JPS585962B2 - Hot isostatic pressing method - Google Patents

Hot isostatic pressing method

Info

Publication number
JPS585962B2
JPS585962B2 JP55029166A JP2916680A JPS585962B2 JP S585962 B2 JPS585962 B2 JP S585962B2 JP 55029166 A JP55029166 A JP 55029166A JP 2916680 A JP2916680 A JP 2916680A JP S585962 B2 JPS585962 B2 JP S585962B2
Authority
JP
Japan
Prior art keywords
container
metal powder
preheating
hot isostatic
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55029166A
Other languages
Japanese (ja)
Other versions
JPS56127704A (en
Inventor
河合伸泰
古田誠矢
高田寿
緒方和郎
滝川博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55029166A priority Critical patent/JPS585962B2/en
Publication of JPS56127704A publication Critical patent/JPS56127704A/en
Publication of JPS585962B2 publication Critical patent/JPS585962B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は熱間静水圧プレス成形法の改良に関し、詳しく
は、複雑な装置を必要とする脱気工程を省略し、作業時
間の短縮と歩留りの向上とを達成し得る改良された熱間
静水圧プレス成形法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the hot isostatic press molding method, and more specifically, it eliminates the degassing step that requires complicated equipment, and achieves shortening of working time and improvement of yield. The present invention relates to an improved hot isostatic pressing method for obtaining.

熱間静水圧プレス成形(以下HIPという)によって金
属粉末材料等の緻密化又は加圧焼結を行なう場合、金属
粉末材料を、ガス不透過性材料例えば金属、ガラス等を
以って作られ且つ開口部を有する容器に充填し、それを
加熱しつつカプセル内部を真空吸引して脱気し、史に真
空吸引を続け乍ら容器を密封し、しかる後予熱工程を経
て、高温高圧のHIP炉中において等方圧縮することが
従来一般に行なわれて来た。
When densifying or pressure sintering a metal powder material by hot isostatic pressing (hereinafter referred to as HIP), the metal powder material is made of a gas-impermeable material such as metal, glass, etc. The capsule is filled into a container with an opening, heated and degassed by vacuum suction inside the capsule, sealed while continuing vacuum suction, and then passed through a preheating process and placed in a high-temperature, high-pressure HIP furnace. Conventionally, it has been common practice to perform isotropic compression inside.

又、複雑な形状をした工具鋼製品等をHIP法によって
製品するために、製品形状に対応する形状の鋳型容器中
に金属粉末材料を充填し、該鋳型容器を、圧媒粒子を収
容した外側容器中に埋設し、前記同様真空脱気、予熱工
程を経て、HIP処理を行なうことも既に周知である。
In addition, in order to manufacture tool steel products with complex shapes by the HIP method, metal powder material is filled into a mold container with a shape corresponding to the product shape, and the mold container is placed on the outside containing pressure medium particles. It is already well known that the material is buried in a container and subjected to the same vacuum degassing and preheating steps as described above, followed by HIP treatment.

か1る周知慣用の方法にあっては、容器内部の脱気を充
分に行なわなければ、残存空気若しくは金属粉末材料か
ら発生するガスのために、最終製品内部に実用上問題と
なる程度の気孔あるいは組織が生じる結果を招来すると
信じられ、長時間をかけて丹念な脱気作業を行なうこと
が重要とされ、更に脱気によって容器内が真空状態とな
り熱伝導が低下する為、予熱工程に長時間を要する等、
工程の効率化を著しく阻害する要因を包蔵していた。
In this well-known and commonly used method, if the inside of the container is not sufficiently degassed, residual air or gas generated from the metal powder material may cause pores in the final product to the extent that it poses a practical problem. It is believed that this may lead to the formation of microstructures, so it is important to perform the degassing process carefully over a long period of time. Furthermore, since degassing creates a vacuum inside the container and reduces heat conduction, the preheating process takes a long time. It takes time, etc.
There were factors that significantly hindered process efficiency.

特公昭51−18202号公報には、予熱工程において
効果的な熱伝導を与える為、脱気工程後にヘリウム、水
素のような不活性の、分子量の小さいガスで容器を一旦
充満し、予熱時間の短縮を図り、所望の温度迄加熱した
ならばガスを除去してHIP処理に付する方法が開示さ
れている。
Japanese Patent Publication No. 51-18202 states that in order to provide effective heat conduction during the preheating process, the container is temporarily filled with an inert, low molecular weight gas such as helium or hydrogen after the degassing process, and the preheating time is A method is disclosed in which the gas is heated to a desired temperature, the gas is removed, and the HIP process is performed.

この方法においても、脱気、ガス置換、排ガスを順次行
なわねばならず、依然として工程の簡略化は達成されて
いない。
Even in this method, deaeration, gas replacement, and exhaust gas must be performed in sequence, and the process has not yet been simplified.

一方、本発明者等は、HIP法を種々の被処理材料につ
いて試み、仔細に検討を加えたところ、被処理金属材料
によっては、全く脱気工程が不要であるか、殆ど必要と
しないものがあることを知見するに至り、従来全く顧み
られることのなかった無脱気方式、即ち、開口部を有す
る容器中に被処理粉末材料を充填した後、真空、脱気を
行なうことなく、直接開口部を蓋止密封し、しかる後H
IP処理を行なう方法を開発し嚢に提供した。
On the other hand, the present inventors have tried the HIP method on various materials to be treated and have made detailed studies. We came to the realization that a non-deaeration method, which had never been considered in the past, was used. In other words, after filling the powder material to be processed into a container with an opening, it was possible to directly open the container without vacuum or deaeration. Seal the part with a lid, and then
A method for performing IP treatment was developed and provided to the sac.

