JPH0754010A - Method for degassing metal power in metal vessel by vacuum heating - Google Patents

Method for degassing metal power in metal vessel by vacuum heating

Info

Publication number
JPH0754010A
JPH0754010A JP5198398A JP19839893A JPH0754010A JP H0754010 A JPH0754010 A JP H0754010A JP 5198398 A JP5198398 A JP 5198398A JP 19839893 A JP19839893 A JP 19839893A JP H0754010 A JPH0754010 A JP H0754010A
Authority
JP
Japan
Prior art keywords
powder
metal
container
gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5198398A
Other languages
Japanese (ja)
Inventor
Yoshihiro Jitsumatsu
嘉浩 實松
Shingo Izumi
真吾 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5198398A priority Critical patent/JPH0754010A/en
Publication of JPH0754010A publication Critical patent/JPH0754010A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the time required to release gas existing in gaps in metal powder filled into a metal vessel and gas adsorbed on the surface of the powder from the vessel by making the inside of the vessel vacuum and heating the powder. CONSTITUTION:The apparent density of metal powder in a metal vessel is regulated to >=72% to considerably increase the heat conductivity of the powder and to shorten the time required to soak the powder up to the central part at the time of heating. Space for releasing gas is held by regulating the apparent density to <=90%. Since the central part of the powder is rapidly heated, the release of adsorbed gas dependent on temp. is rapidly carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、HIP処理に先立っ
て、製品として成形する形にほぼ相似の金属製容器(以
後容器という)の中に充填された金属粉体から、前記金
属粉体に吸着された空気中の水分、酸素等のガス成分を
効率的に脱気する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a method for converting a metal powder filled in a metal container (hereinafter referred to as a container) having a shape similar to that of a product to be molded into a metal powder into a metal powder prior to HIP treatment. The present invention relates to a method for efficiently degassing adsorbed gas components such as water and oxygen in air.

【0002】[0002]

【従来の技術】金属粉体を成形する形にほぼ相似の容器
に充填しHIPにより焼結する方法において、HIPに
先立って容器中の粉体の隙間空間ならびに粉体に吸着し
たガス成分を放出させるために、容器の口金を真空ポン
プに結合し、場合によっては加熱を併用し、真空脱気を
施した後に、口金を封止し気密状態とした後にHIPす
る方法が採用されることが多い。
2. Description of the Related Art In a method of filling a metal powder into a container having a similar shape to that of a metal powder and sintering it by HIP, the gap space of the powder in the container and the gas component adsorbed to the powder are released prior to HIP. In order to achieve this, a method is often adopted in which the mouthpiece of the container is connected to a vacuum pump, heating is also used in some cases, vacuum deaeration is performed, and then the mouthpiece is sealed to make an airtight state and then HIP. .

【0003】ここで、真空脱気工程において加熱が併用
される理由は、加熱により粉体表面からのガス放出を促
進するためである。つまり、粉体は製造過程、輸送過程
においてガスと接触しているため表面にはガスを吸着し
ている。特に空気中で取り扱われた粉体は空気中の水
分、酸素等を吸着している。一般にこれらのガス成分は
粉体中に固溶したり化合物として残留し、HIPされた
製品に有害な影響を与えることが多く、これらの影響を
低減するために吸着ガスを放出させることが行なわれ
る。
The reason why heating is used together in the vacuum degassing step is to accelerate the release of gas from the powder surface by heating. That is, the powder is in contact with the gas during the manufacturing process and the transportation process, and therefore the gas is adsorbed on the surface. In particular, the powder handled in the air adsorbs moisture, oxygen, etc. in the air. Generally, these gas components are often solid-dissolved in the powder or remain as a compound and often have a harmful effect on the HIPed product. To reduce these effects, the adsorbed gas is released. .

【0004】固体表面の吸着ガスを放出させる手段とし
ての真空下における加熱は、真空機器において常用され
ているためここでは詳しい説明は省略し、容器中の金属
粉体の加熱における特殊性について以下に述べる。
Since heating under vacuum as a means for releasing the adsorbed gas on the solid surface is commonly used in vacuum equipment, a detailed description thereof will be omitted here, and the peculiarities in heating the metal powder in the container will be described below. Describe.

