JPS6250521B2 - - Google Patents

Info

Publication number
JPS6250521B2
JPS6250521B2 JP54173218A JP17321879A JPS6250521B2 JP S6250521 B2 JPS6250521 B2 JP S6250521B2 JP 54173218 A JP54173218 A JP 54173218A JP 17321879 A JP17321879 A JP 17321879A JP S6250521 B2 JPS6250521 B2 JP S6250521B2
Authority
JP
Japan
Prior art keywords
pressure
capsule
furnace
preheating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54173218A
Other languages
Japanese (ja)
Other versions
JPS5695425A (en
Inventor
Nobuyasu Kawai
Hiroshi Takigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17321879A priority Critical patent/JPS5695425A/en
Publication of JPS5695425A publication Critical patent/JPS5695425A/en
Publication of JPS6250521B2 publication Critical patent/JPS6250521B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は熱間静水圧プレス成形(以下HIPとい
う)の改良法に関し、詳しくは被処理体をHIP処
理に先立つて予熱する場合の作業時間の短縮を図
り、歩留りの向上を達成すると共に予熱からHIP
処理に至る一連の工程の稼働率を高め、生産性を
増大する改良されたHIPプロセスに関するもので
ある。
[Detailed Description of the Invention] The present invention relates to an improved method of hot isostatic pressing (hereinafter referred to as HIP), and more specifically, it aims to shorten the working time when preheating the object to be processed prior to HIP processing, and to improve the yield. Achieving improvements and HIP from preheating
This article relates to an improved HIP process that increases the utilization rate of the series of steps leading up to treatment and increases productivity.

近年、高速度鋼粉末、超合金粉末等の成形、緻
密化にHIPプロセスが用いられ、企業化されつつ
ある。この場合、比較的高価なHIP装置の稼働率
をいかに高めるか換言すれば、HIPのサイクル時
間をいかに短縮するかが、コスト低減に大きく寄
与する。とくに、最近のように製品の大型化に伴
い、HIP装置本体も大型化の傾向にあり、HIPサ
イクル時間はますます増大するため、それを短縮
する目的で、コンプレツサーの高能率化、大容量
化、加熱装置の改善、その他のHIP装置を高能率
化させるための手段が種々とられているが、装置
自体の改善には自ずから限界があり、装置価格も
莫大なものになる。
In recent years, the HIP process has been used for forming and densifying high-speed steel powder, superalloy powder, etc., and is being commercialized. In this case, how to increase the operating rate of the relatively expensive HIP equipment, or in other words, how to shorten the HIP cycle time will greatly contribute to cost reduction. In particular, as products have become larger in recent years, the HIP equipment itself has also tended to become larger, and the HIP cycle time is increasing. Various measures have been taken to improve the efficiency of the HIP device, such as improving the heating device, but there are limits to the improvement of the device itself, and the cost of the device becomes enormous.

その他に最も効果のある方法として、HIP処理
に先立つて、カプセルに充填した粉末の密度を上
昇させるために冷間圧縮成形を施したり、あるい
は常圧炉で被処理体を予熱する方式、またはそれ
らの組合わせが採用されている。ところで、本発
明者らは、HIPプロセスについて種々検討し、試
行錯誤をくり返えしたところ、圧力下と大気圧下
とでは、被処理体を必要な温度にまで上昇するの
に要する時間に大きな差異の生じることを見い出
した。つまり、カプセルに充填した粉末材料の中
心部を必要な温度にまで加熱するのに要する時間
は、以下の理由によつて、圧力下の場合、大気圧
下の場合よりも著しく短くなることが判つた。
Other most effective methods include performing cold compression molding to increase the density of the powder filled into capsules prior to HIP treatment, or preheating the object in an atmospheric pressure furnace. A combination of these has been adopted. By the way, the inventors of the present invention have conducted various studies on the HIP process, and after repeated trial and error, found that there is a significant difference in the time required to raise the temperature of the object to be processed under pressure and under atmospheric pressure. We found that there are differences. In other words, the time required to heat the center of the powdered material in a capsule to the required temperature is found to be significantly shorter under pressure than under atmospheric pressure for the following reasons: Ivy.

(a) 圧力下では、炉雰囲気から被処理体への熱伝
導率が極めて、大きくなる。すなわち、雰囲気
から被処理体へ熱が良く伝わる。たとえば、
1000Kg/cm2の高圧アルゴンガスは、大気圧のア
ルゴンに比べて、数百倍の密度を有する反面、
その粘性は1.1〜3倍程度に過ぎないため、激
しい対流が生じ、対流熱伝達率が極めて大きな
値となる。
(a) Under pressure, the thermal conductivity from the furnace atmosphere to the object to be processed becomes extremely large. That is, heat is well transferred from the atmosphere to the object to be processed. for example,
High-pressure argon gas at 1000Kg/cm 2 has a density several hundred times that of argon at atmospheric pressure, but on the other hand,
Since its viscosity is only about 1.1 to 3 times higher, intense convection occurs and the convective heat transfer coefficient becomes extremely large.

(b) HIPサイクルの初期の段階に、粉末材料の緻
密化が進行し、この結果、粉末材料の熱伝導率
が飛躍的に向上する。すなわち、被処理体内部
での熱の伝導が良くなる。
(b) At the early stage of the HIP cycle, the powder material becomes densified, resulting in a dramatic increase in the thermal conductivity of the powder material. That is, heat conduction inside the object to be processed is improved.

(c) 緻密化の進行によつて、カプセルが収縮す
る。昇温時間は、被処理体直径の2乗に反比例
するため、この作用によつても、昇温時間は短
縮する。
(c) The capsule contracts as densification progresses. Since the temperature increase time is inversely proportional to the square of the diameter of the object to be treated, this effect also shortens the temperature increase time.

つぎに、第1図は、炉雰囲気温度を1000℃とし
て、高速度鋼粉末が充填された外径310mmのカプ
セルを、0℃から加熱する場合の昇温曲線であ
り、縦軸は被処理体中心部温度、横軸は時間を示
したもので、計算は有限要素法を用いて行なつ
た。
Next, Figure 1 shows the temperature rise curve when a capsule with an outer diameter of 310 mm filled with high-speed steel powder is heated from 0°C at a furnace atmosphere temperature of 1000°C, and the vertical axis is the object to be processed. The temperature at the center and the horizontal axis indicate time, and the calculation was performed using the finite element method.

図中、#1〜#4は下記の条件に相当するもの
である。
In the figure, #1 to #4 correspond to the following conditions.

#1:大気圧下での加熱に相当 #2:高圧下(1000Kg/cm2)での熱伝達の向上
のみを考慮 #3:緻密化による熱伝導率の向上を考慮 #4:緻密化によるカプセルの収縮も考慮 第1図から判るように、カプセル中心部が950
℃(炉雰囲気温度の95%)に達するのに要する時
間は、#1で435分、#2で368分、#3で94分、
#4で79分となつた。この結果、カプセルに充填
した粉末を加熱する場合、圧力下では大気圧の4
ないし5分の1の昇温時間で済むことが判り、そ
のなかでも、とくに#3の緻密化による熱伝導率
の向上が昇温時間の短縮に大きく寄与しているこ
とが判明した。
#1: Equivalent to heating under atmospheric pressure #2: Considering only improvement in heat transfer under high pressure (1000Kg/cm 2 ) #3: Considering improvement in thermal conductivity due to densification #4: Due to densification Taking into account the contraction of the capsule.As you can see from Figure 1, the center of the capsule is 950
The time required to reach °C (95% of the furnace atmosphere temperature) is 435 minutes for #1, 368 minutes for #2, 94 minutes for #3,
#4 took 79 minutes. As a result, when heating the powder filled in a capsule, the pressure is 4
It was found that the heating time was reduced to one to one-fifth, and in particular, it was found that the improvement in thermal conductivity due to the densification of #3 greatly contributed to the shortening of the heating time.