この方法によれば脱気工程を要しないため脱気密封の工
程が短縮され、又脱気密封に必要とされる諸各種の複雑
な装置が不要となり、且つ容器の形状構造を単純化し得
る等、多くの利点がある反面、予熱方式の採用が困難で
あるという問題点がある,即ち、前述の無脱気方式は、
容器中に存在する窒素、酸素等のガスを容器中の金属粉
末に吸収させることによって事実上容器内部を真空状態
となし、気孔のない最終製品を得るものであるが、この
ガス吸収反応(窒化反応、酸化反応)は主として高温領
域で生起する。
This method does not require a degassing process, so the degassing and sealing process is shortened, various complicated devices required for degassing and sealing are not required, and the shape and structure of the container can be simplified. Although there are many advantages, there is a problem that it is difficult to adopt the preheating method.
Gases such as nitrogen and oxygen present in the container are absorbed by the metal powder in the container, effectively creating a vacuum inside the container and producing a final product without pores. reactions, oxidation reactions) mainly occur in high temperature regions.

従ってHIP炉装入に先立って予熱を行なうと、予熱工
程における昇温段階では、前記ガス吸収反応が殆ど生起
しないま1、容器内ガスは温度の上昇に伴なって膨張し
、容器は内圧を受けることとなる。
Therefore, if preheating is performed prior to charging into the HIP furnace, the gas absorption reaction will hardly occur during the temperature raising stage of the preheating process, and the gas inside the container will expand as the temperature rises, causing the container to lower its internal pressure. You will receive it.

例えば、常温で密封を施した容器が500〜600℃迄
昇温させた状態では、容器内圧は約3気圧程度となり、
加うるに高温によって容器の材料(例えば軟鋼)の強度
が著しく低下しているため、容器はその内圧により膨脹
変形するに至る。
For example, when a container that is sealed at room temperature is heated to 500 to 600 degrees Celsius, the internal pressure of the container will be approximately 3 atm.
In addition, the strength of the container material (for example, mild steel) is significantly reduced by the high temperature, which causes the container to expand and deform due to its internal pressure.

か1る現象は、容器と予熱炉ヒーターとの接触による短
絡事故、ヒーターの破損の因をなし、容器変形が著しい
場合にはHIP炉への装入不能、又鋳型容器の変形によ
る不良品の増大即ち歩留り低下を招来する。
This phenomenon causes short-circuit accidents and damage to the heater due to contact between the container and the preheating furnace heater.If the container is significantly deformed, it may become impossible to charge the product into the HIP furnace, and the mold container may be deformed, resulting in defective products. In other words, this results in an increase in yield, which leads to a decrease in yield.

従って無脱気方式では予熱方式を採用することができず
、直接HIP炉に装入するため、HIP炉内における昇
温時間が長くなりHIPサイクルタイムの増大による生
産性の低下が尚解決を要する大きな問題点として残され
ていた。
Therefore, in the non-deaeration method, it is not possible to adopt a preheating method, and since it is directly charged into the HIP furnace, the temperature rise time in the HIP furnace becomes longer, resulting in a decrease in productivity due to an increase in HIP cycle time, which still needs to be resolved. This remained a major problem.

本発明方法は、工程の合理化の面で極めて有利な無脱気
式HIP法に、予熱工程を巧妙に組み込んで、叙上の問
題点を一挙に解決に導くもので、その特徴とするところ
は、金属粉末を充填した内側容器を、圧媒粒子を充填し
た外側容器内に埋設し、これを予熱した後、熱間静水圧
プレス処理を行なう方法において、大気中若しくは窒素
ガス雰囲気下で内側容器への金属粉末の充填及びこの内
側容器の外側容器への埋設を行ない、続いて両容器内を
脱気密封することなく、所定温度に予熱し、予熱終了後
、両容器内を脱気することなく直ちに外側容器を密封し
、しかる後該容器に高温高圧ガス雰囲気下で熱間静水圧
プレス処理を施すことにより前記内側容器内の金属粉末
の緻密化繞結を行なうことにある。
The method of the present invention cleverly incorporates a preheating step into the non-degassing HIP method, which is extremely advantageous in terms of process rationalization, and leads to the solution of the above-mentioned problems at once.The method is characterized by: In a method in which an inner container filled with metal powder is buried in an outer container filled with pressure medium particles, the inner container is preheated, and then hot isostatic pressing is performed. Filling the inner container with metal powder and burying the inner container in the outer container, then preheating the inside of both containers to a predetermined temperature without degassing and sealing them, and degassing the inside of both containers after preheating is completed. The purpose is to immediately seal the outer container, and then subject the container to hot isostatic pressing in a high-temperature, high-pressure gas atmosphere to densify and condense the metal powder in the inner container.

こ1に本発明方法を適用する被処理体である金属粉末と
しては、例えばFe基合金、Ni基合金、チタン合金、
コバルト、クロム、タングステン、バナジウム、モリブ
デン等の金属粉末が挙げられ、特にFe基合金、Ni基
合金は本発明を行なうに最も好適である。
Examples of the metal powder to be treated to which the method of the present invention is applied include Fe-based alloys, Ni-based alloys, titanium alloys,
Examples include metal powders such as cobalt, chromium, tungsten, vanadium, and molybdenum, and particularly Fe-based alloys and Ni-based alloys are most suitable for carrying out the present invention.

か1る金属粉末を充填すべき内側容器は収容する金属粉
末に対して不活性の素材、例えばシリ力、アリミナ、ジ
ルコニウム或いはそれらの混合物、又はそれらを含有す
る金属を以て作られるが、それらに限定されるものでは
ない。
The inner container to be filled with the metal powder may be made of a material inert to the metal powder contained, such as, but not limited to, silica, alimina, zirconium or mixtures thereof, or metals containing these. It is not something that will be done.

このような素材によって最終製品の形状に応じた形状で
且つその一部に開口部を備える如くに形成される。
The material is formed into a shape that corresponds to the shape of the final product and has an opening in a portion thereof.

