JPH0448002A - Method for raising temperature at the time of executing finish reduction annealing to alloy steel powder - Google Patents

Method for raising temperature at the time of executing finish reduction annealing to alloy steel powder

Info

Publication number
JPH0448002A
JPH0448002A JP2159523A JP15952390A JPH0448002A JP H0448002 A JPH0448002 A JP H0448002A JP 2159523 A JP2159523 A JP 2159523A JP 15952390 A JP15952390 A JP 15952390A JP H0448002 A JPH0448002 A JP H0448002A
Authority
JP
Japan
Prior art keywords
temperature
powder
alloy steel
reduction annealing
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2159523A
Other languages
Japanese (ja)
Other versions
JPH0717922B2 (en
Inventor
Hiroshi Yano
浩史 矢埜
Osamu Furukimi
修 古君
Shigeaki Takagi
高城 重彰
Kazuo Akaoka
和夫 赤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2159523A priority Critical patent/JPH0717922B2/en
Publication of JPH0448002A publication Critical patent/JPH0448002A/en
Publication of JPH0717922B2 publication Critical patent/JPH0717922B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To execute finish reduction annealing for short time without developing bumping phenomenon by finish-annealing iron powder, which incorporates hard-to-reducing elements and carbon and is pulverized with atomizing method, in the condition of the specific reduced pressure atmosphere and temp. raising velocity. CONSTITUTION:Molten alloy steel incorporating the hard-to-reducing elements of Cr, Mn, etc., and carbon, is pulverized into powder state with the atomizing method. This atomized alloy steel powder is charged into a stainless steel-made pans 1 - 8 and charged into an annealing furnace with a carriage, and after making the atmosphere in the furnace to the reduced pressure condition of <=20 Torr, the finish reduction annealing is executed at 800 - 1300 deg.C. In this case, this is kept at the temp. in the range of 300 - 650 deg.C for >= 10 min on the way of raising temp. from the room temp. to 650 - 800 deg.C. The finish reduction annealing can be executed to the alloy steel powder for short time without developing the bumping phenomenon.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は合金鋼粉仕上還元焼鈍時の昇温方法に係り、詳
しくは、Cr、 Mn等の難還元性元素および炭素を含
む予め合金化されたアトマイズ鉄粉を原料とし、これを
仕上還元焼鈍する際に、仕上還元湯度に至る昇温過程で
鉄粉の突沸現象を発生することなく昇温時間を短縮する
ための合金鋼粉仕上還元焼鈍時の昇温方法に係る。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for raising temperature during finishing reduction annealing of alloyed steel powder. Finish reduction annealing of alloyed steel powder uses atomized iron powder as a raw material and reduces the heating time without causing bumping of the iron powder during the heating process to reach the finish reduction hot water temperature. This relates to the method of raising the temperature at the time.

従  来  の  技  術 鉄粉焼結部品の需要は年々増加の一途をたどり、とりわ
け、高強度、高靭性が要求される部品に対応した合金鋼
粉の需髄が増大する傾向にある。強化合金元素としては
例えば安価なOr、M +’+が好適であるが、Cr、
Mnを予め合金化した銅粉を従来法の水アトマイズ−ガ
ス還元法で製造すると、これらの元素は酸素との親和力
が強いため、銅粉中に含まれるOWAを低減することが
困難であった。このようなCr、Mr+を含む合金鋼粉
の脱酸を行なう方法としては、例えば、特公昭5g −
10962号公報に記載の真空還元が提案され、現在世
M素銅粉が製造可能となっている。
Conventional technology The demand for sintered iron powder parts continues to increase year by year, and in particular, the demand for alloy steel powder for parts that require high strength and high toughness is increasing. As the reinforcing alloy element, for example, inexpensive Or, M +'+ are suitable, but Cr,
When copper powder pre-alloyed with Mn was produced using the conventional water atomization-gas reduction method, it was difficult to reduce the OWA contained in the copper powder because these elements have a strong affinity with oxygen. . As a method for deoxidizing such alloy steel powder containing Cr and Mr+, for example,
Vacuum reduction as described in Japanese Patent No. 10962 was proposed, and it is now possible to produce M bare copper powder.