つぎに第2図は、同じ高速度鋼粉末を用いた場
合の、圧力と粉末の密度との関係を示した線図で
ある。この場合の炉の温度は1050℃であるが、加
圧前の初期の粉末充填密度が65%であつたのにも
拘らず、僅か200Kg/cm2の圧力で粉末の密度は90%
にまで上昇し、熱伝導の向上に充分寄与している
ことが判る。ところで、前記のように、被処理体
の熱伝導率を向上させようとする場合、冷間で圧
縮して充填密度を上昇させる方法はよく知られて
いるが、この場合には、冷間ゆえに4000〜5000
Kg/cm2もの圧力が必要で、かつそのときの圧縮密
度は数%上昇するに過ぎず、高価な冷間成形機を
使用する割りには、熱伝導率の改善への効果は小
さいものである。
Next, FIG. 2 is a diagram showing the relationship between pressure and powder density when the same high-speed steel powder is used. The temperature of the furnace in this case is 1050℃, but even though the initial powder packing density before pressurization was 65%, the density of the powder was reduced to 90% with a pressure of only 200Kg/ cm2 .
It can be seen that the heat transfer rate has increased to 100%, making a sufficient contribution to improving heat conduction. By the way, as mentioned above, when trying to improve the thermal conductivity of the object to be processed, the method of increasing the packing density by cold compression is well known. 4000~5000
A pressure of Kg/ cm2 is required, and the compressed density at that time increases by only a few percent, so the effect on improving thermal conductivity is small considering the use of an expensive cold forming machine. be.

さらに通常、粉末をHIP処理する場合には、気
体浸透性のない材料で作られたカプセル内に粉末
を充填し、内部を真空脱気したのち、カプセルを
密封してHIP処理するのが一般的である。又、複
雑な形状をした工具鋼製品等をHIP法によつて製
品するために、製品形状に対応する形状の鋳型カ
プセル中に金属粉末材料を充填し、該カプセル
を、圧媒粒子を収容した外側カプセル中に埋設
し、前記同様真空脱気、予熱工程を経て、HIP処
理を行なうことも既に周知である。
Furthermore, when powder is subjected to HIP processing, it is common to fill the powder into a capsule made of a material that is not permeable to gas, vacuum degas the inside, then seal the capsule and perform HIP processing. It is. In addition, in order to manufacture tool steel products etc. with complex shapes by the HIP method, metal powder material is filled into a molded capsule with a shape corresponding to the product shape, and the capsule is filled with pressure medium particles. It is already well known that the material is embedded in an outer capsule and subjected to the same vacuum degassing and preheating steps as described above, followed by HIP treatment.

かゝる周知慣用の方法にあつては、カプセル内
部の脱気を充分に行なわなければ、残存空気ある
いは置換ガスであるN2等、若しくは金属粉末材
料から発生するガスのために、最終製品内部に実
用上問題となるような気孔あるいは組織が生じる
結果を招来すると信じられ、長時間をかけて丹念
な脱気作業を行なうことが重要とされ、更に脱気
によつてカプセル内が真空状態となり熱伝導が低
下する為、予熱工程に長時間を要する等、工程の
効率化を著しく阻害する要因を包蔵していた。特
公昭51−18202号公報には、予熱工程において効
果的な熱伝導を与える為、脱気工程後にヘリウ
ム、水素のような不活性の、分子量の小さいガス
でカプセルを一旦充満し、予熱時間の短縮を図
り、所望の温度迄加熱したならばガスを除去して
HIP処理に付する方法が開示されている。この方
法においても、脱気、ガス置換、排ガスを順次行
なわねばならず、依然として工程の簡略化は達成
されていない。
In such a well-known and commonly used method, if the inside of the capsule is not sufficiently degassed, residual air or replacement gas such as N2 , or gases generated from the metal powder material may cause the inside of the final product to leak. It is believed that this can lead to the formation of pores or structures that can be a practical problem, and it is important to carry out careful degassing work over a long period of time. Because heat conduction is reduced, the preheating process takes a long time, and there are many factors that seriously impede process efficiency. Japanese Patent Publication No. 51-18202 states that in order to provide effective heat conduction during the preheating process, the capsule is temporarily filled with an inert, low molecular weight gas such as helium or hydrogen after the degassing process, and the preheating time is After heating to the desired temperature, remove the gas.
A method for subjecting to HIP processing is disclosed. Even in this method, deaeration, gas replacement, and exhaust gas must be performed in sequence, and the process has not yet been simplified.

一方、本発明者等は、HIP法を種々の被処理材
料について試み、仔細に検討を加えたところ、非
常に成分規定の厳密なものを除けば、一般に残留
ガスが及ぼす成分変動は微々たるものであること
を知見するに至つた。かゝる事実は次の説明によ
つても明らかである。
On the other hand, the inventors of the present invention have tried the HIP method on various materials to be treated, and after conducting detailed studies, they have found that, except for those with very strict composition regulations, the compositional fluctuations caused by residual gas are generally negligible. I came to the conclusion that this is the case. This fact is also clear from the following explanation.

いま、粉末を内容積V()なる気体浸透性の
ない材料で作られた開口部を有するカプセル中に
空気中で充填した時、その充填率がβであつたと
する。そして、そのまま前記カプセル内部に空気
が残存する状態でカプセルを密封すると、カプセ
ル中にはVβ()の粉末材料とV(1−β)
()の空気が閉じ込められていることになる。
ところで、空気中の主成分はO2=20.93%、N2
78.10%、Ar=0.9325%であるから、カプセル中
に閉じ込められたV(1−β)()の空気中に
は下記の量のO2、N2、およびArが存在する訳で
ある。
Now, suppose that when powder is filled in air into a capsule having an internal volume V() and an opening made of a material that is not permeable to gas, the filling rate is β. Then, when the capsule is sealed with air remaining inside the capsule, the powder material of Vβ() and the powder material of V(1-β) are contained in the capsule.
This means that the air in () is trapped.
By the way, the main components in the air are O 2 = 20.93%, N 2 =
78.10%, Ar=0.9325%, the following amounts of O 2 , N 2 , and Ar exist in the air of V(1-β)( ) confined in the capsule.

O2…V(1−β)×32/22.4×0.2093 =0.299V(1−β) (g) N2…V(1−β)×28/22.4×0.7810 =0.976V(1−β) (g) Ar…V(1−β)×0.009325 =0.009325V(1−β) (l) そして、粉末とともにカプセル中に閉じ込めら
れた、このガスのうち、O2、N2は、予熱の際の
加熱によつて、金属粉末中に吸収されてしまう。
このO2、N2の増加量は、いま金属粉末の真密度
を(g/)とすると、最終的に得られる製品の
重量はVβζ(g)であるから、最初カプセル内
に残存していた空気中のO2によつて増加するO2
濃度は、 0.299V(1−β)/Vβρ=0.299(1−
β)/βρとなる。一方、 N2濃度は0.976(1−β)/βρとなる。
O 2 ...V(1-β)×32/22.4×0.2093 =0.299V(1-β) (g) N2 ...V(1-β)×28/22.4×0.7810 =0.976V(1 -β) (g) Ar…V(1-β)×0.009325 =0.009325V(1-β) (l) Of this gas trapped in the capsule with the powder, O 2 and N 2 are: It is absorbed into the metal powder by heating during preheating.
If the true density of the metal powder is (g/), then the weight of the final product is Vβζ (g), so the increased amount of O 2 and N 2 that initially remained in the capsule is O 2 increased by O 2 in the air
The concentration is 0.299V(1-β)/Vβρ=0.299(1-β)
β)/βρ. On the other hand, the N 2 concentration is 0.976(1-β)/βρ.