この開ロ部より前記金属粉末を大気中又は窒素ガス雰囲
気下に内側容器中に、好ましくは撹拌又は振盪し乍ら充
填する。
Through this opening, the metal powder is filled into the inner container in the air or under a nitrogen gas atmosphere, preferably while stirring or shaking.

充填後は開口部に、ノズルを有する蓋体を溶接して取付
け、更に此のノズルを鍛圧又は挟圧し、気圧の流通を許
容するが、前記金属粉末及び後述の圧媒粒子の流通を阻
止する程度の狭隘な間隙を残して閉塞することが好まし
い。
After filling, a lid with a nozzle is attached to the opening by welding, and this nozzle is further pressed or compressed to allow atmospheric pressure to flow, but to prevent the metal powder and pressure medium particles described below from flowing. It is preferable to close the gap while leaving a narrow gap.

斯くすることにより、内側容器を圧媒粒子中に埋設した
際、圧媒粒子が該容器中に侵入混合し、製品に悪影響を
与えることを防止し、又金属粒子の漏洩溢出を阻止する
さ共に、予熱工程で昇温膨脹した内部ガスの自由な逸出
を保証する。
By doing so, when the inner container is embedded in pressure medium particles, the pressure medium particles can be prevented from entering and mixing with the container and having an adverse effect on the product, and also preventing metal particles from leaking and overflowing. , ensuring free escape of the internal gas heated and expanded during the preheating process.

内側容器が収容される外側容器は、ガス不透過性材料を
以って作製され、従来の此の種容器の如く必ずしも排気
管を具備する必要はなく、当然真空ポンプ等に連結する
ことを要しない。
The outer container in which the inner container is housed is made of a gas-impermeable material, and does not necessarily need to be equipped with an exhaust pipe like conventional containers of this kind, and of course needs to be connected to a vacuum pump, etc. do not.

例えば開口部を有し、該開口部を容易に密封し得る構造
であれば充分である。
For example, it is sufficient if the structure has an opening and the opening can be easily sealed.

ガス不透過性材料としては、金属、特に軟鋼が好ましく
、又ガラス或は金属とガラスとの複合材料等が適用可能
である。
As the gas-impermeable material, metal, particularly mild steel, is preferable, and glass or a composite material of metal and glass can be used.

斯かる外側容器中には微細なシリカ又はアルミナ等の耐
熱性粉末よりなる圧媒粒子が適量収納されており、圧媒
粒子はその内部に埋設された内側容器の全周面と外側容
器の内壁との間隙を隅無く埋め、内側容器の位置決めを
も行なう。
A suitable amount of pressure medium particles made of fine heat-resistant powder such as silica or alumina are stored in the outer container, and the pressure medium particles cover the entire circumferential surface of the inner container embedded therein and the inner wall of the outer container. It also fills the gap between the container and the container without any corners, and also positions the inner container.

上記の如く金属粒子及び圧媒粒子を充填して二重に組合
わされた容器は開放状態のま11真空吸引等の脱気操作
を全く行なうことなく、所定温度迄予熱される。
The double container filled with metal particles and pressure medium particles as described above is preheated to a predetermined temperature in an open state without performing any degassing operation such as vacuum suction.

予熱中は内・外容器共開口しているので、内部で膨脹し
たガスは開口部即ちノズルを通って放出され、容器が変
形することはない。
Since both the inner and outer containers are open during preheating, the gas expanded inside is discharged through the opening or nozzle, and the container is not deformed.

予熱温度は被処理体金属粉末の種類や次のHIP処理条
件によって異なるが、通常1000℃〜1500℃又は
それを上廻ることもあり、好ましくは、予熱完了后の容
器密封作業、HIP装置への装入作業中の冷却を見越し
て、HIP処理温度を若干越える温度が選択される。
The preheating temperature varies depending on the type of metal powder to be processed and the conditions of the next HIP process, but it is usually 1000°C to 1500°C or even higher. Preferably, after preheating is completed, the container is sealed and the HIP equipment is heated. To allow for cooling during the charging operation, a temperature slightly above the HIP processing temperature is selected.

本発明方法によれば、予熱操作は容器内にガスが存在し
た状態で行なわれるため、斯かるガスが効果的な熱伝導
を提供し、驚く可き短時間で完了する。
According to the method of the invention, the preheating operation is carried out in the presence of gas in the vessel, so that such gas provides effective heat transfer and is completed in a surprisingly short time.

これは脱気真空状態の加熱昇温に長時間を要する事実と
対照的である。
This is in contrast to the fact that it takes a long time to heat and raise the temperature in a degassed vacuum state.

所定の温度迄の予熱が完了したならば、外側容器はその
内部を脱気することなく、直ちに密封され、HIP処理
に付される。
Once preheating to a predetermined temperature is completed, the outer container is immediately sealed without evacuating the inside and subjected to HIP treatment.

かように外側容器は予熱後直ちに密封されるから、例え
ば約1000Cに予熱された場合、内部ガスの70〜7
5係は熱膨脹によりカプセルより放出され、その状態で
密封されると、内部残留ガスの量は常温充填時の25〜
30係に減少して居り、事実上減圧密封した場合と略々
同様となり、特に空気中で充填した場合には、酸素によ
る悪影響を最少限に留めることが可能となる。
In this way, the outer container is sealed immediately after being preheated, so if the outer container is preheated to about 1000C, for example, 70 to 70% of the internal gas
Section 5 is released from the capsule due to thermal expansion, and when it is sealed in that state, the amount of internal residual gas is 25 to 25% when filled at room temperature.
30, which is virtually the same as when sealed under reduced pressure, and especially when filled in air, it is possible to minimize the adverse effects of oxygen.