この提案に係る熱処理炉は例えば特開昭61−1900
4号公報に記載の如く、難還元性元素および炭素を含む
原料粉末を予熱、乾燥するための予熱至、予熱後の原料
粉末を合金銅粉中に含有する炭素の利用によりl112
f11L、焼鈍する段階の還元焼鈍至および還元焼鈍粉
を冷却するための冷却室とに区画され、これらは横並び
に連続配置され、それら冬至の境界にはそれぞれ可動扉
を設け、各室が独立した空間となるように構成し、しか
も、それら各室にはそれぞれ減圧用排気装置を設けた構
造のものからなっている。
The heat treatment furnace according to this proposal is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-1900.
As described in Publication No. 4, by preheating and drying a raw material powder containing a refractory element and carbon, and by using carbon contained in alloyed copper powder, the raw material powder after preheating is heated to l112.
F11L is divided into a reduction annealing chamber at the annealing stage and a cooling chamber for cooling the reduction annealing powder, and these are arranged side by side in series, with movable doors provided at the boundaries of these winter solstice, so that each chamber is independent. The chamber is constructed to be a space, and each chamber is provided with an exhaust device for depressurization.

この還元焼鈍炉を用いる場合、特公昭58−10962
号公報に提案されているように20Torr以下の減圧
雰囲気中で仕上焼鈍温度の800〜1300℃まで昇温
する前段階として、予熱室で650〜800℃まで昇温
するが、この予熱室での昇温を生産性向上のため急速加
熱すると、銅粉よりガスが急激に発生し、銅粉が舞い上
がる現象(以下、突沸現象という)が起こる。この現象
が炉内で発生すると、炉内に銅粉が飛び散り、ヒーター
を損傷させる。この突沸現象を防止するために、予熱室
で急激にガスが発生しないように例えば200℃/hr
程度の温度でゆっくりと昇温しなければならず、そのた
め、予熱に長時間を必要とし、予熱−還元焼鈍−冷却工
程のうち予熱段階が律速となり、生産性の低下を招くと
いう問題がある。
When using this reduction annealing furnace,
As proposed in the publication, the temperature is raised to 650 to 800 °C in a preheating chamber as a preliminary step to raising the temperature to the final annealing temperature of 800 to 1300 °C in a reduced pressure atmosphere of 20 Torr or less. When the temperature is raised rapidly to improve productivity, gas is rapidly generated from the copper powder, causing a phenomenon in which the copper powder flies up (hereinafter referred to as a bumping phenomenon). If this phenomenon occurs in the furnace, copper powder will fly into the furnace and damage the heater. In order to prevent this bumping phenomenon, the temperature is set at a temperature of 200°C/hr, for example, to prevent sudden gas generation in the preheating chamber.
The temperature must be raised slowly at a certain temperature, and therefore, a long time is required for preheating, and the preheating stage of the preheating-reduction annealing-cooling process becomes rate-limiting, resulting in a problem of reduced productivity.

発明が解決しようとする課題 本発明は上記問題の解決を目的とし、具体的には、還元
焼鈍炉内において突沸現象を発生させることなく、予熱
時間の短縮を図るのに好適な合金鋼粉仕上還元焼鈍時の
昇温方法をI!!案することを目的とする。
Problems to be Solved by the Invention The present invention aims to solve the above problems, and specifically provides an alloy steel powder finish suitable for reducing preheating time without causing bumping in a reduction annealing furnace. How to raise temperature during reduction annealing! ! The purpose is to propose a plan.

課題を解決するための 手段ならびにその作用 すなわち、本発明は難還元性元素および炭素を含むアト
マイズされた合金銅粉用原料粉末を201’Orr以下
の減圧雰囲気中で800〜1300℃の温度で仕上還元
焼鈍する際に、室温から650〜800℃までの昇温過
程で300〜650℃の間で10分間以上保持すること
を特徴とする。
Means for Solving the Problems and Their Effects Namely, the present invention provides a method for finishing raw material powder for atomized alloy copper powder containing a refractory element and carbon at a temperature of 800 to 1300°C in a reduced pressure atmosphere of 201'Orr or less. During reduction annealing, the temperature is raised from room temperature to 650 to 800°C, and the temperature is held at 300 to 650°C for 10 minutes or more.