ここで、たとえば、金属の真密度を8200g/
、カプセルへの充填率を65%とすると、 N2濃度増加量=0.976(1−0.65)/0.65
×8200=6.41×10-5=64.1 ppm O2 〃 =0.299(1−0.65)/0.65
×8200=1・96×10-5= 1.96ppm この程度のN2、O2の増加は製品品質に全く悪
影響を与えないことは公知の事実である。次に、
最終製品中に残存する可能性のあるArについ
て、定量的な検討を加える。既に述べたように当
初カプセル中に閉じ込められたAr量は0.009325V
(1−β)()である。HIP処理の温度をT
(〓)、圧力をP(atm)とし、HIP処理後のArの
容積をV()とする。いま、カプセルの密封を
300〓(27℃)で実施し、閉じ込められたArがす
べて気体のまゝ最終製品中に残存するとすれば次
式が成立つ、 1(atm)×0.009325V(1−β)()/
300(〓)=P(atm)・v()/T(〓) 従つて v=0.009325V(1−β)T/300P (l) 一方、焼結体の容積はVβ()であるから、 となる。
For example, if the true density of the metal is 8200g/
, assuming that the filling rate into the capsule is 65%, the increase in N 2 concentration = 0.976 (1-0.65) / 0.65
×8200=6.41×10 -5 =64.1 ppm O 2 〃 =0.299(1-0.65)/0.65
×8200=1·96×10 −5 = 1.96 ppm It is a well-known fact that an increase in N 2 and O 2 to this extent does not have any adverse effect on product quality. next,
A quantitative study will be conducted on Ar that may remain in the final product. As already mentioned, the amount of Ar initially trapped in the capsule was 0.009325V.
(1-β)(). HIP treatment temperature T
(〓), the pressure is P (atm), and the volume of Ar after HIP treatment is V (). Now seal the capsule.
300〓 (27℃), and if all the trapped Ar remains in the final product as a gas, the following formula holds: 1 (atm) x 0.009325V (1-β) ()/
300(〓)=P(atm)・v()/T(〓) Therefore, v=0.009325V(1-β)T/300P (l) On the other hand, since the volume of the sintered body is Vβ() , becomes.

いま、ここでβ=0.65、T=1373(℃)、P=
1000(atm)とすると、 気孔率=2.30×10-5=0.0023% となり、焼結体の密度は99.9977%、すなわち実
用上全く問題のない値まで高密度化することが判
る。
Now, here β = 0.65, T = 1373 (℃), P =
1000 (atm), the porosity = 2.30 x 10 -5 = 0.0023%, and the density of the sintered body is 99.9977%, that is, it can be seen that the density is increased to a value that poses no problem in practical use.

以上の説明により、カプセル内部を脱気しなく
ても、粉末が合金のように、N2、O2を吸収する
材料であれば、HIP処理後の最終製品には、ほと
んど幣害を及ぼさないことが判る。しかし、この
ような有利なプロセスを用いても、製品の生産性
を向上させるために予熱工程をとろうとした場合
には、実際には大きな問題が生じる。つまり、無
脱気の粉末充填カプセルを予熱しようとして、予
め加熱されている予熱炉に挿入した瞬間、カプセ
ル内部の残留ガスが熱膨脹して、カプセルを破壊
してしまうのである。このような現象を防止する
意味からも、現状ではカプセル内部を真空に脱気
しているのが一般的である。このように、真空脱
気を行なうとすると、カプセル形状が複雑とな
り、脱気管の密封が困難、真空脱気に長時間を要
する等の問題が生じる。また、無脱気の密封カプ
セルを直接HIP炉に装入するという既に提案され
た方法では、HIP炉内における昇温時間が長くな
り、HIPサイクルタイムの増大による生産性の低
下が、尚解決を要する大きな問題点として残され
ていた。
According to the above explanation, even if the inside of the capsule is not degassed, if the powder is a material that absorbs N 2 and O 2 , such as an alloy, there will be almost no damage to the final product after HIP processing. I understand that. However, even with such an advantageous process, a major problem actually arises when a preheating step is attempted to improve product productivity. In other words, the moment a non-degassed powder-filled capsule is inserted into a preheating furnace to preheat it, the residual gas inside the capsule expands thermally and destroys the capsule. In order to prevent this phenomenon, it is common practice at present to evacuate the inside of the capsule to a vacuum. If vacuum degassing is performed in this way, problems arise such as the capsule shape becomes complicated, it is difficult to seal the degassing tube, and it takes a long time for vacuum degassing. In addition, with the already proposed method of directly charging a non-degassed sealed capsule into a HIP furnace, the temperature rise time in the HIP furnace becomes longer, resulting in a decrease in productivity due to an increase in HIP cycle time. This remained a major problem.

本発明方法は叙上の如き従来技術に付帯する
種々の問題点を解消する為に、鋭意研究の結果、
前述の如き技術的知見に基き、完成されたもの
で、予熱時間の短縮を図ると共に、予熱からHIP
処理に至る一連の工程を遂行するための特定の装
置を用いて、それら特定された工程を有機的に組
み合せ機能させることにより、HIPサイクルタイ
ムを極度に短縮し、高価なHIP装置の稼働率を高
め、以つて生産性を著しく向上することを目的と
するものである。
The method of the present invention has been developed as a result of intensive research in order to solve the various problems associated with the prior art as described above.
It was completed based on the technical knowledge mentioned above, and it aims to shorten the preheating time, and also allows you to move from preheating to HIP.
By using specific equipment to carry out a series of processes leading to treatment, and by organically combining and functioning those specified processes, we can extremely shorten the HIP cycle time and increase the operating rate of expensive HIP equipment. The purpose is to increase productivity, thereby significantly improving productivity.

即ち、本発明の特徴とするところは、被処理体
を予熱した後、高温高圧ガス雰囲気下でHIP処理
を施す方法において、HIP用高温高圧炉と、複数
の加圧型予熱炉と、ガス貯溜槽とを相互に配管連
結して配置し、次の工程に従つて処理することに
ある。
That is, the feature of the present invention is that, in a method of preheating an object to be treated and then performing HIP treatment in a high temperature and high pressure gas atmosphere, a high temperature and high pressure furnace for HIP, a plurality of pressurized preheating furnaces, and a gas storage tank and are arranged in a mutually connected piping manner and processed according to the following steps.

(1) HIP用高温高圧炉に装入された被処理体に
HIP処理を施している間に、少なくとも1つの
加圧型予熱炉内に装入された被処理体を加圧ガ
ス雰囲気下で予熱する工程。
(1) The workpiece charged into the high-temperature and high-pressure furnace for HIP
A step of preheating the object to be processed, which is placed in at least one pressurized preheating furnace, under a pressurized gas atmosphere while performing the HIP treatment.

(2) HIP用高温高圧炉中の被処理体に対するHIP
処理が完了すると、新たに被処理体が装入され
た他の加圧型予熱炉内にHIP用高温高圧炉中の
高温高圧ガスを所定圧になるまで供給して該予
熱炉における予熱を開始すると共に、残部のガ
スをガス貯溜槽に回収した後、HIP用高温高圧
炉より被処理体を取り出す工程、及び (3) 予熱を完了した加圧型予熱炉内のガスをガス
貯溜槽に回収した後、該予熱炉より被処理体を
HIP用高温高圧炉に移し、該高温高圧炉にガス
貯溜槽よりガスを所定圧まで充填してHIP処理
を開始する工程。
(2) HIP for objects to be processed in a high-temperature, high-pressure furnace for HIP
When the processing is completed, the high-temperature, high-pressure gas in the high-temperature, high-pressure furnace for HIP is supplied to the other pressurized preheating furnace into which the object to be processed is newly charged, until the predetermined pressure is reached, and preheating in the preheating furnace is started. At the same time, after collecting the remaining gas into the gas storage tank, there is a step of taking out the object to be processed from the high-temperature, high-pressure furnace for HIP, and (3) after collecting the gas in the pressurized preheating furnace, which has completed preheating, into the gas storage tank. , the object to be processed is removed from the preheating furnace.
The process of transferring to a high-temperature, high-pressure furnace for HIP, filling the high-temperature, high-pressure furnace with gas from a gas storage tank to a predetermined pressure, and starting the HIP process.