又、予熱温度が1000℃或はそれ以上になると、雰囲
気ガスが活性ガスの場合には、金属粉末との反応が活溌
となり、雰囲気ガスが内側容器内に盛んに流入し、金属
粉末に吸収されることとなる。
In addition, when the preheating temperature reaches 1000℃ or higher, if the atmospheric gas is an active gas, the reaction with the metal powder becomes active, and the atmospheric gas actively flows into the inner container and is absorbed by the metal powder. The Rukoto.

従って雰囲気ガスとしては、吸収されても無害なガス、
又は吸収されることが望ましいガス、例えば窒素ガス等
が好ましく、特に高速度工具鋼の場合には積極的に窒素
ガスを吸収させて窒化ハイスを生成させることもできる
Therefore, atmospheric gases include gases that are harmless even if absorbed.
Alternatively, a gas that is preferably absorbed, such as nitrogen gas, is preferable, and especially in the case of high-speed tool steel, nitrogen gas can be actively absorbed to generate nitrided high speed steel.

又、此の場合、予熱炉を加圧型として、加圧窒素雰囲気
下で予熱するようにすれば、窒化反応速度を増大し、短
時間の予熱時間を以って必要な窒化を行なわせることが
可能である。
In addition, in this case, if the preheating furnace is a pressurized type and preheating is performed in a pressurized nitrogen atmosphere, the nitriding reaction rate can be increased and the necessary nitriding can be performed in a short preheating time. It is possible.

上述の如く被処理体金属粉末のガス吸収によって容器外
部のガスが容器内部へ逆流入したり、或は予熱後の密封
工程において、特に小型容器の場合等、容器内に周囲の
ガスが逆流することがある。
As mentioned above, gas from outside the container may flow back into the container due to gas absorption by the metal powder to be processed, or surrounding gas may flow back into the container during the sealing process after preheating, especially in the case of small containers. Sometimes.

そのため、容器内へのガス流入を阻止する逆止弁を備え
た導管を外側容器に装着して予熱すれば、予熱時のガス
膨脹過程では、内部ガスは膨脹につれて逆止弁を通って
外部に逸出するが、ガス吸収が活溌になった時点、又は
予熱後の密封工程での降温時においても、逆止弁の作用
により、外部ガスの逆流が防止され、容器内部の残留ガ
ス量は、予熱終了時の状態に維持されるから、酸素の影
響を最少限に抑えることができると共に、窒化反応を忌
避する場合にはそれを最少限に留めることが可能である
Therefore, if a conduit equipped with a check valve that prevents gas from flowing into the container is attached to the outer container and preheated, during the gas expansion process during preheating, the internal gas will pass through the check valve and exit outside as it expands. However, even when gas absorption becomes active or when the temperature drops during the sealing process after preheating, the check valve prevents the external gas from flowing back, reducing the amount of residual gas inside the container. Since the state at the end of preheating is maintained, the influence of oxygen can be minimized, and if the nitriding reaction is to be avoided, it can be kept to a minimum.

本発明方法に従い、被処理体金属粉末を充填した内側容
器を外側容器中の媒体粒子中に埋設し、之等容器を開放
状態で予熱し、脱気操作を行なうことなく直ちに外側容
器を密封して、高圧高温炉内に設置し、所定のHIP処
理を行なった場合、HIP処理の過程で、容器内に僅か
に含有されている酸素又は窒素は金属粉末中に実質的に
完全に吸収されるが、最終製品の品質に全く問題を生ず
ることがなく、却って好ましい結果を与えることもある
According to the method of the present invention, the inner container filled with the metal powder to be treated is embedded in the media particles in the outer container, the container is preheated in an open state, and the outer container is immediately sealed without performing a degassing operation. When the metal powder is installed in a high-pressure, high-temperature furnace and subjected to the specified HIP treatment, the small amount of oxygen or nitrogen contained in the container is substantially completely absorbed into the metal powder during the HIP treatment process. However, this does not cause any problems in the quality of the final product, and may even give favorable results.

又、大気中のアルゴンは該処理中に一部が金属粉末中に
吸収され、一部は残存するにしても、実質的に製品の実
用性に支障を来たさない。
Furthermore, even if some of the argon in the atmosphere is absorbed into the metal powder during the treatment and some of it remains, this does not substantially impede the practicality of the product.

添付図面は上記本発明方法の工程を従来法と対比して図
示したものであり、第1図及び第2図は従来法の場合、
第3図及び第4図は本発明方法の場合を夫々示している
The accompanying drawings illustrate the steps of the method of the present invention in comparison with the conventional method, and FIGS. 1 and 2 show the steps of the method of the present invention,
3 and 4 respectively show the case of the method of the present invention.

第1図に見られる如く、従来法においては、(イ)金属
粉末2を内側容器1に充填する工程(口)ノズル5を備
えた蓋6を内側容器開口部に溶接する工程、 (ハ)外側容器4に圧媒粒子3を充填すると共に、圧媒
粒子中に内側容器を埋設した後、ノズル9を有する蓋1
0を溶接する工程、 (ニ)ノズル9を真空ポンプに連結して容器内部を吸引
脱気する工桿、 (ホ)適宜な密封装置11を用いてノズル9を閉塞密封
する工程、 (ヘ)予熱装置12により予熱する工程、(})HIP
装置によりHIP処理工程、を順次実施することが必須
とされていた。
As seen in FIG. 1, the conventional method includes (a) a step of filling the inner container 1 with metal powder 2 (a) a step of welding a lid 6 equipped with a nozzle 5 to the opening of the inner container; After filling the outer container 4 with the pressure medium particles 3 and embedding the inner container in the pressure medium particles, the lid 1 having the nozzle 9 is removed.
(d) A step of connecting the nozzle 9 to a vacuum pump to suction and deaerate the inside of the container; (e) A step of closing and sealing the nozzle 9 using an appropriate sealing device 11; (f) A step of preheating by the preheating device 12, (}) HIP
It has been essential to sequentially perform HIP processing steps using different devices.