【0005】[0005]

【発明が解決しようとする課題】金属粉体を容器に充填
する方法としては、粉体の流動性が良く且つ、タップ密
度が高い場合、振動充填法が一般に行なわれている。こ
の場合、容器中の金属粉体の平均接触数が少なく、その
上点接触となっている。そのため、このような状態の金
属粉体の熱伝導率は非常に小さい状態にある。
As a method for filling a metal powder into a container, a vibration filling method is generally used when the powder has good fluidity and a high tap density. In this case, the average contact number of the metal powder in the container is small, and the upper point contact is made. Therefore, the thermal conductivity of the metal powder in such a state is very small.

【0006】一方、容器中粉体の加熱手段としては、加
熱の容易性等から一般的には容器外周を加熱する手段に
よることが多く、この場合、従来の振動充填法で充填さ
れた熱伝導率が低い粉体においては中心部まで均熱する
のに長時間を要することとなる。真空中加熱による吸着
ガスの放出は加熱温度により放出状態が異なるため、昇
温が遅れる中心部の温度で時間を決定する必要がある。
このため、真空加熱脱気作業は長時間を要する。
On the other hand, as a means for heating the powder in the container, generally, a means for heating the outer circumference of the container is often used because of easiness of heating, and in this case, the heat conduction filled by the conventional vibration filling method is used. In the case of a powder having a low rate, it takes a long time to uniformly heat the powder to the center. Since the release state of the adsorbed gas by heating in vacuum varies depending on the heating temperature, it is necessary to determine the time by the temperature of the central portion where the temperature rise is delayed.
Therefore, the vacuum heating and deaeration work requires a long time.

【0007】別の方法として、容器中粉体の熱伝導率を
向上させる手段として、容器中に高圧ガスを導入するこ
とにより、粉体隙間空間での熱伝達を向上させることが
提案されている。
As another method, as a means for improving the thermal conductivity of the powder in the container, it has been proposed to introduce high-pressure gas into the container to improve heat transfer in the powder gap space. .

【0008】しかしながら、この方法による場合は高圧
ガスを導入したまま加熱することとなり、場合によって
は粉体と導入ガス、あるいは吸着ガスが加熱中に反応す
る可能性があり、HIP後に得られる製品特性に与える
影響を確認する手間がかかる。さらに、圧力に対抗でき
るカプセルの剛性向上、あるいはカプセルの膨張防止の
ための治具を準備する必要があり、容易に採用できない
という欠点があった。以上のことから、真空加熱脱気工
程の時間を短縮し、コストを削減するには粉体の熱伝導
率を他の方法で向上させた後に加熱する必要があり、こ
れが本発明の目的である。
However, in the case of this method, heating is performed while the high-pressure gas is introduced, and in some cases, the powder and the introduced gas or the adsorbed gas may react during heating, and the product characteristics obtained after HIP It takes time and effort to confirm the impact on Further, it is necessary to prepare a jig for improving the rigidity of the capsule that can withstand the pressure or for preventing the expansion of the capsule, which is a drawback that it cannot be easily adopted. From the above, in order to shorten the time of the vacuum heating degassing step and reduce the cost, it is necessary to heat the powder after improving the thermal conductivity of the powder by another method, which is the object of the present invention. .

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明は金属粉体を金属製の容器に充填し、該容
器の内部を真空とするとともに容器中に充填された金属
粉体を加熱し、該金属粉体隙間空間に存在するガスおよ
び当金属粉体表面に吸着されたガスを容器の外に放出さ
せる方法であって、前記容器内部の金属粉体の見かけ密
度を予め72%以上90%以下とした後に該容器を真空
引きし、且つ加熱することを特徴とする。
In order to solve the above-mentioned problems, the present invention is to fill a metal container with metal powder, evacuate the inside of the container, and fill the container with the metal powder. A method of heating a body to release the gas existing in the gap space of the metal powder and the gas adsorbed on the surface of the metal powder to the outside of the container, in which the apparent density of the metal powder inside the container is set in advance. It is characterized in that the container is evacuated and heated after it is adjusted to 72% or more and 90% or less.

