JPH0717922B2 - Heating method for producing iron powder by finishing reduction of atomized raw material iron powder - Google Patents

Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Info

Publication number
JPH0717922B2
JPH0717922B2 JP2159523A JP15952390A JPH0717922B2 JP H0717922 B2 JPH0717922 B2 JP H0717922B2 JP 2159523 A JP2159523 A JP 2159523A JP 15952390 A JP15952390 A JP 15952390A JP H0717922 B2 JPH0717922 B2 JP H0717922B2
Authority
JP
Japan
Prior art keywords
iron powder
temperature
preheating
raw material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2159523A
Other languages
Japanese (ja)
Other versions
JPH0448002A (en
Inventor
浩史 矢埜
古君  修
重彰 高城
和夫 赤岡
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP2159523A priority Critical patent/JPH0717922B2/en
Publication of JPH0448002A publication Critical patent/JPH0448002A/en
Publication of JPH0717922B2 publication Critical patent/JPH0717922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアトマイズ原料鉄粉を仕上還元して鉄粉を製造
するときの加熱方法に係り、詳しくは、Cr、Mn等の難還
元性元素および炭素を含むよう、予め合金化されたアト
マイズ原料鉄粉を原料とし、これを仕上還元焼鈍して鉄
粉を製造する際に、アトマイズ原料鉄粉を室温から仕上
還元温度にまで予熱する予熱過程で、原料鉄粉の突沸現
象を発生させることなく、昇温時間を短縮した条件で予
熱でき、更に、原料鉄粉の仕上還元も迅速に進行させる
ことができる加熱方法に係る。
Description: TECHNICAL FIELD The present invention relates to a heating method for producing iron powder by finish-reducing atomized raw material iron powder, and more specifically, a non-reducing element such as Cr and Mn and carbon. In order to include the pre-alloyed atomized raw material iron powder as a raw material, when producing iron powder by finish reduction annealing this, in the preheating process of preheating the atomized raw material iron powder from room temperature to the finish reduction temperature, The present invention relates to a heating method capable of preheating under a condition that a temperature rising time is shortened without causing a bumping phenomenon of a raw material iron powder, and further allowing a finish reduction of the raw material iron powder to proceed rapidly.

従来の技術 鉄粉焼結部品の需要は年々増加の一途をたどり、とりわ
け、高強度、高靱性が要求される部品に対応した合金鋼
粉の需要が増大する傾向にある。強化合金元素としては
例えば安価なCr、Mnが好適であるが、Cr、Mnを予め合金
化した鋼粉を従来法の水アトマイズ−ガス還元法で製造
すると、これらの元素は酸素との親和力が強いため、鋼
粉中に含まれる酸素の量を低減することが困難であっ
た。このようなCr、Mnを含む合金鋼粉の脱酸を行なう方
法としては、例えば、特公昭58−10962号公報に記載の
真空還元が提案され、現在低酸素鋼粉が製造可能となっ
ている。
2. Description of the Related Art The demand for sintered iron powder parts is increasing year by year, and in particular, the demand for alloy steel powder for parts that require high strength and high toughness tends to increase. As the strengthening alloy element, for example, inexpensive Cr and Mn are preferable, but when the steel powder pre-alloyed with Cr and Mn is manufactured by the conventional water atomization-gas reduction method, these elements have an affinity with oxygen. Since it is strong, it is difficult to reduce the amount of oxygen contained in the steel powder. As a method for deoxidizing the alloy steel powder containing Cr and Mn, for example, vacuum reduction described in JP-B-58-10962 is proposed, and low-oxygen steel powder can now be produced. .