第2図は第1図に示した従来法の工程を簡略化するため
に提案された方法で、 (イ)〜(ハ)は上記に同じ (ニ)外部容器密封工程 (ホ)HIP処理工稈 の僅か5工程に短縮されているが、既述の如く密封内容
をHIP処理に付する前に予熱が出来ないため、容器を
HIP装置内に加熱の為、長時間保持する要があり、H
IP装置の効率的運転を妨げる結果となる。
Figure 2 shows a method proposed to simplify the conventional process shown in Figure 1. (A) to (C) are the same as above (D) Outer container sealing process (E) HIP treatment process Although the culm process has been shortened to just 5 steps, as mentioned above, it is not possible to preheat the sealed contents before subjecting them to the HIP process, so it is necessary to hold the container in the HIP device for a long time to heat it. H
This results in hindering the efficient operation of the IP device.

第3図に示した本発明方法の工程では、 (イ)(ロ)(ハ)の各工程と、 (ニ)内外容器のノズル5,9を開放した状態で予熱す
る工程、 (1)真空吸引することなく直ちに密封する工程、(ハ
)HIP処理工程、 とよりなる。
The steps of the method of the present invention shown in FIG. 3 include (a), (b), and (c), (d) a step of preheating with the nozzles 5 and 9 of the inner and outer containers open, and (1) vacuuming. It consists of a step of immediately sealing without suction, and (iii) a HIP treatment step.

第4図は第3図に示した本発明方法において、ノズル9
に逆止弁7を備えた導管8を装着して同様の工程を行な
う場合を示す。
FIG. 4 shows the nozzle 9 in the method of the present invention shown in FIG.
A case is shown in which a conduit 8 equipped with a check valve 7 is installed and the same process is carried out.

第5図は金属粉末2を充填した内側容器1の蓋体6に設
けられたノズル5の途中を適宜に鍛圧又は挟圧し、気体
の流通を許すが、金属粉末及び圧媒粒子の流通を阻止す
る程度の狭隘な間隙を残して閉塞した状態を示している
In Fig. 5, the nozzle 5 provided on the lid 6 of the inner container 1 filled with metal powder 2 is forged or squeezed as appropriate to allow gas to flow, but to prevent the metal powder and pressure medium particles from flowing. This shows a closed state with a narrow gap remaining.

次に上記のことを内容積100lの内側容器を用いて高
速度鋼をHIP処理する場合について考察する。
Next, we will consider the case where high speed steel is subjected to HIP treatment using an inner container having an internal volume of 100 liters.

今、初期の粉末充填率を一般的な70チとすると、内側
容器中には701のハイス粉末と301の空気が封入さ
れていることになる。
Now, if the initial powder filling rate is a typical 70 cm, then 701 parts of high speed steel powder and 301 parts of air are sealed in the inner container.

この時のハイス粉末及び空気の量を重量換算すると、ハ
イス粉末70l→真空度8.12g/cc→568.4
kg 空気 30l 02:20.93Vol%−8.97g N2:78.10VoA%→29.29gAr:0.9
325Vol%−0.498gとなる。
When converting the amount of high speed steel powder and air at this time into weight, it is 70 liters of high speed steel powder → degree of vacuum 8.12 g/cc → 568.4
kg Air 30l 02:20.93Vol%-8.97g N2:78.10VoA%→29.29gAr:0.9
325Vol%-0.498g.

之を1100℃迄予熱すると空気容積は式 により約4.6倍に膨脹する。When preheating this to 1100℃, the air volume becomes the formula It expands approximately 4.6 times.

(但しこの場合常温を27℃とした) この事は開放状態のカプセル中に存在する空気の重量が
、1100℃の時は常温時の1/4.6に減少する事を
意味し、従って1100℃に於いて30l容積の空気中
に存在する各成分の理論量は02:1.95g N2:6.37g Ar:0.108g となる。
(However, in this case, the room temperature was 27°C.) This means that the weight of air existing in the open capsule at 1100°C is reduced to 1/4.6 of that at room temperature, and therefore 1100°C. The theoretical amounts of each component present in a volume of 30 liters of air at °C are: 02: 1.95 g, N2: 6.37 g, Ar: 0.108 g.

これら各ガス成分の内02,N2はHIP処理の過程に
おいて実質上ハイス中に完全に吸収されて最終製品中に
おける02,N2の各量比は次の様になる。
Of these gas components, O2 and N2 are substantially completely absorbed into the HSS during the HIP process, and the respective ratios of O2 and N2 in the final product are as follows.

一方、前記空気中のArは実際は一部が吸収され、一部
は残存するが、最悪のケースとして総てが残存するもの
と仮足して最終製品の空隙率を算定すると、初期のAr
は 30lXO.9325係=280ffl これを1100℃に予熱すると容積は4.6倍となる為
、301中に残存する量は常温時換算で61crlとな
る。
On the other hand, some of the Ar in the air is actually absorbed and some remains, but if we assume that all of it remains in the worst case and calculate the porosity of the final product, the initial Ar
is 30lXO. 9325 coefficient = 280 ffl If this is preheated to 1100° C., the volume will increase by 4.6 times, so the amount remaining in 301 will be 61 crl in terms of room temperature.

そしてこれに1100C,1000atmでHIP処理
を行なうと、HIP処理後の容積関は次の通りである。
When this is subjected to HIP treatment at 1100C and 1000 atm, the volume relationship after HIP treatment is as follows.

上記式よりArによる最終製品の空隙率は、となる。From the above formula, the porosity of the final product due to Ar is as follows.

即ち最終製品の密度は理論密度の99.999係以上と
なる。
That is, the density of the final product is 99.999 times higher than the theoretical density.