【0010】[0010]

【作用】容器中に充填した金属粉体をHIP処理に先立
って、加圧し、粉体の見かけ密度を64%以上90%以
下にすることにより、粉体の熱伝導率が大幅に向上し後
工程である真空加熱脱気時間が大幅に短縮される。
[Function] The metal powder filled in the container is pressurized prior to the HIP treatment to make the apparent density of the powder 64% or more and 90% or less, thereby significantly improving the thermal conductivity of the powder. The vacuum heating degassing time, which is a process, is significantly shortened.

【0011】詳しく説明すると、金属粉体に圧力を加え
ると金属粉体は初期充填状態から容易に再配列を起こ
し、その後、隣接粒子との接触状態が点接触から面接触
となった後、圧力の増加に伴い平均接触数を増加させな
がら隣接粒子間の接触面積を増大させていく。
More specifically, when pressure is applied to the metal powder, the metal powder easily rearranges from the initial filling state, and then the contact state with the adjacent particles changes from point contact to surface contact, and then the pressure is applied. The contact area between adjacent particles is increased while increasing the average number of contacts as

【0012】隣接する粉体粒子の接触状態が点接触状態
から面接触となるときに熱伝導率が急激に増大する。こ
れにより、振動充填したままの金属粉体の熱伝導率を1
0倍から100倍程度にできる。工業的にこの状態を常
温付近で得る手段としては、金属粉体を高圧力で加圧す
ることにより達成できる。
When the contact state of adjacent powder particles changes from the point contact state to the surface contact, the thermal conductivity sharply increases. As a result, the thermal conductivity of the metal powder as vibrated and filled is 1
It can be 0 to 100 times. A means for industrially obtaining this state at around room temperature can be achieved by pressurizing the metal powder at a high pressure.

【0013】一方、金属粉体に加える加圧力を大きくし
過ぎると、粉体の接触面積が増大し、粉体隙間空間が狭
くなってガスの通り易さの指標であるコンダクタンスが
低下してくる。粉体内部を真空状態にする手段として
は、粉体隙間空間に当初より存在するガスならびに粉体
表面から放出されるガスを粉体隙間空間を通じて真空ポ
ンプに導くことになるため、粉体隙間空間をある程度確
保しなければならない。この粉体の隙間空間の大きさは
加圧力により制御することで可能である。
On the other hand, if the pressure applied to the metal powder is too large, the contact area of the powder increases, the space between the powder particles becomes narrow, and the conductance, which is an index of gas passage, decreases. . As a means for bringing the inside of the powder into a vacuum state, the gas originally existing in the powder gap space and the gas released from the powder surface are guided to the vacuum pump through the powder gap space. Must be secured to some extent. The size of the gap space of the powder can be controlled by the pressing force.

【0014】[0014]

【実施例】本発明の方法および比較例として従来の方法
で実際に図2に示す設備を使用しガスアトマイズした鋼
粉末を用いて次の実験をした。図2において3は前記粉
末を充填した容器、1は内部に加熱ヒーター2を配置し
た加熱炉、4は真空ポンプを示す。
EXAMPLES As the method of the present invention and a comparative example, the following experiment was conducted by using the steel powder which was actually gas-atomized by the conventional method using the equipment shown in FIG. In FIG. 2, 3 is a container filled with the powder, 1 is a heating furnace in which a heater 2 is arranged, and 4 is a vacuum pump.

【0015】実施条件を下記に示す。 (条件) 使用粉末 :平均粒径150μmのガスアトマイズ
高速度鋼粉末 容器への充填率:70%,75% (見かけ密度)上記のように粉体を充填した容器3を各
々加熱炉1へ配置し同一の炉内雰囲気温度に保持しつ
つ、容器表面ならびに中央部で温度対経過時間を測定し
た。表1に測定位置を示す。その結果を図1に示す。
The implementation conditions are shown below. (Conditions) Powder used: Gas atomized high-speed steel powder having an average particle size of 150 μm Filling ratio into containers: 70% and 75% (apparent density) The containers 3 filled with the powder as described above were placed in the heating furnace 1, respectively. While keeping the same atmosphere temperature in the furnace, the temperature versus elapsed time was measured on the container surface and in the center. Table 1 shows the measurement positions. The result is shown in FIG.