この低酸素鋼粉の製造にあたって、アトマイズ粉の予熱
還元などに供せられる熱処理炉の一例を示すと、特開昭
61−19004号公報に記載の通りである。この熱処理炉
は、予熱室、還元焼鈍室ならびに冷却室が横並びに配置
され、各室の境界が可動扉によって仕切されている。ま
た、この予熱室においては、難還元性元素および炭素を
含むアトマイズ粉末から成る原料鉄粉を予熱、乾燥し、
次に、隣接する還元焼鈍室において、予熱されたアトマ
イズ粉末を、その中に含まれる炭素を利用して脱酸なら
びに焼鈍する。この還元焼鈍された鋼粉は冷却室で冷却
されて、低酸素鋼粉が製造される。
An example of a heat treatment furnace used for preheating reduction of atomized powder in the production of this low oxygen steel powder is shown in
It is as described in 61-19004. In this heat treatment furnace, a preheating chamber, a reduction annealing chamber, and a cooling chamber are arranged side by side, and the boundaries of each chamber are partitioned by a movable door. Further, in this preheating chamber, a raw iron powder consisting of atomized powder containing a non-reducing element and carbon is preheated and dried,
Next, in the adjacent reduction annealing chamber, the preheated atomized powder is deoxidized and annealed by utilizing the carbon contained therein. This reduction-annealed steel powder is cooled in a cooling chamber to produce low-oxygen steel powder.

この構造の熱処理炉を原料鉄粉の還元焼鈍に用いて、特
公昭58−10962号公報に示すように、20Torr以下の減圧
雰囲気中で仕上焼鈍温度の800〜1300℃まで昇温する場
合には、その前段階として予熱室において、650〜800℃
まで昇温する。
When the heat treatment furnace of this structure is used for reduction annealing of the raw iron powder, as shown in JP-B-58-10962, in the case of heating up to the finishing annealing temperature of 800 to 1300 ° C. in a reduced pressure atmosphere of 20 Torr or less, , 650-800 ℃ in the preheating room as the previous stage
Up to.

この予熱室では、生産性向上のために、急速加熱するこ
とが望まれる。
In this preheating chamber, rapid heating is desired to improve productivity.

しかし、急速加熱すると、予熱室で、原料鉄粉中よりガ
スが急激に発生し、原料鉄粉が予熱室内で舞い上がる現
象(以下、突沸現象という)が起こる。この現象が予熱
室内で発生すると、予熱室中に原料鉄粉が飛び散り、ヒ
ーターを損傷させる。
However, when heated rapidly, a gas is suddenly generated from the raw iron powder in the preheating chamber, and the raw iron powder rises in the preheating chamber (hereinafter referred to as bumping phenomenon). When this phenomenon occurs in the preheating chamber, the raw material iron powder scatters in the preheating chamber and damages the heater.

とくに、この突沸現象は、Cr、Mnなどの難還元性元素と
ともに炭素が含まれている場合には顕著にあらわれる。
このため、難還元性元素や炭素を含むアトマイズ粉を原
料鉄粉とする場合には、この突沸現象を防止するため
に、200℃/hr程度の温度でゆっくりと昇温し、予熱室で
急激にガスが発生しないようにする必要がある。しか
し、この程度の昇温速度では、予熱に長時間かかり、予
熱−還元焼鈍−冷却工程のうち、とくに、予熱段階が律
速されることになり、生産性の低下を招く。
In particular, this bumping phenomenon appears remarkably when carbon is contained together with the non-reducing elements such as Cr and Mn.
For this reason, when using atomized powder containing a non-reducible element or carbon as the raw material iron powder, in order to prevent this bumping phenomenon, the temperature is slowly raised at a temperature of about 200 ° C./hr and then rapidly increased in the preheating chamber. It is necessary to prevent the generation of gas. However, at such a rate of temperature rise, preheating takes a long time, and in the preheating-reduction annealing-cooling step, the preheating step is rate-limited, resulting in a decrease in productivity.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、アト
マイズ原料鉄粉を予熱、仕上還元して鉄粉を製造する際
に、この予熱過程において、突沸現象を発生させること
なく、予熱時間の短縮を図るのに好適な合金鋼粉仕上還
元焼鈍時の昇温方法を提案することを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention aims to solve the above problems, specifically, preheating atomized raw material iron powder, when producing iron powder by finish reduction, in this preheating process, bumping phenomenon It is an object of the present invention to propose a temperature rising method during alloy steel powder finish reduction annealing that is suitable for shortening the preheating time without generating it.

課題を解決するための手段ならびにその作用 すなわち、本発明は難還元性元素および炭素を含むアト
マイズ原料鉄粉を、室温から650〜800℃まで昇温させつ
つ加熱する予熱過程を経て、800〜1300℃の温度で仕上
還元焼鈍して鉄粉を製造する際に、この室温から650〜8
00℃までの予熱過程は20Torr以下の減圧雰囲気中で実施
すると共に、300〜650℃の間で10分〜30分間保持するよ
う、予熱して、原料鉄粉の突沸を防止し、その後の仕上
還元焼鈍過程も20Torr以下の減圧雰囲気中で実施するこ
とを特徴とする。
Means for solving the problem and its action That is, the present invention, atomizing raw material iron powder containing a non-reducing element and carbon, through a preheating process of heating while raising the temperature from room temperature to 650 ~ 800 ° C., 800 ~ 1300 When producing iron powder by finish reduction annealing at a temperature of ℃, from this room temperature to 650 ~ 8
The preheating process up to 00 ° C is performed in a depressurized atmosphere of 20 Torr or less, and preheating is performed so that the temperature is maintained at 300 to 650 ° C for 10 to 30 minutes to prevent bumping of the raw iron powder, and then finishing. The reduction annealing process is also characterized by being performed in a reduced pressure atmosphere of 20 Torr or less.

以下、本発明の手段たる構成ならびにその作用について
詳しく説明すると、次の通りである。
Hereinafter, the structure of the present invention and its operation will be described in detail.

まず、本発明においては、Cr等の難還元性元素および炭
素を含むアトマイズされたアトマイズ原料鉄粉を、20To
rr以下の減圧雰囲気中で室温から650〜800℃まで昇温さ
せる予熱過程を経て、更に、この予熱された原料鉄粉を
20Torr以下の減圧雰囲気中で800〜1300℃の温度で仕上
げ還元し、この予熱過程において、300〜650℃の間の温
度域で、10分〜30分間減圧鉄粉を保持して、予熱過程に
おける原料鉄粉の所謂突沸現象を抑制する。
First, in the present invention, the atomized raw material iron powder that is atomized containing a non-reducing element such as Cr and carbon, 20To
After the preheating process of raising the temperature from room temperature to 650 to 800 ° C in a reduced pressure atmosphere of rr or less, the preheated raw iron powder is further
Finish reduction at a temperature of 800 ~ 1300 ℃ in a reduced pressure atmosphere of 20 Torr or less, and in this preheating process, hold the reduced pressure iron powder in the temperature range between 300 ~ 650 ℃ for 10 ~ 30 minutes, and in the preheating process. The so-called bumping phenomenon of the raw iron powder is suppressed.

このように室温から650〜800℃まで予熱すると、突沸現
象がさけられるため、昇温速度は例えば300℃/hr、400
℃/hrまで昇温させることができ、生産性を大巾に改善
できる。
In this way, when preheating from room temperature to 650 to 800 ° C, the bumping phenomenon is avoided, so the temperature rising rate is, for example, 300 ° C / hr, 400
The temperature can be raised up to ° C / hr and productivity can be greatly improved.

すなわち、従来例では、先に示す通り、減圧雰囲気中で
650〜800℃まで昇温する予熱過程において、突沸現象を
さけるため、昇温速度、最大約200℃/hr程度でゆっくり
と加熱する。しかし、この予熱では時間がかかる。
That is, in the conventional example, as shown above, in a reduced pressure atmosphere.
In the preheating process of raising the temperature to 650-800 ℃, in order to avoid the bumping phenomenon, heating is done slowly at a heating rate of about 200 ℃ / hr at maximum. However, this preheating takes time.