かくして以上より綜合的に02量、N2量、相対密度共
、実用上全く問題のないものが得られることが立証され
る。
Thus, from the above, it is proven that the amount of O2, the amount of N2, and the relative density can be obtained without any practical problems.

以上は初期の粉末充填率を70%として考察したが、充
填率は被処理金属粉末の種類により当然変動を免れない
Although the initial powder filling rate was considered as 70% above, the filling rate naturally fluctuates depending on the type of metal powder to be processed.

しかし最も実用に供される範囲は、略々前記の場合から
推察され、殆ど影響はない。
However, the most practical range can be roughly estimated from the above case, and has almost no effect.

次に本発明方法による具体的実施例を掲げる。Next, specific examples of the method of the present invention will be listed.

実施例 I C:1.57係 Cr:4.21係 W:12.50係 V:4.71係 Co:4.97係 Fe:残部 上記組成の高速度鋼粉末を窒素ガスアトマイズ法によっ
て製造した。
Example I C: 1.57 ratio Cr: 4.21 ratio W: 12.50 ratio V: 4.71 ratio Co: 4.97 ratio Fe: remainder A high speed steel powder having the above composition was produced by a nitrogen gas atomization method. .

そしてこの粉末を内径100mm、高さ200mmのア
ルミナ製円筒容器に大気中で撹拌しつつ充填し、充填後
容器の開口部に、通気ノズルを備えたアルミナ製蓋を溶
接した。
This powder was then filled into an alumina cylindrical container with an inner diameter of 100 mm and a height of 200 mm while being stirred in the atmosphere, and after filling, an alumina lid equipped with a ventilation nozzle was welded to the opening of the container.

このものを内径200mm,高さ300mmの軟鋼製容
器に装入した。
This product was placed in a mild steel container with an inner diameter of 200 mm and a height of 300 mm.

軟鋼製容器中にはシリカ粒子が入れられ、アルミナ容器
の周囲を取巻く様に軟鋼製容器の内壁との間隙に隅なく
充填した。
Silica particles were placed in a mild steel container, and filled in all the gaps between the inner wall of the mild steel container and the alumina container so as to surround the alumina container.

次いで軟鋼製容器の上方開口部に、通気ノズルを備えた
軟鋼製の蓋を溶接した。
A mild steel lid with a ventilation nozzle was then welded to the upper opening of the mild steel container.

この容器内を吸引脱気することなく、開放状態を保った
侭、窒素雰囲気の予熱炉に装入し、1100℃迄加熱し
た。
The inside of this container was maintained in an open state without suction and degassing, and the container was charged into a preheating furnace in a nitrogen atmosphere and heated to 1100°C.

斯かる予熱を完了する迄に60分を要した。It took 60 minutes to complete such preheating.

予熱終了後、容器内部を真空吸引することなく、直ちに
軟鋼製容器の通気ノズルを一対のハンマーにて鍛圧して
封止し、更に封止部を溶接密封した後、HIP炉に装填
し1100C,1000atm,30分の条件でHIP
処理を行なった。
After preheating, the ventilation nozzle of the mild steel container was immediately sealed by forging with a pair of hammers without vacuuming the inside of the container, and the sealed portion was further sealed by welding, and then loaded into a HIP furnace at 1100C. HIP under the conditions of 1000 atm, 30 minutes
processed.

得られた製品を取り出して切断し、顕微境で観察したと
ころ、その組織は酸化物ネットワーク等の全くない微細
な粒径の健全な組織であり、且つまた気孔も発見されな
かった。
When the obtained product was taken out, cut, and observed under a microscopic environment, the structure was found to be a healthy structure with a fine particle size and no oxide network, and no pores were found.

又酸素分析結果によると、製品中の酸素濃度は35pp
mであった。
Also, according to the oxygen analysis results, the oxygen concentration in the product is 35pp.
It was m.

実施例 2 C:0.86係 Cr:4.24% W:6.14係 V:1.89係 Mo:5.01係 Fe:残部 上記組成からなる高速度鋼粉末を窒素ガスアトマイズ法
によって製造した。
Example 2 C: 0.86 ratio Cr: 4.24% W: 6.14 ratio V: 1.89 ratio Mo: 5.01 ratio Fe: remainder A high speed steel powder having the above composition was produced by nitrogen gas atomization method. did.

この粉末は酸素分析の結果、その酸素濃度65p.p.
mであった。
As a result of oxygen analysis, this powder has an oxygen concentration of 65p. p.
It was m.

次にこの粉末を内径40mm,高さ160mmのアルミ
ナ製円筒容器に大気中で充填率70%迄充填し、充填後
、通気ノズルを備えたアルミナ製蓋を溶接し、更に通気
ノ2ルの途中を鍛圧して第5図に示す如く、狭隘な間隙
を残して閉塞した。
Next, this powder is filled into an alumina cylindrical container with an inner diameter of 40 mm and a height of 160 mm in the atmosphere to a filling rate of 70%. After filling, an alumina lid equipped with a ventilation nozzle is welded, and a ventilation nozzle is inserted in the middle of the container. was forged and closed, leaving a narrow gap as shown in Figure 5.

次にこのアルミナ容器を内径80mm、高さ240mm
の軟鋼製円筒容器に装入し、同時にシリカ粒子を充填し
てアルミナ容器がシリカ粒子中に完全に埋設する様に位
置決めを行ぽい、更に通気ノズルを備えた軟鋼製蓋を軟
鋼容器の上部開口部を覆う様に溶接した。
Next, this alumina container has an inner diameter of 80 mm and a height of 240 mm.
At the same time, the alumina container is charged into a mild steel cylindrical container, and the alumina container is positioned so that it is completely buried in the silica particles. Welded it to cover the area.