【0016】[0016]

【表1】 [Table 1]

【0017】図1から明らかなように、本発明方法の実
施例である充填率75%においては容器中央部での温度
が容器表面とほぼ等しく、均熱されるまでの時間は従来
法に比べ大幅に短縮されることがわかる。
As is apparent from FIG. 1, at the filling rate of 75%, which is an embodiment of the method of the present invention, the temperature at the center of the container is almost equal to the surface of the container, and the time until the temperature is soaked is much larger than that of the conventional method. You can see that it is shortened to.

【0018】一般に入手できる金属粉体は粒度分布をも
っているため、単一粒径の場合より初期充填密度が大き
い。このような状況をふまえて適正な見かけ密度の範囲
を決定した。図3に実施例で示したガスアトマイズ高速
度鋼粉末の見かけ密度と熱伝導率の関係を示すが、見か
け密度が70%前後で熱伝導率が大きく変化している。
このため、安定的に高い熱伝導率を得るために見かけ密
度の下限を72%とした。また、上限としては見かけ密
度が90%以上では図4に示すごとく粉体粒子同士の接
触面積が広くなり、且つ、粉体隙間空間が小さくなりコ
ンダクタンスの低下度合いも大きく、表面吸着ガスの放
出が十分でない。さらに、図5に示すごとく、見かけ密
度を90%以上に圧密するには高い圧力が必要となるた
め硬質合金では実用的ではない。
Since generally available metal powders have a particle size distribution, the initial packing density is higher than that of a single particle size. Based on such a situation, an appropriate range of apparent density was determined. FIG. 3 shows the relationship between the apparent density and the thermal conductivity of the gas atomized high-speed steel powder shown in the example. The thermal conductivity greatly changes when the apparent density is around 70%.
For this reason, the lower limit of the apparent density is set to 72% in order to stably obtain high thermal conductivity. Further, as an upper limit, when the apparent density is 90% or more, the contact area between the powder particles becomes large as shown in FIG. 4, the space between the powder particles becomes small, and the degree of decrease in conductance is large, so that the surface adsorption gas is not released. not enough. Further, as shown in FIG. 5, a high pressure is required to consolidate the apparent density to 90% or more, so that it is not practical for a hard alloy.

【0019】また、本実施例はHIPにおける粉体容器
について述べたが、金属粉体を金属容器に充填した後、
熱間押出する際の真空加熱脱気にも応用できる。さら
に、粉体についてはガスアトマイズ粉末について示した
が、ボールミル等により機械的に合金化した粉体につい
ても本発明により同様の効果を得ることができる。な
お、金属粉体の見かけ密度を72%以上、90%以下に
する方法としてCIP法、プレス法がある。どちらも、
粉体を容器に充填する前にも後にも採用できる。
In this embodiment, the powder container in the HIP is described, but after filling the metal container with the metal powder,
It can also be applied to vacuum heating degassing during hot extrusion. Further, although the powder is shown as the gas atomized powder, the same effect can be obtained by the present invention even for the powder mechanically alloyed by a ball mill or the like. There are a CIP method and a pressing method as methods for making the apparent density of the metal powder 72% or more and 90% or less. Both
It can be used before or after filling the powder into the container.

【0020】[0020]

【発明の効果】実施例に示すごとく本発明によれば、粉
体中心部の温度が非常に早く上昇するため、真空加熱脱
気工程を短縮することができる。このため多数の容器を
対象とした場合、真空脱気に要する設備、場所を低減で
き、個々の容器においては装置の占有時間を低減できる
ことから製作コストの低減が可能となる。
As shown in the examples, according to the present invention, the temperature of the powder central portion rises very quickly, so that the vacuum heating and deaeration process can be shortened. Therefore, when a large number of containers are targeted, the equipment and place required for vacuum deaeration can be reduced, and the occupancy time of the device in each individual container can be reduced, so that the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法と従来例との実験結果を示す。FIG. 1 shows the experimental results of the method of the present invention and a conventional example.

【図2】上記実験に使用した設備を示す。FIG. 2 shows the equipment used in the above experiment.

【図3】見かけ密度と熱伝導の関係を示す図。FIG. 3 is a diagram showing a relationship between apparent density and heat conduction.

【図4】見かけ密度と粉体表面の接触面積比との関係を
示す図。
FIG. 4 is a diagram showing a relationship between an apparent density and a contact area ratio of a powder surface.

【図5】見かけ密度と圧密に必要な圧力/粉体金属の降
伏点の関係を示す図。
FIG. 5 is a diagram showing a relationship between apparent density and pressure required for consolidation / yield point of powder metal.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 加熱用ヒーター 3 容器 4 真空ポンプ 1 Heating furnace 2 Heating heater 3 Container 4 Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属粉体を金属製の容器に充填し、該容
器の内部を真空とするとともに容器中に充填された金属
粉体を加熱し、該金属粉体隙間空間に存在するガスおよ
び当金属粉体表面に吸着されたガスを容器の外に放出さ
せる方法であって、前記容器内部の金属粉体の見かけ密
度を予め72%以上90%以下とした後に該容器を真空
引きし且つ加熱することを特徴とする金属製容器中の金
属粉体の真空加熱脱気方法。
1. A metal container is filled with metal powder, the inside of the container is evacuated, and the metal powder filled in the container is heated to remove the gas existing in the metal powder gap space. A method of releasing the gas adsorbed on the surface of the metal powder to the outside of the container, comprising vacuuming the container after setting the apparent density of the metal powder inside the container to 72% or more and 90% or less in advance. A method for vacuum heating and deaerating a metal powder in a metal container, which comprises heating.
JP5198398A 1993-08-10 1993-08-10 Method for degassing metal power in metal vessel by vacuum heating Withdrawn JPH0754010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5198398A JPH0754010A (en) 1993-08-10 1993-08-10 Method for degassing metal power in metal vessel by vacuum heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5198398A JPH0754010A (en) 1993-08-10 1993-08-10 Method for degassing metal power in metal vessel by vacuum heating

Publications (1)

Publication Number Publication Date
JPH0754010A true JPH0754010A (en) 1995-02-28

Family

ID=16390473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5198398A Withdrawn JPH0754010A (en) 1993-08-10 1993-08-10 Method for degassing metal power in metal vessel by vacuum heating

Country Status (1)

Country Link
JP (1) JPH0754010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen
CN116790953A (en) * 2023-07-05 2023-09-22 中国机械总院集团北京机电研究所有限公司 High-performance nano hard alloy product and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013112576A (en) * 2011-11-30 2013-06-10 Yasuo Ishikawa Method and apparatus for generating hydrogen
CN116790953A (en) * 2023-07-05 2023-09-22 中国机械总院集团北京机电研究所有限公司 High-performance nano hard alloy product and preparation method thereof
CN116790953B (en) * 2023-07-05 2024-01-05 中国机械总院集团北京机电研究所有限公司 High-performance nano hard alloy product and preparation method thereof

Similar Documents

Publication Publication Date Title
CN104213004B (en) Laser weldable aluminum based composite material and preparation method thereof
JP2008533303A (en) Method for producing metal matrix composite material and apparatus for carrying out the method
CN101754825B (en) Process for producing electrode for discharge surface treatment, and electrode for discharge surface treatment
JPH0754010A (en) Method for degassing metal power in metal vessel by vacuum heating
US7763204B2 (en) Manufacturing process and apparatus
JPS6220152B2 (en)
JP2018078182A (en) Method for manufacturing rare earth magnet
JP2004250725A (en) Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JP2559187B2 (en) Metal sintered body and method for manufacturing the same
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
CN113414389A (en) Preparation method of Fe-Co soft magnetic alloy under coupling action of multiple physical fields
RU2252838C2 (en) Powder refractory metal hot pressing method
JPH0332574A (en) Manufacture of resin-bond diamond or cbn wheel
RU2063086C1 (en) Contact manufacturing process for vacuum arc-control chambers
JPH07242910A (en) Press sintering method using fluid powder
JPH03187980A (en) Method for removing glass capsule in hot isostatic pressing
JPH0717922B2 (en) Heating method for producing iron powder by finishing reduction of atomized raw material iron powder
JPH03267326A (en) Production of sintered body made of amorphous alloy powder
JPH0860203A (en) Production of compacted and sintered body of high melting point metal powder
JPH0812450A (en) Production of sintered compact by hot isotropic pressure treatment
JPS585962B2 (en) Hot isostatic pressing method
JPH0553756B2 (en)
JPH0348253B2 (en)
JPH03193299A (en) Molding method and molding device for brittle material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031