そこで、突沸現象の原因についてしらべたところ、突沸
現象は予熱の際に原料鉄粉から発生する水蒸気ガスとCO
ガスに起因することがわかった。とくに、原料鉄粉充填
層内での温度差によって、水蒸気ガスとCOガスの発生時
間に差が生じ、この時間差をもって発生したガスが内部
から僅かに焼結した表層部の原料鉄粉を噴き上げ、原料
鉄粉充填層の外に出ることによって起こることがわかっ
た。
Therefore, when we investigated the cause of the bumping phenomenon, it was found that the bumping phenomenon was caused by steam gas and CO generated from the raw iron powder during preheating.
It was found to be due to gas. In particular, due to the temperature difference in the raw iron powder packed bed, a difference occurs in the steam gas and CO gas generation time, and the gas generated with this time difference spouts the raw material iron powder in the surface layer portion slightly sintered from the inside, It was found to occur by going out of the raw iron powder packed bed.

また、800〜1300℃で、しかも、20Torr以下の減圧雰囲
気中で仕上還元焼鈍を行なって、還元の進行を速めると
ともに、この還元を更に短時間で終了させるため、先に
示す通り、予熱過程で、650〜800℃まで昇温加熱する。
この予熱過程で表層部の原料鉄粉の突沸現象の発生をさ
けるために、300〜650℃の温度範囲で10分〜30分保持す
るが、この理由は次の通りである。
In addition, at 800 to 1300 ° C, and further, finish reduction annealing is performed in a reduced pressure atmosphere of 20 Torr or less to accelerate the progress of reduction and to finish this reduction in a shorter time. Heat up to 650-800 ℃.
In order to avoid the bumping phenomenon of the raw material iron powder in the surface layer during this preheating process, the temperature is kept at 300 to 650 ° C for 10 minutes to 30 minutes, for the following reason.

保持する温度域を300〜650℃にしたのは300℃未満であ
ると原料鉄粉に含まれる水分が完全に除去できず、予熱
過程で昇温する時に突沸現象が起こる。
If the temperature range to be held is 300 to 650 ° C, if it is less than 300 ° C, the water contained in the raw iron powder cannot be completely removed, and the bumping phenomenon occurs when the temperature is raised in the preheating process.

また、650℃を越えると、原料鉄粉よりCOガスが発生す
るとともに原料鉄粉の充填層の表面が焼結し始める。こ
のため、充填層内部から発生する水蒸気あるいはCOガス
により焼結し始めた原料鉄粉を噴き上げられ、突沸現象
が起こる。
Further, when the temperature exceeds 650 ° C, CO gas is generated from the raw iron powder and the surface of the packed layer of the raw iron powder starts to sinter. For this reason, the raw iron powder that has begun to be sintered is blown up by the steam or CO gas generated from the inside of the packed bed, and the bumping phenomenon occurs.

要するに、予熱過程で、300〜650℃の温度域で10分以上
保持すると、水蒸気を完全に除去でき、原料鉄粉の表面
でも焼結し結合することがない。このため、水蒸気ガス
によって原料鉄粉の充填層内にガスの抜け道が形成さ
れ、これを通って水蒸気ガスや仮に発生するCOガスが系
外に排出され、突沸現象が起こらない。
In short, in the preheating process, if the temperature is kept in the temperature range of 300 to 650 ° C for 10 minutes or more, the steam can be completely removed and the surface of the raw iron powder is not sintered and bonded. Therefore, a vapor escape path is formed in the packed bed of the raw iron powder by the steam gas, and the steam gas and the CO gas that is temporarily generated are discharged to the outside of the system through this, and the bumping phenomenon does not occur.

なお、保持時間を10分以上とするのは、10分未満では先
にのべた保持効果が得られず、保持後の昇温時に突沸現
象が起こるためである。また、保持時間の上限は生産性
との兼ね合いで決められる。生産性の点で30分程度が好
ましい。
The reason why the holding time is 10 minutes or more is that if the holding time is shorter than 10 minutes, the above-mentioned holding effect cannot be obtained, and the bumping phenomenon occurs when the temperature is raised after the holding. Further, the upper limit of the holding time is determined in consideration of productivity. About 30 minutes is preferable from the viewpoint of productivity.

