工試験〕φ6mm×長さ9
mmの前記試験片を、歪速度= 1.0×10-2 sec-1で加工フ
ォーマスター試験装置により冷間据え込み加工を行い、
割れが発生した加工度を限界冷間加工度とした。なお、
この据え込み加工試験は各合金につき3回試験を行い、
その平均値を限界冷間加工度とし、下記 (2)式に従い算
出した。
[Cold upsetting test] φ6 mm × length 9
mm, the test piece was subjected to cold upsetting with a processing for master tester at a strain rate of 1.0 × 10 −2 sec −1 ,
The working ratio at which cracks occurred was defined as the limit cold working ratio. In addition,
This upsetting test is performed three times for each alloy,
The average value was defined as a limit cold working degree and calculated according to the following equation (2).

【0046】[0046]

【数2】 (Equation 2)

【0047】〔塩酸腐食試験〕厚さ10mm×幅20mm×長さ
20mmの前記試験片を、5重量%HCl沸騰溶液中に20時間
浸漬して腐食減量を測定し、腐食減量をmm/年に換算し
て耐食性を評価した。
[Hydrochloric acid corrosion test] 10 mm thick x 20 mm wide x length
The test piece of 20 mm was immersed in a 5 wt% HCl boiling solution for 20 hours to measure the corrosion loss, and the corrosion loss was evaluated by converting the corrosion loss to mm / year.

【0048】〔引張試験〕母材部と溶接部から切り出し
た平行部寸法:厚さ2mm×幅6.25mm×長さ32mmの前記試
験片に、0.2 %耐力までは 0.5%歪/min、耐力後は15%
歪/minの引張速度を与えて破断させ、強度を測定して溶
接性を評価した。この引張試験は室温で2回行い、平均
値で強度、伸びを比較した。
[Tensile test] The parallel part cut out from the base material and the welded part dimensions: The above test piece having a thickness of 2 mm, a width of 6.25 mm and a length of 32 mm was subjected to 0.5% strain / min up to 0.2% proof stress and after proof stress. Is 15%
A tensile rate of strain / min was applied to break, and the strength was measured to evaluate the weldability. This tensile test was performed twice at room temperature, and the strength and elongation were compared on average.

【0049】〔溶接部曲げ試験〕厚さ2mm×幅15mm×長
さ100mm の前記試験片を各供試材の溶接部から切り出
し、2mmの曲げ半径で90℃曲げを行った。曲げ試験後、
光学顕微鏡にて曲げ部の20倍観察を行い、割れの有無を
調査して溶接性を評価した。図1はこの試験片の形状を
示す図である。
[Weld Bending Test] The test piece having a thickness of 2 mm, a width of 15 mm and a length of 100 mm was cut out from a weld of each test material and bent at 90 ° C. with a bending radius of 2 mm. After the bending test,
A 20-fold observation of the bent portion was performed with an optical microscope, and the presence or absence of cracks was investigated to evaluate weldability. FIG. 1 is a diagram showing the shape of the test piece.

【0050】以上の各評価試験の結果を表3、表4およ
び図2に示す。
The results of the above evaluation tests are shown in Tables 3 and 4 and FIG.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4(1)】 [Table 4 (1)]

【0053】[0053]

【表4(2)】 [Table 4 (2)]

【0054】表3、表4の結果から以下のことが明らか
である。
The following is clear from the results of Tables 3 and 4.

【0055】合金 No.1〜3および No.14、15の結果に
よれば、Alは固溶強化による強度向上に大きく寄与する
が、含有量が少ないとその効果は小さい (合金 No.14で
は、Alは0.5 %であり強度が低い) 。また、過度のAl含
有は冷間加工性を低下させる( 合金No.15 では同じく6.
0 %であり冷間加工性が劣悪 )。
According to the results of alloys Nos. 1 to 3 and Nos. 14 and 15, although Al greatly contributes to strength improvement by solid solution strengthening, the effect is small if the content is small (alloy No. 14 , Al is 0.5% and the strength is low). Also, excessive Al content lowers the cold workability (see Alloy No. 15 for 6.
0%, indicating poor cold workability).

【0056】合金 No.4、5および No.16、17の結果に
よれば、Vも固溶強化による強度向上に寄与する。しか
し、含有量が少ないとその効果は小さい (合金 No.16
では、Vは0.5 %であり強度が低い) 。また、過度のV
含有は冷間加工性を低下させる (合金 No.17では、同じ
く6.0 %であり、冷間加工性はTi-3Al-2.5V合金の場合
以下に低下している)。
According to the results of alloys Nos. 4 and 5, and Nos. 16 and 17, V also contributes to the improvement in strength by solid solution strengthening. However, the effect is small when the content is small (alloy No. 16
, V is 0.5% and the strength is low). Also, excessive V
The content decreases the cold workability (the alloy No. 17 also has 6.0%, and the cold workability is lower than that of the Ti-3Al-2.5V alloy).