以下、本発明の手段たる構成ならびにその作用について
詳しく説明すると、次の通りである。
Hereinafter, a detailed explanation of the configuration and the operation of the means of the present invention will be as follows.

本発明者らはCr等の難還元性元素および炭素を含むア
トマイズされた合金鋼t)用原料粉末の脱酸を行なう際
の突沸現象を抑制する方法について鋭1fZ究した結果
、20 T o r r以下の減圧雰囲気中で650〜
800℃までの昇温過程において、300〜650℃の
間の温度域で一定時間鋼粉温度を保持すると銅粉の突沸
現象が抑制できるということがわかった。
The present inventors conducted intensive research on a method for suppressing the bumping phenomenon when deoxidizing raw material powder for atomized alloy steel (t) containing refractory elements such as Cr and carbon, and found that 20 T or 650~ in a reduced pressure atmosphere below r
It has been found that the bumping phenomenon of copper powder can be suppressed by maintaining the temperature of the steel powder in the temperature range of 300 to 650°C for a certain period of time in the process of raising the temperature to 800°C.

更に進んで研究を行ない、この研究結果に基づいて本発
明は成立したものである。
Further research was conducted, and the present invention was established based on the results of this research.

本発明者の研究によると、従来例では仕上還元される銅
粉は予熱室において減圧雰囲気中で650〜800℃ま
で昇温する際に銅粉の突沸現象防止のため、昇温速度を
約200℃/hrでゆっくりと加熱する方法を採ってい
たが、この方法では銅粉の突沸現象がないが時間がかか
ることから本発明者等は鋼粉の突′ila現象の生ずる
原因について更に進めたところ、室膚から650〜80
0℃まで昇温する際に起こる突沸現象は鋼粉より発生す
るガスである水蒸気とCOガスに起因し、銅粉充填回内
での温度差によりこの水蒸気とCOガスの発生時間に差
が生じるため、内部から発生したガスが僅かに焼結した
表面部の鉄粉を吹き上げて銅粉充填■の外部に出ること
によって起こることを見出してなされたものである。
According to the research of the present inventor, in the conventional example, when the copper powder to be finish-reduced is heated to 650 to 800°C in a reduced pressure atmosphere in the preheating chamber, the heating rate is reduced to about 200°C to prevent the bumping phenomenon of the copper powder. A method of heating slowly at ℃/hr was adopted, but this method does not cause the bumping phenomenon of copper powder, but it takes time, so the inventors further investigated the cause of the bumping phenomenon of steel powder. By the way, 650-80 from Murohada
The bumping phenomenon that occurs when the temperature rises to 0℃ is caused by water vapor and CO gas, which are gases generated by steel powder, and the time for generation of this water vapor and CO gas is caused by the temperature difference in the copper powder filling stage. Therefore, it was discovered that this phenomenon occurs when gas generated from inside blows up a slight amount of iron powder on the sintered surface and exits to the outside of the copper powder filling (2).