また、予熱過程後の仕上還元焼鈍を800〜1300℃で行な
うのは、800℃以下では原料鉄粉の還元が不完全であ
り、1300℃以上では焼結が進むからである。
Further, the reason why the finish reduction annealing after the preheating process is performed at 800 to 1300 ° C is that the reduction of the raw iron powder is incomplete at 800 ° C or lower and the sintering proceeds at 1300 ° C or higher.

更に、仕上還元焼鈍を20Torr以下の減圧雰囲気中で行な
うのは、20Torrを越える雰囲気中で仕上還元焼鈍を行な
うと還元の進行がおそいためである。
Furthermore, the reason why the finish reduction annealing is performed in a reduced pressure atmosphere of 20 Torr or less is that the reduction progresses slowly when the finish reduction annealing is performed in an atmosphere exceeding 20 Torr.

また、予熱過程が発生する水蒸気は、鋼粉の吸着水、鉄
水酸化物および化合水が昇温途中に発生するものであ
る。
Further, the water vapor generated in the preheating process is the water in which the steel powder is adsorbed, the iron hydroxide and the compound water are generated during the temperature rise.

また、COガスは原料鉄粉中の固溶炭素が酸化物中の酸素
と反応して発生するものである。
Further, CO gas is generated by the solid solution carbon in the raw iron powder reacting with oxygen in the oxide.

実施例 以下、本発明を実施例に基づいて具体的に説明する。Examples Hereinafter, the present invention will be specifically described based on Examples.

実施例1〜2.比較例1〜3. 第1表に示す鋼粉の化学組成のアトマイズ生粉、つま
り、原料鉄粉を第1図に示すようにステンレス製の8枚
の受皿1、2、3、4、5、6、7、8に80mm以下の厚
さに充填し、それらを段状に構成した黒鉛製の台車9に
積み、炉内に搬入して予熱、還元を行なった。
Examples 1 to 2. Comparative Examples 1 to 3. Atomized raw powder having the chemical composition of the steel powder shown in Table 1, that is, raw iron powder, as shown in FIG. 3, 4, 5, 6, 7, and 8 were filled to a thickness of 80 mm or less, and they were loaded on a trolley 9 made of graphite having a stepwise configuration, and loaded into a furnace for preheating and reduction.

この予熱を行なう予熱室で、比較例1、2、3の場合
は、予熱温度を800℃とし、炉内圧0.01Torr中で第2図
に示す昇温速度200℃/hr、300℃/hr、400℃/hrの3段階
で室温から昇温させて実験を行なった。
In the preheating chamber for performing this preheating, in the case of Comparative Examples 1, 2, and 3, the preheating temperature was set to 800 ° C., and the heating rate 200 ° C./hr, 300 ° C./hr shown in FIG. The experiment was conducted by raising the temperature from room temperature in three steps of 400 ° C./hr.

実験結果を第2表に示す。The experimental results are shown in Table 2.

この場合、従来法の昇温速度200℃/hrでは突沸現象は確
認されなかったが、昇温速度300℃/hr、400℃/hrでは突
沸現象が確認された。
In this case, the bumping phenomenon was not confirmed at the heating rate of 200 ° C./hr in the conventional method, but the bumping phenomenon was confirmed at the heating rates of 300 ° C./hr and 400 ° C./hr.

これに対し、本発明法で、予熱室において、500℃で30
分間保持して予熱したところ、昇温速度300℃/hr、400
℃/hrとした場合の実施例1、2でも、突沸現象は確認
されなかった。
On the other hand, according to the method of the present invention, in the preheating chamber
When held for a minute and preheated, the heating rate was 300 ° C / hr, 400
The bumping phenomenon was not confirmed in Examples 1 and 2 when the temperature was set to be ° C / hr.

第2表から、突沸現象が起こらない条件であると、生産
性向上のために、短時間で800℃に昇温するには本発明
が有利であることがわかる。
It can be seen from Table 2 that the present invention is advantageous in raising the temperature to 800 ° C. in a short time for improving productivity under the condition that the bumping phenomenon does not occur.

実施例3〜7.比較例4〜5. 第3図に示すように、保持温度を250〜700℃に変化させ
て、実施例1と同様に昇温速度400℃/hr、保持時間30分
で実験を行なった。実験結果を第3表に示す。本発明範
囲の実施例3〜7の保持温度においては突沸現象は確認
されなかったが、比較例4〜5の保持温度250℃ならび
に700℃では突沸現象が確認された。
Examples 3 to 7. Comparative Examples 4 to 5. As shown in FIG. 3, the holding temperature was changed to 250 to 700 ° C. and the heating rate was 400 ° C./hr and the holding time was 30 minutes as in Example 1. The experiment was carried out. The experimental results are shown in Table 3. The bumping phenomenon was not confirmed at the holding temperatures of Examples 3 to 7 within the scope of the present invention, but the bumping phenomenon was confirmed at the holding temperatures of 250 ° C. and 700 ° C. of Comparative Examples 4 to 5.

実施例8.比較例6. 保持時間を5分と10分に変化させて、実施例1と同様に
昇温速度400℃/hr、保持温度500℃で実験を行なった。
実験結果を第4表に示す。本発明範囲の保持時間10分の
実施例8においては突沸現象は確認されなかったが、保
持時間5分の比較例6では突沸現象が確認された。
Example 8. Comparative example 6. An experiment was conducted in the same manner as in Example 1 except that the holding time was changed to 5 minutes and 10 minutes, with a temperature rising rate of 400 ° C./hr and a holding temperature of 500 ° C.
The experimental results are shown in Table 4. The bumping phenomenon was not confirmed in Example 8 having a holding time of 10 minutes within the scope of the present invention, but the bumping phenomenon was confirmed in Comparative Example 6 having a holding time of 5 minutes.

〈発明の効果〉 以上説明したように、アトマイズ原料鉄粉中に難還元性
元素および炭素を含み、これら成分を含むと、とくに突
沸現象が発生し易いものにも拘らず、本発明法によって
予熱すると、原料鉄粉は20Torr以下の減圧雰囲気中で室
温から予熱されるとともに800〜1300℃の温度での仕上
還元も同様な減圧雰囲気中で行なわれ、とくに、室温か
ら650〜800℃までの予熱過程では、300〜650℃の間で10
分間以上保持されるよう、予熱する。このため、原料鉄
粉の突沸現象を発生をさけて室温からの予熱過程におい
て、この予熱時間の短縮化が図られ、生産性を大巾に向
上させることができる。
<Effects of the Invention> As described above, the atomizing raw material iron powder contains a non-reducing element and carbon, and when these components are contained, the preheating by the method of the present invention is performed despite the fact that the bumping phenomenon is particularly likely to occur. Then, the raw iron powder is preheated from room temperature in a depressurized atmosphere of 20 Torr or less, and finish reduction at a temperature of 800 to 1300 ° C is also performed in the same depressurized atmosphere, particularly from room temperature to 650 to 800 ° C. In the process, 10 between 300 ~ 650 ℃
Preheat to hold for more than 1 minute. For this reason, in the preheating process from room temperature to avoid the bumping phenomenon of the raw iron powder, the preheating time can be shortened and the productivity can be greatly improved.

更に、減圧雰囲気中であるため、仕上還元は迅速に進行
し、高純度の鉄粉が得られる。
Furthermore, since it is in a reduced pressure atmosphere, finish reduction proceeds rapidly, and high-purity iron powder is obtained.

【図面の簡単な説明】 第1図は本発明方法の実施する際に用いられるアトマイ
ズ原料鉄粉を受皿に充填積載した台車を側面から見た説
明図、第2図ならびに第3図はそれぞれ本発明方法の各
実施例と比較例との間で予熱温度と予熱時間との関係を
示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a trolley in which a tray is filled with atomized raw material iron powder used for carrying out the method of the present invention, and FIG. 2 and FIG. It is a graph which shows the relationship between preheating temperature and preheating time between each Example of an invention method, and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤岡 和夫 千葉県千葉市川崎町1番地 川崎製鉄株式 会社千葉製鉄所内 (56)参考文献 特開 昭55−138001(JP,A) 特開 昭64−25901(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Akaoka 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Chiba Works (56) References JP-A-55-138001 (JP, A) JP-A-64- 25901 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】難還元性元素および炭素を含むアトマイズ
原料鉄粉を、室温から650〜800℃まで昇温させつつ加熱
する予熱過程を経て、800〜1300℃の温度で仕上還元焼
鈍して鉄粉を製造する際に、 この室温から650〜800℃までの予熱過程は20Torr以下の
減圧雰囲気中で実施すると共に、300〜650℃の間で10分
〜30分間保持するよう、予熱して、原料鉄粉の突沸を防
止し、その後の仕上還元焼鈍過程も20Torr以下の減圧雰
囲気中で実施することを特徴とするアトマイズ原料鉄粉
を仕上還元して鉄粉を製造するときの加熱方法。
1. Atomized raw material iron powder containing a non-reducing element and carbon is subjected to a preheating process of heating while raising the temperature from room temperature to 650 to 800 ° C., and then finish reduction annealing at a temperature of 800 to 1300 ° C. to obtain iron. When manufacturing the powder, this preheating process from room temperature to 650 to 800 ° C is performed in a reduced pressure atmosphere of 20 Torr or less, and preheated so as to be held at 300 to 650 ° C for 10 to 30 minutes, A heating method for producing iron powder by finish-reducing atomized raw material iron powder, characterized in that bumping of raw iron powder is prevented and subsequent finishing reduction annealing process is also performed in a reduced pressure atmosphere of 20 Torr or less.
JP2159523A 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder Expired - Lifetime JPH0717922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159523A JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159523A JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Publications (2)

Publication Number Publication Date
JPH0448002A JPH0448002A (en) 1992-02-18
JPH0717922B2 true JPH0717922B2 (en) 1995-03-01

Family

ID=15695628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159523A Expired - Lifetime JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Country Status (1)

Country Link
JP (1) JPH0717922B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9702299D0 (en) * 1997-06-17 1997-06-17 Hoeganaes Ab Stainless steel powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138001A (en) * 1979-04-11 1980-10-28 Kobe Steel Ltd Preparation of powder of alloy steel with low oxygen
JPH07113121B2 (en) * 1987-07-17 1995-12-06 株式会社神戸製鋼所 Method for producing low alloy steel powder for powder metallurgy with low C and low O

Also Published As

Publication number Publication date
JPH0448002A (en) 1992-02-18

Similar Documents

Publication Publication Date Title
JP5001159B2 (en) Method for controlling the oxygen content of a powder
US4063940A (en) Making of articles from metallic powder
JP2003525350A5 (en)
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
CN107363257A (en) A kind of polycrystalline diamond blank vacuum purification method
JPH0348242B2 (en)
JPH01131063A (en) Production of silicon nitride molded product
JPH0717922B2 (en) Heating method for producing iron powder by finishing reduction of atomized raw material iron powder
JPS62294142A (en) Production of nickel-titanium alloy
CN109402475A (en) A kind of diamond composite blank heat treatment method
JP4576206B2 (en) Method for producing soft magnetic material
JPH0771625B2 (en) Finishing reduction method of alloy steel powder
JPH02274801A (en) Finishing reduction method for alloy steel powder
JPS5839704A (en) Production of ni-base sintered hard alloy
US5162099A (en) Process for producing a sintered compact from steel powder
JPH036961B2 (en)
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPH0772281B2 (en) Method for reducing atomized alloy steel powder through primary reduction and secondary finish reduction
JPS61190004A (en) Reduction annealing furnace of metallic powder
JPH0227778A (en) Manufacture of thermoelectric element
JPH0133540B2 (en)
JPH0790317A (en) Hot isostatic pressing sintering method
JPH0579625B2 (en)
FR2288585A1 (en) Hot isostatic pressing of titanium alloy or superalloy - castings or powder-metal parts, to close and reduce voids
JPH10504064A (en) Method for surface hardening high molybdenum alloyed sintered steel