【0057】Moは、合金 No.6、7および No.18、19の
結果によれば、冷間加工性、強度および耐食性の向上に
寄与することがわかる。しかし、合金 No.18の結果によ
れば、Mo含有量が 0.1%未満であると、上記の三種類の
特性の向上に対する寄与は小さい。また、過度のMo含有
は溶接性の低下をもたらし、好ましくない (合金 No.19
では、Moは4.0 %であり溶接部の曲げ加工性が低い) 。
According to the results of alloys Nos. 6 and 7 and Nos. 18 and 19, Mo contributes to the improvement of cold workability, strength and corrosion resistance. However, according to the results of Alloy No. 18, when the Mo content is less than 0.1%, the contribution to the improvement of the above three properties is small. Also, excessive Mo content causes a decrease in weldability, which is not preferable (alloy No. 19
In this case, Mo is 4.0%, and the bending property of the weld is low.)

【0058】合金 No.8、9および No.21の結果によれ
ば、酸素は強度向上に大きく寄与するものの、冷間加工
性と溶接性を低下させる。しかし、通常の量(0.2%以
下) なら問題はない。
According to the results of alloys Nos. 8, 9 and 21, although oxygen greatly contributes to strength improvement, it lowers cold workability and weldability. However, there is no problem if the amount is normal (less than 0.2%).

【0059】合金 No.10、20の結果によれば、Feは酸素
と同様に強度に大きく影響を与え、冷間加工性に悪影響
を与える。また、耐食性も劣化させるが、Fe含有量が0.
5 %以下なら問題はない。
According to the results of alloys Nos. 10 and 20, Fe has a great influence on the strength similarly to oxygen, and has a bad influence on the cold workability. In addition, the corrosion resistance deteriorates, but the Fe content is reduced to 0.
There is no problem if it is less than 5%.

【0060】図2は、冷間据え込み加工試験の場合の、
限界冷間加工度に及ぼすZr含有量の影響の例を示す図で
ある。この場合のチタン合金のベース組成は、Al:3.0
%、V:3.0%、Mo:1.5%、O:0.1%、Fe:0.1%、bal.:T
i である。図示するように、Zr含有量が本発明で定める
範囲で限界冷間加工度が高くなる。
FIG. 2 shows the results of the cold upsetting test.
It is a figure showing an example of the influence of the Zr content on the critical cold work degree. The base composition of the titanium alloy in this case is Al: 3.0
%, V: 3.0%, Mo: 1.5%, O: 0.1%, Fe: 0.1%, bal .: T
i. As shown in the drawing, the limit cold working degree increases in the range where the Zr content is determined by the present invention.

【0061】表3、表4および図2に示すように、合金
No.2、 No.11〜13および No.22の結果によれば、Zrは強
度、耐食性および冷間加工性の向上に寄与するが、過度
のZr含有 (例えば、合金 No.22ではZr:13 %) は冷間加
工性、延びおよび溶接性を低下させる。しかし、本発明
で定める範囲内であれば冷間加工性と溶接性を損ねるこ
となく、強度と耐食性を向上させる効果がある。
As shown in Tables 3 and 4, and FIG.
According to the results of No. 2, No. 11 to 13 and No. 22, Zr contributes to the improvement of strength, corrosion resistance and cold workability, but contains excessive Zr (for example, Zr in alloy No. 22: 13%) reduces cold workability, elongation and weldability. However, within the range defined by the present invention, there is an effect of improving strength and corrosion resistance without impairing cold workability and weldability.

【0062】合金 No.23、24の既存の純TiやTi−3Al−
2.5V合金では、本発明合金に比べて強度が低く、耐食
性も悪い。
The existing pure Ti or Ti-3Al-
The 2.5V alloy has lower strength and lower corrosion resistance than the alloy of the present invention.

【0063】[0063]

【発明の効果】本発明の合金は、冷間加工性および溶接
性(溶接部強度)にも優れた高強度高耐食性チタン合金
である。溶接性が良好であるから、機械切削によること
なく、化学工業、エネルギー開発、一般工業などの分野
の腐食環境雰囲気で用いるのに好適なチタン合金チュー
ブ材などを、低コストで製造することができる。
The alloy of the present invention is a high-strength and high-corrosion-resistant titanium alloy having excellent cold workability and weldability (weld strength). Since the weldability is good, it is possible to manufacture a titanium alloy tube material suitable for use in a corrosive environment atmosphere in fields such as chemical industry, energy development, general industry, etc. at a low cost without mechanical cutting. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接部曲げ試験の試験片形状を示す図である。FIG. 1 is a view showing the shape of a test piece in a weld bending test.