以下本発明方法の態様を第3図について説明す
る。第3図は本発明方法を実施する為に用いられ
る装置の1例を示す概要図であり、HIP用高温高
圧炉1と複数個の加圧型予熱炉2,2′…とガス
貯溜槽3とが、コンプレツサー4及びバルブ5,
6,7,8,9…を介して互いに配管により連結
されて配置されている。この図においては、いま
HIP用高温高圧炉1内で、被処理体10が例えば
1000Kg/cm2の圧力下、温度1100℃の条件で処理さ
れており、加圧型予熱炉2では被処理体11が例
えば200Kg/cm2の圧力下で温度1100℃に予熱されて
いる。他の予熱炉2′では大気圧下で温度のみ
1100℃に保持されていて、被処理体12は挿入さ
れて居らず、炉外で待機している。
Embodiments of the method of the present invention will be explained below with reference to FIG. FIG. 3 is a schematic diagram showing an example of an apparatus used to carry out the method of the present invention, which includes a high-temperature high-pressure furnace 1 for HIP, a plurality of pressurized preheating furnaces 2, 2', and a gas storage tank 3. However, compressor 4 and valve 5,
6, 7, 8, 9, etc., and are connected to each other by piping. In this diagram, now
In the high-temperature and high-pressure furnace 1 for HIP, the object to be processed 10 is, for example,
The treatment is performed under a pressure of 1000 Kg/cm 2 and a temperature of 1100° C. In the pressurized preheating furnace 2, the object to be processed 11 is preheated to a temperature of 1100° C. under a pressure of 200 Kg/cm 2 , for example. In the other preheating furnace 2', only the temperature is at atmospheric pressure.
The temperature is maintained at 1100°C, and the object to be processed 12 is not inserted, but is waiting outside the furnace.

HIP用高温高圧炉1における所定の処理が終了
した時点で、予熱炉2′に被処理体12を挿入
し、HIP用高温高圧炉1内に保持されている1000
Kg/cm2の高圧ガスをコンプレツサー4を介するこ
となく、バルブ8,9を開放し圧力差を利用して
予熱炉2′の圧力が200Kg/cm2になるまで導入して
バルブ8,9を閉止し、直ちに被処理体12の加
圧予熱が開始される。この場合HIP用高温高圧炉
1中の余剰のガスはコンプレツサー4を介してガ
ス貯溜槽3に送入され、HIP用高温高圧炉1中の
圧力が大気圧になつた時点でHIP処理の終了した
被処理体10を取り出す。
When the predetermined processing in the high-temperature, high-pressure furnace 1 for HIP is completed, the object to be processed 12 is inserted into the preheating furnace 2', and the 1000
Kg/cm 2 of high-pressure gas is introduced into the preheating furnace 2' without passing through the compressor 4 by opening valves 8 and 9 and using the pressure difference until the pressure in the preheating furnace 2' reaches 200 Kg/cm 2 . It is closed, and pressurization and preheating of the object to be processed 12 is immediately started. In this case, the excess gas in the high-temperature, high-pressure furnace 1 for HIP is sent to the gas storage tank 3 via the compressor 4, and the HIP process ends when the pressure in the high-temperature, high-pressure furnace 1 for HIP reaches atmospheric pressure. The object to be processed 10 is taken out.

一方加圧予熱されていた予熱炉2内のガスをコ
ンプレツサー4を経てガス貯溜槽3に送り、予熱
炉2の圧力を大気圧まで減圧して、被処理体11
を直ちにHIP用高温高圧炉1へ移し入れた後、ガ
ス貯溜槽3よりガスを高温高圧炉1へ所定圧にな
るまで送入充填して、再びHIP処理を開始する。
かように、複数の加圧型予熱炉2,2…を交互に
操作することによつて、HIP用高温高圧炉1の稼
働率は大幅に上昇し、且つ加圧予熱の為の圧力も
容易に得ることができ、HIP処理のサイクル時間
の短縮と共に生産量が著しく増大し、又省エネル
ギーにも役立つ。
On the other hand, the gas in the preheating furnace 2, which has been pressurized and preheated, is sent to the gas storage tank 3 via the compressor 4, and the pressure in the preheating furnace 2 is reduced to atmospheric pressure.
is immediately transferred to the high-temperature, high-pressure furnace 1 for HIP, and then gas is fed and filled from the gas storage tank 3 into the high-temperature, high-pressure furnace 1 until a predetermined pressure is reached, and the HIP process is started again.
In this way, by alternately operating the plurality of pressurized preheating furnaces 2, 2..., the operating rate of the HIP high-temperature and high-pressure furnace 1 can be greatly increased, and the pressure for pressurized preheating can be easily adjusted. This reduces the cycle time of the HIP process, significantly increases production, and also helps save energy.

通常、被処理体を室温から1100℃近くの高温迄
昇温するためには高温の電気炉を用いた場合でも
6時間以上にも及ぶ長時間を要するが、本発明方
法に従い、加圧下に加熱すれば既述の理由によつ
て昇温時間は2時間程度迄短縮することができ
る。又加圧予熱の利点は後に詳述する通り、被処
理体の脱気操作の省略を可能ならしめたことであ
る。
Normally, it takes more than 6 hours to heat the object from room temperature to a high temperature of nearly 1100℃ even when using a high-temperature electric furnace, but according to the method of the present invention, the object is heated under pressure. By doing so, the heating time can be shortened to about 2 hours for the reasons already mentioned. Further, the advantage of pressurized preheating, as will be explained in detail later, is that it makes it possible to omit the degassing operation of the object to be processed.

欠、本発明方法による場合でも、予熱に要する
時間はHIP処理時間のなお数倍である為、HIP処
理の稼働率をより高めるため、前記工程(1)に於い
て更に他の予熱炉に予熱を施しておくことは効果
的である。かようにしてHIP用高温高圧炉1基に
対し、加圧型予熱炉3基以上を配設し、交互に有
機的運転プログラムを組むことは、本発明の目的
を達成する上に最も望ましいことである。
However, even in the case of the method of the present invention, the time required for preheating is still several times the HIP processing time, so in order to further increase the operation rate of HIP processing, preheating is performed in another preheating furnace in step (1). It is effective to do so. In this way, it is most desirable to arrange three or more pressurized preheating furnaces for one high-temperature, high-pressure furnace for HIP and to alternately set up an organic operation program. be.

尚上記一連の工程をプログラム制御方式により
自働化することは本発明方法の更に有効な実施の
態様であることは云う迄もない。
It goes without saying that automating the above series of steps using a program control system is a more effective embodiment of the method of the present invention.

本発明方法を適用する被処理体は、通常密封さ
れたカプセルとその内部に充填された被処理粉末
となる。被処理粉末は例えば、Fe基合金、Ni基
合金、チタン合金、コバルト金属等の金属粉末、
あるいはSi2ON2(シリコンオキシナイトライ
ド)の如き一部のセラミツク等が挙げられ、特に
Fe基合金、Ni基合金は本発明方法を行なうに最
も好適である。又、かゝる金属粉末は予め冷間加
圧又は結合剤等により予備成形を施した中間成形
体としておくこともできる。
The object to be processed to which the method of the present invention is applied is usually a sealed capsule and a powder to be processed filled inside the capsule. The powder to be treated is, for example, metal powder such as Fe-based alloy, Ni-based alloy, titanium alloy, cobalt metal, etc.
Alternatively, some ceramics such as Si 2 ON 2 (silicon oxynitride) can be mentioned, especially
Fe-based alloys and Ni-based alloys are most suitable for carrying out the method of the present invention. Further, such metal powder may be prepared as an intermediate compact by being preformed by cold pressing or using a binder or the like.

本発明方法に用いられるカプセルは、ガス不透
過性材料で作製され、従来のカプセルの如く必ず
しも排気管を具備する必要はなく当然真空ポンプ
等に連結することを考慮するを要しない。例えば
開口部を有し、該開口部を容易に密封し得る構造
であれば充分である。ガス不透過性材料として
は、金属又はガラス或は金属とガラスとの複合材
料等が挙げられ、これ等は被処理体の種類、成形
の態様に応じて適宜取捨選択される。
The capsule used in the method of the present invention is made of a gas-impermeable material, and unlike conventional capsules, it does not necessarily need to be equipped with an exhaust pipe, and naturally there is no need to consider connecting it to a vacuum pump or the like. For example, it is sufficient if the structure has an opening and the opening can be easily sealed. Examples of the gas-impermeable material include metal, glass, and a composite material of metal and glass, and these are selected as appropriate depending on the type of object to be treated and the mode of molding.

上述のようなガス不透過性材料で作製されたカ
プセル中には、被処理体粉末が所要量充填される
か、又は予備成形された中間成形体を装填し、そ
の周囲を包囲してカプセルとの間隙にシリカ、ア
ルミナ軟質ガラス粉末あるいはこれらの混合物よ
りなる圧媒粒子が充填され中間成形体の位置決め
を行なう。
A capsule made of the gas-impermeable material as described above is filled with a required amount of powder of the object to be processed, or a preformed intermediate body is loaded, and the surroundings are surrounded to form a capsule. Pressure medium particles made of silica, alumina soft glass powder, or a mixture thereof are filled into the gaps to position the intermediate compact.

被処理体のカプセルへの装填は大気中若しくは
窒素ガス雰囲気下で行なわれ、装填後は、製品に
厳密な成分規定が要求される場合には脱気し、然
らざる場合は脱気することなく密封される。但
し、このようなカプセルが、二重カプセルの内側
カプセルとして用いられる場合は必ずしも密封を
要しない。
The object to be processed is loaded into the capsule in the air or under a nitrogen gas atmosphere.After loading, the product must be degassed if strict composition specifications are required, and if not, the capsule must be degassed. sealed without any damage. However, when such a capsule is used as the inner capsule of a double capsule, sealing is not necessarily required.

二重カプセルの場合には、内側カプセルは最終
製品の形状に応じた形状で且つその一部に開口部
を備える如くに形成される。この開口部より前記
金属粉末を大気圧中又は窒素ガス雰囲気下に内側
カプセル中に、好ましくは撹拌又は振盪し乍ら充
填する。充填後は開口部に、ノズルを有する蓋体
を溶接して取付け、更に此のノズルを鍛圧又は挾
圧し、気体の流通を許容するが、前記金属粉末及
び後述の圧媒粒子の流通を阻止する程度の狭隘な
間隙を残して閉塞することが好ましい。
In the case of a double capsule, the inner capsule is formed in a shape that corresponds to the shape of the final product and has an opening in a portion thereof. Through this opening, the metal powder is filled into the inner capsule at atmospheric pressure or under a nitrogen gas atmosphere, preferably while stirring or shaking. After filling, a lid with a nozzle is attached to the opening by welding, and this nozzle is further forged or clamped to allow gas to flow, but to prevent the metal powder and pressure medium particles described below from flowing. It is preferable to close the gap while leaving a narrow gap.

斯くすることにより、内側カプセルを圧媒粒子
中に埋設した際、圧媒粒子が該カプセル中に侵入
混合し、製品に悪影響を与えることを防止し、又
金属粒子の漏洩溢出を阻止する。
By doing so, when the inner capsule is embedded in the pressure medium particles, the pressure medium particles are prevented from entering and mixing with the capsule and having an adverse effect on the product, and also preventing leakage and overflow of the metal particles.

内側カプセルが収容される外側カプセルは、ガ
ス不透過性材料を以つて作製され、内側カプセル
及び圧媒粒子を受け入れる為の開口部を備え、更
にその開口部は容易に密封し得る構造に適宜形成
される。例えば内側カプセル及び圧媒粒子を収納
后、蓋体を溶接して取付け密閉するか、又はノズ
ルを有する蓋体を取付け、内部のガスを該ノズル
を経て真空ポンプで吸引脱気し、ノズル部分を閉
塞して密封する。
The outer capsule in which the inner capsule is housed is made of a gas-impermeable material and has an opening for receiving the inner capsule and the pressure medium particles, and the opening is suitably configured to be easily sealed. be done. For example, after storing the inner capsule and pressure medium particles, a lid is welded and sealed, or a lid with a nozzle is installed, and the gas inside is sucked and degassed with a vacuum pump through the nozzle, and the nozzle part is closed. Close and seal.

斯かる外側カプセル中には微細なシリカ又はア
ルミナ等の圧媒粒子が適量収納されており、圧媒
粒子はその内部に埋設された内側カプセルの全周
面と外側カプセルの内壁との間隙を隅無く埋め、
内側カプセルの位置決めをも行なう。
An appropriate amount of fine pressure medium particles such as silica or alumina are stored in the outer capsule, and the pressure medium particles fill the gap between the entire circumferential surface of the inner capsule buried inside and the inner wall of the outer capsule. Fill it without
Also performs positioning of the inner capsule.

上記の如く金属粒子及び圧媒粒子を充填して二
重に組合わされたカプセルは内部を脱気するか又
は脱気することなく、既述の通り、密封し、加圧
型予熱炉に挿入され、加圧ガス雰囲気下で所定温
度に予熱されるのである。此の場合の雰囲気ガス
の圧力は予熱温度によつて相違するが、特に無脱
気方式の場合、約1000℃の温度に予熱されるとき
は、理論上は少なくとも約4.2Kg/cm2、約100℃の
ときには少なくとも4.6Kg/cm2となり、脱気方式の
場合は、より少ない圧力も採用し得ることゝな
る。しかし乍ら何れの場合でも、更に良好な加熱
効率を達成し、予熱時間を短縮して本発明方法を
効果的に遂行するためには、少なくとも100Kg/cm2
好ましくは200Kg/cm2程度の圧力を作用させること
がよい。即ち、第4図に示すような密封カプセル
13内に粉末14とガスとが入つており、充填時
の温度を300〓(27℃)、圧力を1Kg/cm2とし、予
熱温度を例えば1373〓(1100℃)とする。
The double-combined capsule filled with metal particles and pressure medium particles as described above is sealed as described above, with or without evacuating the inside, and inserted into a pressurized preheating furnace. It is preheated to a predetermined temperature under a pressurized gas atmosphere. The pressure of the atmospheric gas in this case differs depending on the preheating temperature, but especially in the case of a non-degassing method, when preheated to a temperature of about 1000℃, the pressure of the atmospheric gas is theoretically at least about 4.2Kg/cm 2 , about At 100°C, the pressure is at least 4.6Kg/cm 2 , and in the case of a degassing method, a lower pressure can be used. However, in any case, in order to achieve better heating efficiency, shorten the preheating time, and effectively carry out the method of the present invention, it is necessary to use at least 100 kg/cm 2
Preferably, a pressure of about 200 kg/cm 2 is applied. That is, a powder 14 and gas are contained in a sealed capsule 13 as shown in FIG. 4, the temperature at the time of filling is 300㎓ (27℃), the pressure is 1Kg/cm 2 , and the preheating temperature is 1373㎓, for example. (1100℃).