又通気ノズルには逆止井を備えた導管を接続し、容器内
部から外方へのガス通過は許すが、その逆の流れを阻止
する構造となし、予熱炉に装入して1190℃の温度に
到達する迄加熱を続けた。
In addition, a conduit equipped with a check well is connected to the ventilation nozzle, and the structure is designed to allow gas to pass from the inside of the container to the outside, but to prevent the opposite flow. Heating was continued until the temperature was reached.

予熱に要した時間は80分であった。The time required for preheating was 80 minutes.

予熱完了後、前記実施例1と同様の方法で通気ノズルを
封止・密封し、HIP装置に装填して、1100℃,1
000atm,30分の条件でHIP処理を行なった。
After completion of preheating, the ventilation nozzle was sealed and sealed in the same manner as in Example 1, loaded into a HIP device, and heated at 1100°C for 1 hour.
HIP treatment was performed under the conditions of 000 atm and 30 minutes.

得られた製品を取り出し酸素分析したところ、その酸素
濃度は83ppmであった。
When the obtained product was taken out and analyzed for oxygen, its oxygen concentration was 83 ppm.

又顕微鏡によっては気孔は観察されず、その密度はs.
12g/c=3と理論密度に達していた。
Also, no pores were observed using a microscope, and their density was s.
The theoretical density was reached at 12g/c=3.

本発明方法は上述の様に一切脱気工程を必要としないか
ら、従来脱気の為に必要とされていた各種の複雑な装置
が全く不要であり、設備費を大巾に減少し得ると共に、
工程が短縮され、又、無脱気方式を採用して居り乍ら、
HIP処理に先立って予熱を可能とし、且つ予熱をガス
の存在下に行なうため、予熱時間を著しく短縮し、更に
HIP処理時間をも短縮してHIP装置の効率を高める
ことに成功した。
Since the method of the present invention does not require any degassing process as described above, it does not require any of the various complicated devices conventionally required for degassing, and can greatly reduce equipment costs. ,
Although the process is shortened and a non-degassing method is used,
Since preheating can be performed prior to HIP processing and preheating is performed in the presence of gas, the preheating time can be significantly shortened, and the HIP processing time can also be shortened, thereby increasing the efficiency of the HIP device.

更に又、予熱操作は容器を開放したまへ行なわれ、内部
の気体が膨脹逸出し稀薄化した状態で直ちに密封され、
HIP処理に移されるから、残留ガスの影響は最少限に
抑制され、高品質の製品が得られるのみならず、被処理
体金属粉末に特定のガス吸収が望まれる時には、該ガス
雰囲気下で予熱を行なうことによって所望の品質とする
ことができる等、前記工程の合理化を相俟って、本発明
は工業的有利なTIP処理方法を提供するものである。
Furthermore, the preheating operation is performed while the container is open, and the gas inside expands and escapes, and the container is immediately sealed in a diluted state.
Since it is transferred to HIP processing, the influence of residual gas is suppressed to a minimum, and not only can a high-quality product be obtained, but also when it is desired that the metal powder to be processed absorbs a specific gas, it can be preheated in the gas atmosphere. The present invention provides an industrially advantageous TIP treatment method by streamlining the steps described above, such as achieving the desired quality by performing the following steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イ〜ト及び第2図イ〜ホは何れも従来のHIP処
理工程の概要を示す工程法、第3図イ〜へ及び第4図イ
〜トは夫々本発明のHIP処理工程の態様を示す工程概
要図である。 又第5図は本発明方法に好適に適用される内側容器の通
気ノズルの一例を示す概略図である。 1・・・内側容器、2・・・金属粉末、3・・・圧媒粒
子、4・・外側容器、5,9。 ・・ヅズル、11・・・密封装置、12・・・予熱装置
Figures 1A to 2E and 2A to 3E each show a conventional HIP process, and Figures 3A to 3E and 4E and 4E each illustrate the HIP process of the present invention. It is a process outline diagram showing an aspect. Further, FIG. 5 is a schematic diagram showing an example of a ventilation nozzle for the inner container suitably applied to the method of the present invention. DESCRIPTION OF SYMBOLS 1... Inner container, 2... Metal powder, 3... Pressure medium particles, 4... Outer container, 5, 9. ...Tuzzle, 11... Sealing device, 12... Preheating device.

Claims (1)

【特許請求の範囲】 1 金属粉末を充填した内側容器を、圧媒粒子を充填し
た外側容器内に埋設し、これを予熱した後、熱間静水圧
プレス処理を行なう方法において、大気中若しくは窒素
ガス雰囲気下で内側容器への金属粉末の充填及びこの内
側容器の外側容器への埋設を行ない、続いて両容器内を
脱気密封することなく所定温度に予熱し、予熱終了後、
両容器内を脱気することなく直ちに外側容器を密封し、
しかる後、該容器に高温高圧ガス雰囲気下で熱間静水圧
プレス処理を施すことにより前記内興容器内の金属粉末
の緻密化焼結を行なうことを特徴とする熱間静水圧プレ
ス成形法。 2 内側容器が開口部を有する金属製容器であって、そ
れに金属粉末を充填した後、該開口部に、ノズルを有す
る蓋体を溶接して取り付け、前記ノズルを金属粉末及び
圧媒粒子の流通を阻止するがガスの流通を許容する程度
の間隙を残して閉塞してなる前記特許請求の範囲第1項
記載の熱間静水圧プレス成形法。 3 金属粉末を充填した内側容器を、圧媒粒子を充填し
た外側容器内に埋設し、これを予熱した後、熱間静水圧
プレス処理を行なう方法において、大気中若しくは窒素
ガス雰囲気下で内側容器への金属粉末の充填及びこの内
側容器の外側容器内への埋設を行ない、両容器内を脱気
密封することなく、外側容器外から該容器内へのガス流
入を阻止する逆止弁を備えたノズルを該外側容器に装着
して、これを所定温度に予熱し、予熱終了後両容器内を
脱気することなく直ちに外側容器を密封し、しかる後該
容器に高温高圧ガス雰囲気下で熱間静水圧プレス処理を
施すことにより前記内側容器内の金属粉末の緻密化焼結
を行なうことを特徴とする熱間静水圧プレス成形ム 4 内側容器が開口部を有する金属製容器であって、そ
れに金属粉末を充填した後、該開口部に、ノズルを有す
る蓋体を溶接して取り付け、前記ノズルを金属粉末及び
圧媒粒子の流通を阻止するがガスの流通を許容する程度
の間隔を残して閉塞してなる前記特許請求の範囲第3項
記載の熱間静水圧プレス成形法。 5 外側容器が1開口部を有する金属製容器であって、
それに圧媒粒子の充填及び内側容器の埋設を行なった後
、該開口部に、ノズルを有する蓋体を溶接して取り付け
、又予熱後の外側容器の密封がノズルの閉塞によって行
なわれる前記特許請求の範囲第3項又は第4項記載の熱
間静水圧プレス成形法。
[Claims] 1. A method in which an inner container filled with metal powder is buried in an outer container filled with pressure medium particles, and after preheating this, a hot isostatic pressing treatment is performed. Filling the inner container with metal powder and burying the inner container in the outer container in a gas atmosphere, then preheating both containers to a predetermined temperature without deaerating and sealing them, and after preheating,
Immediately seal the outer container without evacuating the inside of both containers.
A hot isostatic press molding method, characterized in that the metal powder in the internal forming container is then densified and sintered by subjecting the container to hot isostatic pressing in a high-temperature, high-pressure gas atmosphere. 2. The inner container is a metal container having an opening, and after it is filled with metal powder, a lid having a nozzle is attached to the opening by welding, and the nozzle is used to control the flow of the metal powder and pressure medium particles. 2. The hot isostatic press molding method according to claim 1, wherein the hot isostatic press molding method is closed, leaving a gap large enough to prevent gas flow but permit gas flow. 3. In a method in which an inner container filled with metal powder is buried in an outer container filled with pressure medium particles, the inner container is preheated, and then subjected to hot isostatic pressing treatment, the inner container is buried in the air or under a nitrogen gas atmosphere. The inner container is filled with metal powder and the inner container is buried in the outer container, and a check valve is provided to prevent gas from flowing into the container from outside the outer container without degassing and sealing both containers. Attach a nozzle to the outer container and preheat it to a predetermined temperature. After preheating, immediately seal the outer container without evacuating the inside of both containers, and then heat the container in a high-temperature, high-pressure gas atmosphere. A hot isostatic press forming module 4 characterized in that the metal powder in the inner container is densified and sintered by performing an isostatic press treatment.A metal container in which the inner container has an opening, After filling it with metal powder, a lid having a nozzle is attached to the opening by welding, and the nozzle is connected to the opening so as to block the flow of the metal powder and the pressure medium particles, but leave a gap sufficient to allow the flow of gas. The hot isostatic press molding method according to claim 3, wherein the hot isostatic press molding method is closed. 5. A metal container in which the outer container has one opening,
After filling the pressure medium particles and burying the inner container, a lid having a nozzle is attached to the opening by welding, and the outer container is sealed after preheating by closing the nozzle. The hot isostatic press molding method according to item 3 or 4.
JP55029166A 1980-03-10 1980-03-10 Hot isostatic pressing method Expired JPS585962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55029166A JPS585962B2 (en) 1980-03-10 1980-03-10 Hot isostatic pressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55029166A JPS585962B2 (en) 1980-03-10 1980-03-10 Hot isostatic pressing method

Publications (2)

Publication Number Publication Date
JPS56127704A JPS56127704A (en) 1981-10-06
JPS585962B2 true JPS585962B2 (en) 1983-02-02

Family

ID=12268653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55029166A Expired JPS585962B2 (en) 1980-03-10 1980-03-10 Hot isostatic pressing method

Country Status (1)

Country Link
JP (1) JPS585962B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032273U (en) * 1983-08-08 1985-03-05 大阪化学合金株式会社 Water-soluble packaging
JPH0336499Y2 (en) * 1985-07-05 1991-08-02

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032273U (en) * 1983-08-08 1985-03-05 大阪化学合金株式会社 Water-soluble packaging
JPH0336499Y2 (en) * 1985-07-05 1991-08-02

Also Published As

Publication number Publication date
JPS56127704A (en) 1981-10-06

Similar Documents

Publication Publication Date Title
US3992200A (en) Method of hot pressing using a getter
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US3700435A (en) Method for making powder metallurgy shapes
JP5001159B2 (en) Method for controlling the oxygen content of a powder
US20050152820A1 (en) High temperature high pressure capsule for processing materials in supercritical fluids
US3824097A (en) Process for compacting metal powder
CA2160857C (en) Porous metal body and process for producing same
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4368074A (en) Method of producing a high temperature metal powder component
EP0741194B1 (en) Pneumatic isostatic compaction of sintered compacts
US3728111A (en) Method of manufacturing billets from powder
JPS585962B2 (en) Hot isostatic pressing method
JPS6231041B2 (en)
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
JPS6361096B2 (en)
JPS58202939A (en) Hot plastic working method
JPS63247321A (en) Formation of ti-al intermetallic compound member
US5976459A (en) Method for compacting high alloy tool steel particles
JPH0657365A (en) Isotropic powder metallurgical material and its production
JPH04187705A (en) Manufacture of aluminum powder compression compact
JPS6131161B2 (en)
JPS6250521B2 (en)
JPH0754009A (en) Method and apparatus for producing powder-packed capsule
JPS6250522B2 (en)