【図2】冷間据え込み加工試験の場合の、限界冷間加工
度に及ぼすZr含有量の影響の例を示す図である。
FIG. 2 is a diagram showing an example of the effect of the Zr content on the critical cold work degree in the case of a cold upsetting test.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 14/00──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 14/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%で、Al: 1.5〜4.5 %、V: 1.5〜
4.5 %およびMo: 0.1%〜2.5 %未満を含有し、残部は
Tiおよび不可避的不純物からなる冷間加工性および溶接
性に優れた高耐食性チタン合金。
(1) Al: 1.5 to 4.5%, V: 1.5 to 4.5% by weight
4.5% and Mo: 0.1% to less than 2.5%, with the balance being
High corrosion resistance titanium alloy with excellent cold workability and weldability consisting of Ti and unavoidable impurities.
【請求項2】請求項1記載の成分に加えてさらに、重量
%で、Zr: 0.1〜10.0%を含有し、残部はTiおよび不可
避的不純物からなる冷間加工性および溶接性に優れた高
耐食性チタン合金。
2. The composition according to claim 1, further comprising, by weight%, 0.1 to 10.0% by weight of Zr, with the balance comprising Ti and unavoidable impurities having excellent cold workability and weldability. Corrosion resistant titanium alloy.
JP19871693A 1993-08-11 1993-08-11 High corrosion resistance titanium alloy with excellent cold workability and weldability Expired - Fee Related JP2797913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19871693A JP2797913B2 (en) 1993-08-11 1993-08-11 High corrosion resistance titanium alloy with excellent cold workability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19871693A JP2797913B2 (en) 1993-08-11 1993-08-11 High corrosion resistance titanium alloy with excellent cold workability and weldability

Publications (2)

Publication Number Publication Date
JPH0754081A JPH0754081A (en) 1995-02-28
JP2797913B2 true JP2797913B2 (en) 1998-09-17

Family

ID=16395824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19871693A Expired - Fee Related JP2797913B2 (en) 1993-08-11 1993-08-11 High corrosion resistance titanium alloy with excellent cold workability and weldability

Country Status (1)

Country Link
JP (1) JP2797913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519067A (en) * 2020-05-26 2020-08-11 西北有色金属研究院 High-performance, low-cost and high-strength titanium alloy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969109B1 (en) * 1998-05-26 2006-10-11 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy and process for production
RU2203974C2 (en) * 2001-05-07 2003-05-10 ОАО Верхнесалдинское металлургическое производственное объединение Titanium-based alloy
US6786985B2 (en) 2002-05-09 2004-09-07 Titanium Metals Corp. Alpha-beta Ti-Ai-V-Mo-Fe alloy
CN105316524B (en) * 2014-08-04 2017-11-28 中国科学院金属研究所 Strong high-ductility titanium alloy and preparation method thereof in a kind of Ti Al Zr Mo V systems
CN104923968A (en) * 2015-06-24 2015-09-23 宝鸡钛业股份有限公司 Special Ti-6Al-3V welding wire for Ti-6Al-4V ELI titanium alloy and machining process of special Ti-6Al-3V welding wire
CN106636742B (en) * 2016-11-17 2018-08-07 中世钛业有限公司 A kind of ZSA-3 titanium alloy tubes, preparation method and applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519067A (en) * 2020-05-26 2020-08-11 西北有色金属研究院 High-performance, low-cost and high-strength titanium alloy
CN111519067B (en) * 2020-05-26 2021-11-09 西北有色金属研究院 High-performance, low-cost and high-strength titanium alloy

Also Published As

Publication number Publication date
JPH0754081A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP4554088B2 (en) Peel-resistant aluminum-magnesium alloy
KR101291419B1 (en) Ni-BASED HEAT-RESISTANT ALLOY
EP1392876B1 (en) Titanium-base alloy
JP3104622B2 (en) Nickel-based alloy with excellent corrosion resistance and workability
JPS6389637A (en) Corrosion resistant high strength nickel base alloy
JPS5941505B2 (en) Ferrite corrosion resistant chromium ↓ - molybdenum ↓ - nickel steel
US5424029A (en) Corrosion resistant nickel base alloy
JPH05117791A (en) High strength and high toughness cold workable titanium alloy
JP2797913B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
US3510294A (en) Corrosion resistant nickel-base alloy
EP0396821B1 (en) Zirconium alloy having improved corrosion resistance in nitric acid and good creep strength
JPS625976B2 (en)
JP2005320618A (en) High-strength alpha+beta-type titanium alloy
JP2622530B2 (en) Welding material for austenitic steel with excellent high-temperature strength
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
JP2800651B2 (en) High corrosion resistance titanium alloy with excellent cold workability and weldability
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
JP2797914B2 (en) High strength titanium alloy with excellent cold workability and weldability
JPH11170084A (en) Filler metal for ni based high cr alloy
US20180195154A1 (en) Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system
JP6825514B2 (en) Austenitic heat resistant alloy member
JPS6144128B2 (en)
JPH0210212B2 (en)
JPH03197638A (en) High strength and high corrosion-resistant titanium base alloy
JPH07166270A (en) Copper alloy excellent in resistance to ant-lair-like corrosion

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees