US3189942A - Apparatus for forming powdered metal into sintered hollow bodies - Google Patents

Apparatus for forming powdered metal into sintered hollow bodies Download PDF

Info

Publication number
US3189942A
US3189942A US213709A US21370962A US3189942A US 3189942 A US3189942 A US 3189942A US 213709 A US213709 A US 213709A US 21370962 A US21370962 A US 21370962A US 3189942 A US3189942 A US 3189942A
Authority
US
United States
Prior art keywords
die
mandrel
powder
cavity
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US213709A
Inventor
Rapprich David Dean
Holewinski Francis James
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Materion Brush Inc
Original Assignee
Materion Brush Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Materion Brush Inc filed Critical Materion Brush Inc
Priority to US213709A priority Critical patent/US3189942A/en
Priority to US461217A priority patent/US3260596A/en
Application granted granted Critical
Publication of US3189942A publication Critical patent/US3189942A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/812Venting

Definitions

  • This invention relates to an apparatus forrforming metal powder into sintered hollow bodies, such as sleeve-shaped and cup-shaped bodies, and the like, and more particularly for forming metal powder, in the absence of lubricants, into sintered hollow bodies each of which, at the completion of the sintering operation and before machining, not only has an axial length more than twice the wall thickness, but also is of substantially theoretical density throughout.
  • the invention is useful for forming such bodies from any one of a number of metals which differ from each other widely in sintering temperatures and melting points, it is particularly useful in connection with beryllium in that beryllium powder can be formed into such bodies thereby and it cannot be so formed by the prior sintering procedures. Accordingly, hereinafter, the apparatus will be described generally as applied to the formation of such bodies from beryllium powder, except where otherwise specifically noted, its use in connection with other metals being readily apparent from the illustrative example.
  • a common prior technique employed in forming sintered bodies from metal powder is similar to that disclosed in US. Patent No. 2,885,287, issued May 5, 1959, wherein pressure is applied to the powder in a die cavity in a direction endwise of the cavity by means of a ram operating a punch or male die.
  • Such technique creates pressure gradients within the sintering charge of powder in the die cavity or mold assembly during the pressure sintering operation. These pressure gradients result mainly from friction between metal powder and the die wall. Due to this friction the pressure imposed on the powdered particles progressively decreases as the distance from the ram increases, whereby the particles farthest from the ram receive the least pressure.
  • the pressure gradients cause longitudinal density gradients within the sintered body with the result that a sintered body of non-uniform density is produced.
  • the primary object of this invention is to provide a new and improved die assemblage, for efficiently forming metal powder, in the absence of lubricants, into hollow sintered sleeve or cup shaped bodies not only having a length greater than twice the wall thickness but also hav- United States Patent 3,189,942 Patented June 22, 1965 ice ing substantially the theoretical density of the metal employed.
  • Another object is to provide a die assemblage capable, during compacting sintering of the powdered metal, of containing the powdered metal and preventing its escape prior to compaction, and which also assists in the movement of the powder during compaction so as to reduce friction resistance of the powder and assist in. the formation of the powder into the hollow body to be made.
  • Another object is to provide a means for facilitating the manipulation and charging of the die assemblage, and the removal of the formed sintered body from the die assembly.
  • a more specific object is to provide filter means for assuring the escape of air and gases from the die cavity while preventing conveyance of the powdered metal from the cavity by the escaping gases and air.
  • Another object is to provide means for offsetting and compensating for die distortion resulting from pressure at high temperatures employed during sintering of beryllium, and the refractory high melting point metals, so that a die distorted in producing one body can bereused subsequently without reworking for producing a duplicate body.
  • Another object of the invention is to provide a three part die assemblage in which two parts define a forming cavity of predetermined starting shape, and the third part is operable for applying initial compacting pressure on the powdered metal in the die cavity prior to the main compaction of the metal therein while the cavity retains its starting shape, and of which the other parts become cooperable concurrently with the third part during the sintering of the powder, to reduce the volume of the cavity and change its shape into the final shape into which the powdered metal is to be sintered.
  • FIG. 1 is a front elevation of a furnace and die ass mblage embodying the principles of the present invention, part thereof being shown in section for clearness in illustration;
  • FIG. 2 is an enlarged vertical axial sectional view of the die assemblage of FIG. 1, showing the assemblage with the parts in starting position, and with a charge of metal powder in the die cavity at the beginning of the forming operation and is taken on line 22 of FIG. 1;
  • FIG. 3 is an enlarged view similar to FIG. 2 showing the die assemblage and metal at the end of the sintering operation;
  • FIG. 4 is a top plan view of a retainer in the form of a sealing annulus used in the present invention and operable for assuring escape or" gases from the powder charge and die cavity while preventing the conveyance of metal a powder from the die cavity by escaping gases;
  • FIG. 5 is a cross sectional view taken on the line 5-5 in FIG. 4;
  • FIG. 6 is a horizontal sectional view taken on the line 6-6 in FIG. 3;
  • FIGS. 7 and 8 are views similar to FIGS. 2 and 3, illustrating a modification of the die assemblage.
  • the apparatus comprises a conventional vacuum sintering furnace 1 in which the temperature and degree of vacuum can be accurately controlled.
  • a ram 2 operated by a reversible hydraulic piston and cylinder assemblage 3, is provided.
  • the pressure from the assemblage 3 is transmitted to the ram through a water cooled pressure transmitting member 4 which extends into the furnace from the outside.
  • Hydraulic pressure may be supplied to the assemblage 3 by a conven- .be formed as a unitary structure.
  • the specific details of the ram and its controls, and of the furnace, its heating means, and vacuum pumps, and the like, are not a part of the present invention. It is necessary only that the furnace be capable of heating the die assemblage and the charge of metal powder in the die cavity to sintering temperature while maintaining the charge under vacuum, and that the ram be capable of supplying controlled mechanical pressure up to the maximum required for compacting the powder to the degree desired.
  • the die assemblage shown for purposes of illustration is for forming elongated sleeves of circular cross section, and may comprise a thick base plate having a flat bottom face by which it is supported on a bed 6 in proper position for cooperation of the ram 2 therewith.
  • the die assemblage comprises a first part in the form of a mandrel or male die 7, and a cooperating second part, in the form of a female die 8.
  • the die 8 is initially supported in fixed axial relation to the mandrel 7, as will later be described, for defining therewith an annular die cavity 9, which is closed at the bottom and open at the top.
  • the assemblage also includes a third part in the form of an annular plunger 10 which is arranged to be forced into the open upper end of the die cavity 9 for initially compacting the material in the cavity while the cavityremains unchanged in shape, and preparatory to final forming of the charge of powder.
  • the mandrel 7 may be formed of a plurality of coaxial annular plates 11, 12, 13, and 14, respectively. These plates preferably have the same internal diameter and are bolted together in the coaxial relation shown, by suitable longitudinally extending bolts 7a, and are positioned on the base plate 5 in proper alignment with the ram 2.
  • the rings 11 and 12 have frusto-conical outer surfaces with their larger bases facing downwardly so that their outer peripheral surfaces form one continuous surface from the upper face of the plate 5 to the lower face of the plate 13.
  • the plate 13 [has a cylindrical external surface of the same diameter as the smaller diameter of the external surface of the plate 12.
  • the top plate 14 has a cylindrical outer surface which is preferably slightly larger than the external diameter of the plate 13, for purposes later to be described.
  • the female die 8 may comprise a series of coaxial annular plates, indicated at 15, 16, 17 and 18, respectively, these plates being arranged in coaxial relation and bolted together by bolts 8a so as to form a substantially unitary structure.
  • the inner periphery of the plate is preferably cylindrical and spaced radially outwardly from the adjacent outer peripheral surface of the mandrel.
  • the inner peripheral surfaces of the plates 16, 17, and 18 define a surface which, part way of its length from the bottom upwardly, is cylindrical, as indicated at 19, then frusto-conical with the larger base downwardly, as indicated at 20, and then again cylindrical, as indicated at 21.
  • the mandrel and the female die each may However, due to the weight involved, it is preferable for ease in manipulation in assembly and removal of the sintered body, that each be formed as a series of annular plates bolted together firmly as described.
  • the base plate 5 is provided with an upwardly facing annular radially extending shoulder 24 which is offset downwardly axially from the upper face of the plate 5.
  • Supported removably on the shoulder 24 is an annular compression ring 25 which forms a removable part of the mandrel.
  • the ring 25 has an inner annular face 26 spaced radially outwardly from an exterior annular face 27 on the plate 5 between the upper face and shoulder 24 of the plate 5.
  • a charge of metal powder 28 to be sintered into an elongated shell is disposed in a container 30 which, in
  • the container 30 preferably is formed of mild steel sheet material and has an outer peripheral wall 31 and an inner peripheral wall 32. These walls are parallel, respectively, to the inner peripheral wall of the female die 8 and the outer peripheral wall of the mandrel 7 throughout the greater portion of their extent endwise of the container.
  • the upper end of the container is open, as indicated at 33, for receiving the annular plunger 1% which effects initial compaction of the powder preparatory to movement of the female die 8 downwardly relative to the mandrel 7 during the final compacting and sintering operation.
  • filter means 34 are provided for purposes of permitting the escape from the container of gas and air entrapped in, or evolved from, the metal powder, and driven out of the charge due to'pressure resulting from closure of the dies or lowering of the plunger 10, while preventing the conveyance of powder out of the container by the gases.
  • the filter means 34 are disposed in the open end 33 of the container, and are movable downwardly by, and with, the plunger 10.
  • the plunger 10 fits into the upper end of the container with slight radial clearance, and the filter means prevent the escape of powder with the gases and air which are discharged from the upper end of the container between the periphery of the plunger 19 and the container walls.
  • a suitable filter means is illustrated in FIGS. 4 and 5 and comprises an upper annular bearing plate 35 and a lower annular bearing plate 36, between which an annular filter 37 of material, such as porous mineral wool fiber capable of withstanding temperatures in excess of 1000 C., is secured in coaxial relation by conventional bolts extending through the plates 35 and 36.
  • an annular filter 37 of material such as porous mineral wool fiber capable of withstanding temperatures in excess of 1000 C.
  • An example of this material is one sold under the trade name Cerafelt, by the Johns-Manville Company, and which has a high aluminum silicate content and is capable of withstanding temperatures up to 1100 C. a
  • the plates 35 and 36 are preferably coaxial and of slightly less external and slightly greater internal diameter than the external and internal diameter of the cavity in the upper end of the container.
  • the filter 37 has a somewhat smaller internal diameter and greater external diameter than the cavity so that it snugly fits the interior peripheral wall surfaces of the container walls 31 and 32 at the upper end of the container 30.
  • the bottom of the container is sealed to prevent the escape of metal powder between the lower inner periphery of the female die, as indicate at 38, and the lower outer periphery of the mandrel, which in the illustrative example is defined by the outer peripheral surfaces of the compression ring 25.
  • the powder during filling of the cavity and initial compaction of the powder therein by lowering of the plunger 10 filter out between the surfaces 38 and 39, imperfect compaction of the powder in the bottom of the cavity would result due to the dissipation of the pressure at the lower outer peripheral corner of the cavity.
  • a destructible sealing means is provided to prevent such escape of powder.
  • This sealing means comprises two portions which are bonded together and one of which is connected to the female die at the bottom of the die for downward movement therewith and one of which is supported by the mandrel and constrained thereby from downward movement with the female die.
  • the bond between these portions is suflicient to withstand the pressure exerted by the plunger during initial compaction of the powder by the plunger. How ever, it is capable of being sheared in two at a higher pressure which is exerted on the female die during subsequent compaction by the dies and plunger concurrently.
  • the sealing means is provided by the shear ring 40 which has an inner annular flange 41 which extends entirely across the upper surface of the compression ring 25, so as to engage the lower edge of the inner peripheral wall 32 of the container 36, and forms the bottom wall of the cavity.
  • a tight seal at the inner peripheral corner of the bottom of the cavity is not essential, as is that at the outer bottom corner, inasmuch as the escape of any metal powder at this point will be prevented by the peripheral surface of the mandrel or filler material between it and the container, as will later be explained.
  • a continuous weld of the flange 4.1 to the lower edge of the wall 32 is preferable, being desirable both for assembly and disassembly of the die assemblage.
  • the inner portion of the ring 4t] forms one portion of the sealing means and the other margin of the flange 41 forms the other portion of the sealing means. These portions are integral and consequently bonded together and form a joint capable of withstanding the initial compacting pressure.
  • the ring 4t) is provided with an internal peripheral shoulder 42, adjacent the outer periphery of the flange 41, to which the lower margin of the outer wall 31 of the container 30 is welded.
  • the lower plate is preferably chamfered, as indicated at 44, at its lower internal edge to provide clearance for the weld of the wall 31 to the ring 40 at the shoulder 42.
  • the ring 40 is not attached to the compression ring but merely rests in place on the top of the compression ring 25.
  • the plate 15 is insulated by sheets of asbestos insulation 45, interposed between its surfaces and the surfaces of other structure juxtaposed thereagainst.
  • the interior and exterior peripheral walls of the container are spaced from the exterior and interior peripheral walls of the female die 8 and mandrel 7, respectively, throughout the major portion of their lengths.
  • This provides an annular clearance space 46 between the wall 32 and the exterior wall of the mandrel 7, which space extends from near the top of the mandrel entirely to the bottom thereof, and connects with the space be tween the walls 26 and 27 of the compression ring 25 and plate 5.
  • annular clearance space 47 between the peripheral wall 31 of the container and inner peripheral wall 20 of the female die, which space extends from the top of the female die down to the ring 15.
  • the spaces 4-6 and 47 are filled with backup material such as Alundum or silicon carbide.
  • the upper margin of the inner wall 32 of the container is juxtaposed against and welded at its upper edge to the upper margin of the outer peripheral wall of the plate 14.
  • the upper edge of the outer peripheral wall 31 is welded to a suitable pressure plate 49 which is juxtaposed on the upper face of the plate 18 and closes the upper end of the space 47.
  • the lower margin of the outer wall 31 is welded to the shear ring 40.
  • This operation is performed in the absence of heating or at a temperature below sintering, thus allowing the gases and air gradually to escape.
  • a predetermined initial compacting pressure on the powder for example, 100 p.s.i., a vacuum is drawn in the furnace and the compacting pressure continued. The vacuum is gradually increased until it is approximately 2000 microns, this degree of vacuum being reached in a minimum of about two hours.
  • the vacuum is maintained and the temperature of the furnace is then slowly raised to approximately 1000 C. in about 15 hours.
  • the compacting pressure is then raised in increments of p.s.i. each five minutes until a maximum of 900 p.s.i. is reached.
  • the plunger 10 has entered the cavity to its full depth, thereby allowing the ring to bear on the plate 4?.
  • the pressure reaches a predetermined amount, with the ring on the plate 49, the female die 3 and the plunger 10 begin moving downwardly together.
  • the upper end of the inner wall 32 of the container is welded fixedly to the ring 14, as indicated at 48, so that the wall 32 cannot move downwardly and wrinkle.
  • the outer wall 31 is securely welded, to the shoulder 42 of the shear ring 49 so that it is constrained to pull downwardly therewith, and is thereby prevented from wrinkling.