加熱により粉末が焼結して体積が変化しないと
仮定すれば、ガスの熱膨脹によりカプセル内圧は
1373(〓)/300(〓)≒4.6(Kg/cm2)となる
。この値自体はそ れ程大きくないが、たとえばカプセル内径を300
φmmとすれば、上下蓋全体には、夫々、3.25トン
の圧力がかゝつていることになる。そして、たと
えば、上蓋の場合、断面でみれば、(A)、(B)のみで
拘束されているので、この部分に結局、3.25トン
の応力が集中し、上蓋は加熱により図の点線のよ
うにふくれ、ついには(A)、(B)部で破壊してしまう
のである。このような、熱膨脹の防止のために本
発明方法における加圧予熱が極めて有効となるの
であるが、その時に必要な圧力は、たとえば上記
条件であれば、わずか4.6Kg/cm2で良いのである
が、予熱時間の短縮も考慮すれば、前述のよう
に、好ましくは少なくとも100Kg/cm2、特に好まし
くは少なくとも200Kg/cm2程度が妥当と思われる。
Assuming that the powder is sintered by heating and its volume does not change, the internal pressure of the capsule will be 1373(〓)/300(〓)≒4.6 (Kg/cm 2 ) due to thermal expansion of the gas. This value itself is not that large, but for example, if the capsule inner diameter is 300
If the diameter is φmm, then 3.25 tons of pressure is applied to each of the upper and lower lids. For example, in the case of the top lid, if you look at the cross section, it is restrained only by (A) and (B), so 3.25 tons of stress ends up concentrated in this part, and the top lid is heated as shown by the dotted line in the figure. It swells and eventually breaks at parts (A) and (B). Pressure preheating in the method of the present invention is extremely effective in preventing such thermal expansion, but the pressure required at this time is only 4.6 kg/cm 2 under the above conditions. However, if shortening of the preheating time is also taken into account, as mentioned above, preferably at least 100 Kg/cm 2 , particularly preferably at least 200 Kg/cm 2 seems to be appropriate.

本発明方法を適用すれば、カプセル内部を脱気
することなく、予熱してHIP処理することが可能
となることは、本発明方法の大きな利点である。
つまり、カプセル内部に空気あるいは置換用の
N2ガスが残留していても、加圧予熱を行なうこ
とによつて、加熱中のカプセルの膨脹による破壊
は抑えられ、内部の粉末が高温になつた時点で
は、内部残留ガスを吸収してしまうので、その
後、たとえばHIP装置に挿入するために、減圧し
ても、もはやカプセルが内圧で破壊するという現
象は起らない。また、もし粉末がN2、O2を吸収
しない材料の場合には、カプセル内部の一端に、
N2、O2吸収剤(たとえば、チタン粉末、アルミ
ニウム粉末等)を挿入しておくことによつて、同
様の効果が得られる。もつとも、以上の説明は、
粉末のみの成形に関して話しを進めているが、た
とえば、事前に成形された粉末予備成形体、即ち
プレフオームされた粉末を二次圧媒を用いて成形
する場合にも適用しうることは容易に類推される
ところである。
When the method of the present invention is applied, it is possible to perform preheating and HIP treatment without deaerating the inside of the capsule, which is a great advantage of the method of the present invention.
In other words, there is air or replacement air inside the capsule.
Even if N2 gas remains, pressurized preheating prevents the capsule from being destroyed due to expansion during heating, and when the powder inside reaches a high temperature, it absorbs the residual gas. Therefore, even if the pressure is reduced afterwards, for example, in order to insert it into a HIP device, the phenomenon that the capsule will no longer be destroyed by internal pressure will occur. In addition, if the powder is made of a material that does not absorb N 2 and O 2 , at one end of the inside of the capsule,
A similar effect can be obtained by inserting an N 2 and O 2 absorbent (eg, titanium powder, aluminum powder, etc.). However, the above explanation is
Although we are discussing the compaction of powder only, it is easy to infer that the present invention can also be applied to the compaction of a preformed powder using a secondary pressure medium, for example. It is about to be done.

次に本発明方法による具体的実施例を掲げる。 Next, specific examples of the method of the present invention will be listed.

実施例 C=1.05%、Cr=4.09%、Mo=6.05%、W=
6.40%、V=2.37%、Co=5.03%、Fe残部の組成
を有する窒素ガスアトマイズ法で製造した高速度
鋼粉末を、直径が310φmmの軟鋼製薄カプセル器
に充填した。このときの粉末の充填密度は65%で
あつた。そして、このカプセル内部を脱気するこ
となく、空気が残留した状態で上蓋を溶接して、
封入した。
Example C=1.05%, Cr=4.09%, Mo=6.05%, W=
A high-speed steel powder produced by a nitrogen gas atomization method having a composition of 6.40%, V = 2.37%, Co = 5.03%, and the balance Fe was filled into a thin capsule made of mild steel with a diameter of 310 mm. The packing density of the powder at this time was 65%. Then, without evacuating the inside of this capsule, the top cover was welded with air remaining,
Enclosed.

HIP用高温高圧炉(以下HIP炉という)1基に
対して加圧型予熱炉(以下単に予熱炉という)3
基を有する他は第3図に示したと同様な装置を用
いて上記カプセルの予熱及びHIP処理を行なうシ
ユミレーシヨンテストを、実際のHIP炉を用いて
次の手順で実施した。
3 pressurized preheating furnaces (hereinafter simply referred to as preheating furnaces) for one high-temperature, high-pressure furnace for HIP (hereinafter referred to as HIP furnace)
A simulation test in which the capsules were preheated and subjected to HIP treatment using an apparatus similar to that shown in FIG.

先ず上記封入カプセルを、予め1100℃に加熱さ
れている第1の予熱炉に装入し、200Kg/cm2のAr
ガスで加圧しながら加熱した。このような状態で
2時間保持したのち(この時点では、予備実験の
結果、粉末充填カプセルの中心部は予熱炉の保持
温度に対して95%以上の温度に上昇している)、
ただちにガス貯溜槽へ通ずるバルブを開放し、コ
ンプレツサーを作働して、Arガスの圧力を減圧
したが、減圧により容器が破損することはなかつ
た。そして、この予熱されたカプセルを、これを
1100℃に予熱されているHIP炉内に直ちに装入
し、ガス貯溜槽よりArガスを圧入し、1100℃、
800気圧、30分の保持で第1回目のHIP処理を行
なつた。HIP処理を行なつている間、前記第1の
予熱炉は常圧で予熱が続けられ温度を1100℃に保
持されており、又第2の予熱炉は第1の予熱炉と
約1時間のタイムラグを置いて前記同様の被処理
体を加圧予熱し、更に第3の予熱炉は第2の予熱
炉と約1時間のタイムラグを置いて加圧予熱を続
けている状態にある。
First, the above-mentioned sealed capsule was charged into a first preheating furnace that had been preheated to 1100℃, and 200Kg/cm 2 of Ar was heated.
It was heated while pressurized with gas. After holding in this state for 2 hours (at this point, as a result of preliminary experiments, the temperature in the center of the powder-filled capsule has risen to more than 95% of the holding temperature of the preheating furnace),
The valve leading to the gas storage tank was immediately opened and the compressor was activated to reduce the pressure of the Ar gas, but the pressure reduction did not cause damage to the container. And this preheated capsule, this
Immediately charge the HIP furnace, which has been preheated to 1100℃, and pressurize Ar gas from the gas storage tank.
The first HIP treatment was performed at 800 atm and held for 30 minutes. During the HIP process, the first preheating furnace continues to be preheated at normal pressure and the temperature is maintained at 1100°C, and the second preheating furnace is connected to the first preheating furnace for about an hour. The same object to be processed is preheated under pressure with a time lag, and the third preheating furnace continues to preheat under pressure with a time lag of about one hour between the third preheating furnace and the second preheating furnace.

第1回目のHIP処理が完了した処で、常圧予熱
されている第1の予熱炉に別に用意された被処理
体を挿入した後、直ちにHIP炉と第1の予熱炉を
連結する配管のバルブを開放し、HIP炉中のArガ
スを、第1の予熱炉内圧力が200Kg/cm2になる迄第
1の予熱炉へ圧力差を利用して導入した。
When the first HIP process is completed, the separately prepared object to be processed is inserted into the first preheating furnace which is preheated under normal pressure, and immediately the piping connecting the HIP furnace and the first preheating furnace is opened. The valve was opened, and Ar gas in the HIP furnace was introduced into the first preheating furnace using the pressure difference until the pressure inside the first preheating furnace reached 200 Kg/cm 2 .

HIP炉内のAr残ガスはコンプレツサーによりガ
ス貯溜槽へ送入し、HIP炉が大気圧となつた処
で、HIP処理済みの被処理体を取り出した。此の
時第2の予熱炉における加圧予熱は恰度完了して
居り、その中のArガスを貯溜槽へ移送して炉の
内圧を大気圧に戻した後、予熱された被処理体を
HIP炉に移した。HIP炉には直ちにガス貯溜槽よ
りArガスが圧入され、第2回のHIP処理が開始さ
れた。第1回目のHIP処理が終了して第2回目の
HIP処理が開始される迄の時間は約30分であつ
た。第2回目のHIP処理終了時点でHIP炉のArガ
スは常圧予熱中の第2の予熱炉へ送入され、又第
3の予熱炉の予熱作業が恰度完結していた為、そ
こから予熱を終えた被処理体がHIP炉へ移し入れ
られ、前述同様の作業サイクルが順次繰返され
た。
The remaining Ar gas in the HIP furnace was sent to the gas storage tank by a compressor, and when the HIP furnace reached atmospheric pressure, the HIP-treated object was taken out. At this time, the pressurized preheating in the second preheating furnace has been completely completed, and after transferring the Ar gas therein to the storage tank and returning the internal pressure of the furnace to atmospheric pressure, the preheated object to be processed is heated.
Transferred to HIP furnace. Ar gas was immediately injected into the HIP furnace from the gas storage tank, and the second HIP process began. After the first HIP process is completed, the second
It took about 30 minutes until the HIP process started. At the end of the second HIP process, the Ar gas in the HIP furnace was sent to the second preheating furnace that was being preheated under normal pressure, and since the preheating work in the third preheating furnace had been completed, preheating was started from there. After the treatment was completed, the object to be treated was transferred to the HIP furnace, and the same work cycle as described above was repeated one after another.

この様にしてHIP炉は1時間宛のサイクルタイ
ムで運転されたが、これは従来のサイクルタイム
が8〜10時間であつたことに較べれば、実に驚く
可き短縮であると云わなければならない。
In this way, the HIP furnace was operated with a cycle time of 1 hour, which is a truly astonishing reduction compared to the conventional cycle time of 8 to 10 hours. .

かくして製造した高速度鋼焼結体を組織を顕微
鏡写真で観察したところ、残留空孔、残留ガスと
の反応による介在物等の欠陥は全く認められず、
粉末治金製品の特徴である均一微細な健全組織を
呈している。
When the structure of the high-speed steel sintered body thus produced was observed using a microscopic photograph, no defects such as residual pores or inclusions caused by reaction with residual gas were observed.
It exhibits a uniform, fine, and healthy structure that is characteristic of powder metallurgy products.

つぎに、この材料から所定の工程により、工具
を製作し、1210℃×3分、OQ(油急冷)の焼入
れ、560℃×1.5時間×3回の焼戻し熱処理を施し
たのち、バイト取付角0−15−6−6−15−
R0.4、バイト突出し量34mm、切込み量1.5mm、送
り量0.2mm、被削材SNCM8(HRC32)(4本溝
付)で断続切削を行なつた。同一鋼種による従来
溶解材工具との切削性能結果を第5図に示す。
Next, a tool is manufactured from this material according to a prescribed process, and after being quenched at 1210℃ for 3 minutes, OQ (oil quenching), and tempered at 560℃ for 1.5 hours 3 times, the tool is attached to a tool with a mounting angle of 0. −15−6−6−15−
Intermittent cutting was performed with R0.4, tool overhang 34mm, depth of cut 1.5mm, feed rate 0.2mm, and workpiece material SNCM8 (H R C32) (with 4 grooves). Fig. 5 shows the cutting performance results with a conventional melt-metal tool made of the same steel type.

第5図の横軸には衝撃回数を、縦軸には工具の
逃げ面最大摩耗量をとり、曲線Aは本発明方法に
よつて得られた工具を、又曲線Bは従来の溶解材
工具を夫々示すものである。同図で明らかな通
り、本発明方法によつて製作された工具の優位性
は顕著である。
In Fig. 5, the horizontal axis represents the number of impacts, and the vertical axis represents the maximum amount of wear on the flank surface of the tool.Curve A represents the tool obtained by the method of the present invention, and curve B represents the conventional melted material tool. are shown respectively. As is clear from the figure, the superiority of the tool manufactured by the method of the present invention is remarkable.

以上詳述したように、本発明方法は、カプセル
内脱気工程の有無に拘らず、予熱効率を大幅に向
上せしめ、予熱時間を著しく短縮し、更にそれに
伴ない、合理化された工程の有機的結合と機能と
によつて、高価なHIP装置の稼働率を驚異的な迄
に高めて高能率化を達成すると共に、得られた製
品についても、従来のものと較べて優るとも劣ら
ない品質のものが得られる等、工業的に極めて有
利な方法である。
As detailed above, the method of the present invention significantly improves the preheating efficiency and significantly shortens the preheating time, regardless of the presence or absence of the in-capsule degassing step, and furthermore, the method of the present invention significantly improves the preheating efficiency and reduces the preheating time. Through combinations and functions, we are able to dramatically increase the operating rate of expensive HIP equipment and achieve high efficiency, and the resulting products are of a quality that is comparable to that of conventional equipment. This is an industrially very advantageous method, as it allows for the production of various products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は予熱炉内で加熱する場合における被処
理体中心温度の時間的変化を示す線図、第2図は
高速度鋼粉末を予熱する場合の雰囲気ガス圧力と
粉末の密度との関係を示す線図、第3図は本発明
方法を実施する為に用いられる装置の1例を示す
概要図、第4図は粉末充填カプセルを脱気せずに
密封し、無加圧予熱した場合のカプセル膨脹の状
態を示す概略説明図、第5図は本発明方法によつ
て得られた冶金製品を以つて作製された工具と、
従来法による工具との切削性能を夫々示す線図で
ある。 1……HIP用高温高圧炉、2,2′……加圧型
予熱炉、3……ガス貯溜槽、4……コンプレツサ
ー、5,6,7,8,9……バルブ、10,1
1,12……被処理体、13……カプセル、14
……被処理粉末。
Figure 1 is a diagram showing the temporal change in the center temperature of the workpiece when heated in a preheating furnace, and Figure 2 is a diagram showing the relationship between atmospheric gas pressure and powder density when preheating high-speed steel powder. Fig. 3 is a schematic diagram showing an example of an apparatus used to carry out the method of the present invention, and Fig. 4 shows a diagram of a powder-filled capsule sealed without degassing and preheated without pressure. A schematic explanatory diagram showing the state of capsule expansion, FIG. 5 shows a tool manufactured using a metallurgical product obtained by the method of the present invention,
FIG. 4 is a diagram showing cutting performance with a conventional tool. 1... High temperature and high pressure furnace for HIP, 2, 2'... Pressure type preheating furnace, 3... Gas storage tank, 4... Compressor, 5, 6, 7, 8, 9... Valve, 10, 1
1, 12...Object to be processed, 13...Capsule, 14
...Powder to be processed.

Claims (1)

【特許請求の範囲】 1 被処理体を予熱した後、高温高圧ガス雰囲気
下で熱間静水圧プレス処理を施す方法において、
熱間静水圧プレス用高温高圧炉と、複数の加圧型
予熱炉と、ガス貯溜槽とを相互に配管連結して配
置し、次の工程に従つて処理することを特徴とす
る熱間静水圧プレス方法。 (1) 高温高圧炉に装入された被処理体に熱間静水
圧プレス処理を施している間に、少なくとも1
つの加圧型予熱炉内に装入された被処理体を加
圧ガス雰囲気下で予熱する工程、 (2) 高温高圧炉中の被処理体に対する熱間静水圧
プレス処理が完了すると、新たに被処理体が装
入された他の加圧型予熱炉内に高温高圧炉中の
高温高圧ガスを所定圧になるまで供給して該予
熱炉における予熱を開始すると共に、残部のガ
スをガス貯溜槽に回収した後、高温高圧炉より
被処理体を取り出す工程、及び (3) 予熱を完了した加圧型予熱炉内のガスをガス
貯溜槽に回収した後、該予熱炉より被処理体を
高温高圧炉に移し、該高温高圧炉にガス貯溜槽
よりガスを所定圧まで充填して熱間静水圧プレ
ス処理を開始する工程。 2 被処理体が、密封されたカプセルとその内部
に充填された被処理粉末とからなる前記特許請求
の範囲第1項記載の熱間静水圧プレス方法。 3 被処理体が、密封されたカプセルとその内部
に充填された圧媒粒子と、該圧媒粒子内に埋設さ
れた予備成形された粉末成形体とからなる前記特
許請求の範囲第1項記載の熱間静水圧プレス方
法。 4 被処理体が、密封された外側カプセルと該外
側カプセル内に充填された圧媒粒子と、該圧媒粒
子内に埋設され且つ被処理粉末を充填した内側カ
プセルとからなる前記特許請求の範囲第1項記載
の熱間静水圧プレス方法。 5 カプセルがその内部を脱気することなく密封
されたものである前記特許請求の範囲第2項また
は第3項記載の熱間静水圧プレス方法。 6 外側カプセルがその内部を脱気することなく
密封されたものである前記特許請求の範囲第4項
記載の熱間静水圧プレス方法。 7 カプセルがその内部を脱気して密封されてい
るものである前記特許請求の範囲第2項または第
3項記載の熱間静水圧プレス方法。 8 内側カプセルがその内部を脱気して密封され
ているものである前記特許請求の範囲第4項記載
の熱間静水圧プレス方法。 9 工程(1)の間に、他の加圧型予熱炉の予熱を常
圧で行なつておく前記特許請求の範囲第1項乃至
第8項の何れかに記載の熱間静水圧プレス方法。
[Claims] 1. A method of preheating an object to be treated and then subjecting it to hot isostatic pressing in a high-temperature, high-pressure gas atmosphere,
Hot isostatic pressing is characterized in that a high-temperature, high-pressure furnace for hot isostatic pressing, a plurality of pressurized preheating furnaces, and a gas storage tank are arranged with pipes connected to each other, and processing is performed according to the following steps. Press method. (1) While hot isostatic pressing is being applied to the workpiece charged into the high-temperature and high-pressure furnace, at least one
(2) After the hot isostatic pressing process for the workpieces in the high-temperature, high-pressure furnace is completed, a new workpiece is placed in a pressurized preheating furnace. The high-temperature, high-pressure gas in the high-temperature, high-pressure furnace is supplied into the other pressurized preheating furnace in which the processing body is charged, until the preheating furnace reaches a predetermined pressure, and preheating in the preheating furnace is started, and the remaining gas is poured into the gas storage tank. After recovery, the process of taking out the object to be processed from the high-temperature high-pressure furnace; and (3) collecting the preheated gas in the pressurized preheating furnace into a gas storage tank, and then transferring the object to be processed from the preheating furnace to the high-temperature high-pressure furnace. and filling the high-temperature high-pressure furnace with gas from the gas storage tank to a predetermined pressure to start hot isostatic pressing. 2. The hot isostatic pressing method according to claim 1, wherein the object to be processed comprises a sealed capsule and powder to be processed filled inside the capsule. 3. The object to be processed comprises a sealed capsule, pressure medium particles filled inside the capsule, and a preformed powder compact embedded within the pressure medium particles. hot isostatic pressing method. 4. The object to be treated comprises a sealed outer capsule, pressure medium particles filled in the outer capsule, and an inner capsule embedded in the pressure medium particles and filled with the powder to be processed. The hot isostatic pressing method according to item 1. 5. The hot isostatic pressing method according to claim 2 or 3, wherein the capsule is sealed without deaerating the inside thereof. 6. The hot isostatic pressing method according to claim 4, wherein the outer capsule is sealed without evacuating the inside thereof. 7. The hot isostatic pressing method according to claim 2 or 3, wherein the capsule is sealed with the inside thereof deaerated. 8. The hot isostatic pressing method according to claim 4, wherein the inner capsule is sealed with the inside thereof deaerated. 9. The hot isostatic pressing method according to any one of claims 1 to 8, wherein during step (1), another pressurized preheating furnace is preheated at normal pressure.
JP17321879A 1979-12-29 1979-12-29 Hot hydrostatic pressing method Granted JPS5695425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17321879A JPS5695425A (en) 1979-12-29 1979-12-29 Hot hydrostatic pressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17321879A JPS5695425A (en) 1979-12-29 1979-12-29 Hot hydrostatic pressing method

Publications (2)

Publication Number Publication Date
JPS5695425A JPS5695425A (en) 1981-08-01
JPS6250521B2 true JPS6250521B2 (en) 1987-10-26

Family

ID=15956311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17321879A Granted JPS5695425A (en) 1979-12-29 1979-12-29 Hot hydrostatic pressing method

Country Status (1)

Country Link
JP (1) JPS5695425A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645805B2 (en) * 1985-03-01 1994-06-15 大同特殊鋼株式会社 Manufacturing method of powder sintered body

Also Published As

Publication number Publication date
JPS5695425A (en) 1981-08-01

Similar Documents

Publication Publication Date Title
US4142888A (en) Container for hot consolidating powder
US4094709A (en) Method of forming and subsequently heat treating articles of near net shaped from powder metal
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US3689259A (en) Method of consolidating metallic bodies
EP1024911B1 (en) Method for pneumatic isostatic processing of a workpiece
US3824097A (en) Process for compacting metal powder
US6524409B2 (en) Method for hot isostatic pressing and heat treatment of light alloy castings
US4368074A (en) Method of producing a high temperature metal powder component
US4627958A (en) Densification of metal powder to produce cladding of valve interiors by isodynamic compression
US4478789A (en) Method of manufacturing an object of metallic or ceramic material
USRE31355E (en) Method for hot consolidating powder
EP0603462B1 (en) Method and apparatus for densifying an article
US3728111A (en) Method of manufacturing billets from powder
JPS6250521B2 (en)
GB1585583A (en) Container for hot consolidating powder
US3543345A (en) Apparatus for rapid fluid compacting
US3189942A (en) Apparatus for forming powdered metal into sintered hollow bodies
JP2535408B2 (en) Hot isostatic pressing apparatus and processing method
JPS6361096B2 (en)
JPS6250522B2 (en)
JP2019151924A (en) Method for producing austenite iron alloy
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
KR20100010159A (en) Method of diffusion bonding with pressure applying transformation super plasticity and processing method of hip using the method of diffusion bonding
JPS6152201B2 (en)