本発明法において、仕上還元焼鈍は800℃以下では銅
粉の還元が不完全であるため、1300℃以上では焼結
が進むため800〜1300℃の間で11なうようにす
るが、このとき201 o r rを越える雰囲気中で
仕上還元焼鈍を行なうと還元の進行がおそいため、 2
0Torr以下の減圧雰囲気中で還元を行なう。この還
元焼Il!至での還元を短時間で終了するためには、予
熱室で650〜800°Cまで昇温することが有効であ
る。650〜800℃まで急速昇温しでも上記した銅粉
の突沸現象が発生しないように、300〜650℃の温
度範囲で10分以上保持する必要がある。保持する温度
域を300〜650℃にしたのは300℃未満であると
銅粉に含まれる水分が完全に除去できずに、後の昇温時
に突沸現象が起こる。また、650℃を越えると銅粉よ
りCOガスが発生するとともに銅粉の充填筒の表面が焼
結し始めるために、充填■内部から発生する水蒸気ある
いはCOガスにより焼結し始めた銅粉を鳴き上げる突沸
現象が起こるからである。従って、300〜650℃の
温度域で10分以上保持して水蒸気を除去し、この水蒸
気によって充11!Is内にガスの抜は道を形成する必
要がある。
In the method of the present invention, final reduction annealing is performed at temperatures between 800 and 1300°C, since reduction of the copper powder is incomplete at temperatures below 800°C, and sintering progresses at temperatures above 1300°C. If finish reduction annealing is performed in an atmosphere exceeding 201 o r r, the progress of reduction will be slow;
Reduction is performed in a reduced pressure atmosphere of 0 Torr or less. This reduction baking Il! In order to complete the reduction in a short time, it is effective to raise the temperature to 650 to 800°C in a preheating chamber. It is necessary to maintain the temperature in the range of 300 to 650°C for 10 minutes or more so that the bumping phenomenon of the copper powder described above does not occur even if the temperature is rapidly raised to 650 to 800°C. The reason why the temperature range to be maintained is 300 to 650°C is that if the temperature is lower than 300°C, the moisture contained in the copper powder cannot be completely removed, and a bumping phenomenon occurs when the temperature is raised later. In addition, when the temperature exceeds 650°C, CO gas is generated from the copper powder and the surface of the cylinder filled with copper powder begins to sinter. This is because a squeaking bumping phenomenon occurs. Therefore, the water vapor is removed by holding it in the temperature range of 300 to 650°C for 10 minutes or more, and the water vapor is used to charge the air. It is necessary to form a path for degassing within Is.

保持する時間を10分以上としたのは、10分木勇では
保持した効果が得られず、後の昇m時に突沸現象が起こ
るためである。また、保持時間の上限は生産性との兼ね
合いで決められるが、例えば60分以下程度で十分であ
るが、生産性の点で30分程度が好ましい。
The reason why the holding time was set to 10 minutes or more was because the effect of holding for 10 minutes could not be obtained and bumping phenomenon would occur during the subsequent raising m. Further, the upper limit of the holding time is determined in consideration of productivity, and for example, about 60 minutes or less is sufficient, but from the viewpoint of productivity, about 30 minutes is preferable.

なお、銅粉の吸着水、鉄水酸化物および化合水が昇温途
中に水蒸気として発生し、鉄粉中の固7fJlfl素が
酸化物中のWl、素と反応してCOガスを発生する。
Note that adsorbed water, iron hydroxide, and compound water of the copper powder are generated as water vapor during heating, and the solid 7fJlfl element in the iron powder reacts with Wl and elemental elements in the oxide to generate CO gas.

実  施  例 以下、本発明を実施例に基づいて具体的に説明する。Example Hereinafter, the present invention will be specifically explained based on Examples.

実施例1〜2. 比較例1〜3゜ 第1表に示す銅粉の化学組成のアトマイズ生粉を第1図
に示すようにステンレス類の8枚の受皿に80+ug以
下の厚さに充填し、それらを段状に構成した黒鉛製の台
車に積み、炉内に搬入して還元を行なった。
Examples 1-2. Comparative Examples 1 to 3゜Atomized raw copper powder having the chemical composition shown in Table 1 was filled into eight stainless steel saucers to a thickness of 80+ug or less as shown in Figure 1, and they were stacked in steps. It was loaded onto the constructed graphite trolley and carried into the furnace for reduction.

予熱至での予熱温度を800℃とし炉内圧0.0ITo
rr中で第2図に示す昇温速度200℃/hr、 30
0℃、ノtar、400℃/ t+ rの3段階の実験
を行なった。実験結果を第2表に示す。従来法の昇温速
度200℃、/111゛では突沸現象は確認されなかっ
たが、昇温速度300℃/hr、100℃/hrでは突
沸現象が確認された。
The preheating temperature at the end of preheating is 800℃, and the furnace internal pressure is 0.0ITo.
Temperature increase rate 200°C/hr shown in Figure 2 in rr, 30
The experiment was conducted in three stages: 0°C, notar, and 400°C/t+r. The experimental results are shown in Table 2. No bumping phenomenon was observed at a heating rate of 200°C/111° in the conventional method, but a bumping phenomenon was observed at a heating rate of 300°C/hr and 100°C/hr.

昇温速度300℃/hr、 400℃/hrとした場合
でも本発明法の500℃で30分間保持することにより
突沸現象は!v認されなかった。
Even if the heating rate is 300°C/hr or 400°C/hr, the bumping phenomenon can be prevented by holding the temperature at 500°C for 30 minutes using the method of the present invention! v Not approved.

第2表から突沸現象が起こらないように、しかも、生産
性向上のため、短時間で800℃に昇温するには本発明
が有利であることがわかる。
From Table 2, it can be seen that the present invention is advantageous in raising the temperature to 800° C. in a short time to prevent bumping from occurring and to improve productivity.

第1表化学組成(重量%) 第2表 実験結果 第3表 実験結果 実施例3〜1. 比較例4〜5゜ 第3図に示すように、保持温度を250〜700℃に変
化させて、実施例1と同様に昇温速度400℃/l+r
、保持時間30分で実験を行なった。実wA結宋を第3
表に示す。本発明範囲の実施例3〜1の保持温度におい
ては突沸現象は確認されなかったが、比較例4〜5の保
¥I′A度250℃ならびに700実施例8. 比較例
6゜ 保持時間を5分と10分に変化させて、実施例1と同様
に昇温速度400℃/hr、保持温度500℃で実験を
行なった。実wA結果を第4表に示す。本発明範囲の保
持時間10分の実施例8においては突沸現象は確認され
なかったが、保持時間5分第4表 実験結果 〈梵明の効果〉 以上説明したように、本発明は、難還元性元素および炭
素を含むアトマイズされた合金鋼粉用原料粉末を20T
orr以下の減圧雰囲気中で800〜1300℃の温度
で仕上還元焼鈍する際に、室温から650〜800℃ま
での昇温過程で300〜650℃の間で10分間以上保
持することを特徴とする。
Table 1 Chemical composition (wt%) Table 2 Experimental results Table 3 Experimental results Examples 3-1. Comparative Examples 4-5゜As shown in Figure 3, the holding temperature was changed from 250 to 700℃, and the heating rate was 400℃/l+r as in Example 1.
, the experiment was conducted with a holding time of 30 minutes. Real wA conclusion song 3rd
Shown in the table. Although no bumping phenomenon was observed at the holding temperature of Examples 3 to 1 within the range of the present invention, the holding temperature of Comparative Examples 4 to 5 was 250°C and 700°C of Example 8. Comparative Example 6 An experiment was conducted in the same manner as in Example 1, with the holding time changed to 5 minutes and 10 minutes, at a temperature increase rate of 400°C/hr and a holding temperature of 500°C. The actual wA results are shown in Table 4. Although no bumping phenomenon was observed in Example 8 with a retention time of 10 minutes within the range of the present invention, the retention time was 5 minutes. 20T raw material powder for atomized alloy steel powder containing elements and carbon
When performing final reduction annealing at a temperature of 800 to 1300°C in a reduced pressure atmosphere of orr or less, the temperature is maintained at 300 to 650°C for 10 minutes or more during the temperature increase process from room temperature to 650 to 800°C. .

本発明法によれば、難還元性元素および炭素を含むアト
マイズされた合金鋼粉用原料粉末を減圧雰囲気中で80
0〜1300℃の還元湯度で仕上還元焼鈍する際に室温
から650〜800℃の昇温過程で300〜650℃の
間で10分間以上保持するようにしたため、鋼粉の突沸
現象を生じることなく室温からの昇m時間の短縮化が図
れ、生産性を向上させる効果がある。
According to the method of the present invention, atomized raw material powder for alloy steel powder containing a refractory element and carbon is heated to 80% in a reduced pressure atmosphere.
During final reduction annealing at a reducing hot water temperature of 0 to 1300 degrees Celsius, the steel powder was kept at a temperature of 300 to 650 degrees Celsius for more than 10 minutes during the heating process from room temperature to 650 to 800 degrees Celsius, which caused the bumping phenomenon of steel powder. This has the effect of shortening the rising time from room temperature and improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

141図は本発明の実施する際に用いられるアトマイズ
生粉を受皿に充填積載した台車の側面から見た説明図、
第2図ならびに第3図はそれぞれ本発明の実施例と比較
例の昇温条件と温度との関係を示すグラフである。
Fig. 141 is an explanatory diagram, seen from the side, of a cart loaded with a saucer filled with atomized raw powder used in carrying out the present invention;
FIG. 2 and FIG. 3 are graphs showing the relationship between heating conditions and temperature for an example of the present invention and a comparative example, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1)難還元性元素および炭素を含むアトマイズされた合
金鋼粉用原料粉末を20Torr以下の減圧雰囲気中で
800〜1300℃の温度で仕上還元焼鈍する際に、室
温から650〜800℃までの昇温過程で300〜65
0℃の間で10分間以上保持することを特徴とする合金
鋼粉仕上還元焼鈍時の昇温方法。
1) When finishing reduction annealing the atomized raw material powder for alloy steel powder containing refractory elements and carbon at a temperature of 800 to 1300°C in a reduced pressure atmosphere of 20 Torr or less, the temperature rises from room temperature to 650 to 800°C. 300-65 in warm process
A method of raising temperature during reduction annealing for finishing alloy steel powder, characterized by holding the temperature at 0°C for 10 minutes or more.
JP2159523A 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder Expired - Lifetime JPH0717922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159523A JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159523A JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Publications (2)

Publication Number Publication Date
JPH0448002A true JPH0448002A (en) 1992-02-18
JPH0717922B2 JPH0717922B2 (en) 1995-03-01

Family

ID=15695628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159523A Expired - Lifetime JPH0717922B2 (en) 1990-06-18 1990-06-18 Heating method for producing iron powder by finishing reduction of atomized raw material iron powder

Country Status (1)

Country Link
JP (1) JPH0717922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508807A (en) * 1997-06-17 2002-03-19 ホガナス アクチボラゲット Stainless steel powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138001A (en) * 1979-04-11 1980-10-28 Kobe Steel Ltd Preparation of powder of alloy steel with low oxygen
JPS6425901A (en) * 1987-07-17 1989-01-27 Kobe Steel Ltd Production of low alloy steel powder for low c and low o powder metallurgy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138001A (en) * 1979-04-11 1980-10-28 Kobe Steel Ltd Preparation of powder of alloy steel with low oxygen
JPS6425901A (en) * 1987-07-17 1989-01-27 Kobe Steel Ltd Production of low alloy steel powder for low c and low o powder metallurgy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508807A (en) * 1997-06-17 2002-03-19 ホガナス アクチボラゲット Stainless steel powder
JP2010196171A (en) * 1997-06-17 2010-09-09 Hoganas Ab Stainless steel powder

Also Published As

Publication number Publication date
JPH0717922B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JP5001159B2 (en) Method for controlling the oxygen content of a powder
JPS6147901B2 (en)
JPH0448002A (en) Method for raising temperature at the time of executing finish reduction annealing to alloy steel powder
US3971679A (en) Method of annealing oriented silicon steel
JP4576206B2 (en) Method for producing soft magnetic material
US3746584A (en) Method for the continuous vacuum decarbonization of low carbon ferrochrome
CN1085734C (en) Process for treatment of precision bright seamless steel tube
JPH0771625B2 (en) Finishing reduction method of alloy steel powder
JP3848264B2 (en) Surface treatment method for cast iron products and cast iron products
JP2792047B2 (en) Heat treatment method
JPS61190004A (en) Reduction annealing furnace of metallic powder
JPH0133540B2 (en)
JPH02274801A (en) Finishing reduction method for alloy steel powder
SU1066747A1 (en) Method of producing tungsten powder
CN107354401A (en) A kind of non-crystaline amorphous metal magnetic band vacuum heat treatment process
JPS6337164B2 (en)
JPH10504064A (en) Method for surface hardening high molybdenum alloyed sintered steel
JPH0254717A (en) Method for spheroidization annealing of bearing steel
RU1799920C (en) Method for graphitization of annealing of white cast iron castings
SU1071349A1 (en) Method of calcination of shells produced by investment casting
JPH0270004A (en) Method for degreasing injection molded body
JPS5854162B2 (en) Powder forging method for metal materials
JPH049402A (en) Method for executing reduction-annealing to metal powder
JPH01242729A (en) Electron beam melting method for refractory high-melting-temperature metal material
JPH036961B2 (en)