  • the temperatures used are such that quite often the highly heated mandrel, and sometimes the female die, exceed their elastic limit at the elevated temperature, and become distorted by the forming pressures at such relatively high temperatures. Under such conditions ordinarily it is necessary for the female die and mandrel to be replaced after eachuse if the next succeeding body is to be identical with the one first formed. It is to eliminate this replacement that the Alundum is provided in the spaces 46 and 47, in that substantial distortion in the die and mandrel can be compensated for by filling the spaces 46 and 47 between the next container 39 and the die and mandrel with the Alundum or other such back-up material.
  • the back-up material may be omitted, but generally the container cannot be so accurately fitted and, in any event, the backup material assures ease in separation of the walls 31 and 32 of the container 30 from the female die 8 and the mandrel 7.
  • the container 30 can be omitted. However, in such instances it is still necessary to provide a seal between the bottom wall of the cavity 9 and the bottom margin of the inner wall of the female die 8, for preventing the loss of material at the juncture of the lower inner peripheral margin of the female die 8 and the outer peripheral margin of the mandrel 7. This, too, can be accomplished by means of the shear ring 40 and flange 41.
  • an asbestos annulus may be disposed in the space between the wall 27 of the plate and the wall 26 of the compression ring to prevent the metal powder from entering this space and bonding to the ring 25.
  • the inner wall 32 of the container is first rigidly secured to the inner periphery of the annular flange 41 of the shear ring 40, preferably by a continuous weld.
  • the outer wall 31 of the container 3i) is next placed in position with its lower edge resting on the upper face of the flange 41 at the margin adjacent the juncture of the flange with the main body of the shear ring 40, and fitting against inwardly facing annular shoulder 42 provided at the juncture.
  • This lower margin of the wall 31 and juxtaposed shoulder 42 of the ring are welded together, preferably by a continuous weld.
  • the compression ring 25 is then placed on the surface 24 of the plate 5 in coaxial relation to the mandrel 7, in which position its inner peripheral surface 26 is spaced outwardly from the outer peripheral wall 27 of the plate 5.
  • the assemblage of the container 30 and the shear ring 40 is then laid in position with the flange 41 lying on the upper surface of the compression ring 25, and with the inner peripheral surface 38 of the shear ring radially aligned with the outer peripheral surface 39 of the ring 25 and spaced therefrom with slight operating clearance.
  • the plate 15 is positioned on the retainer 40 with the sheets of insulation in place.
  • the plates 16, 17 and 18 are then successively stacked in place and the ring 40, plate 15, and superposed plates 16, 1'7 and 18 are bolted'together.
  • the refractory powder such as Alundum or silicon carbide, is then placed in the spaces 46 and 47 and the assemblage vibrated to assure complete filling of the spaces 46 and 47.
  • the top plate 14 of the mandrel is positioned in place and welded at its upper margin to the upper edge of the inner wall 32, as indicated at 4.8.
  • the plate 49 is then laid on the top of the plate 18 with its inner margin overhanging and closing the upper end of the clearance space 47, which now has been filled, and is then welded to the upper edge of the outer wall 31 of the container.
  • the metal powder such as beryllium powder
  • the container is approximately filled, usually to about /1 of an inch of the top.
  • the assemblage thus far described is vibrated duringthe metal powder filling operation so as to assure effective settling and preliminary packing of the metal powder and the elimination of as many air pockets as possible in the charge of powder.
  • the filter means 34 is placed on the top of the powder and spans the space between the inner and outer walls of the container 30 and is in wiping contact therewith so as to permit the escape of air and gases through the filter while preventing the escape of powder therewith.
  • the annular plunger 10 is placed on top of the filter means 34.
  • the annular plunger 10 is particularly desirable in that'it prevents the formation of low density areas which would otherwise be present around the upper end of the'charge. There is always a possibility of such improper compaction at this location as a result'of a void in the body becoming filled by powder so that the void migrates to the top of the compact prior to and during compaction, thereby causing a powder slump. Powder slumps may result from a number of causes. For example, when the loaded assemblage is placed in the furnace, the powder level is at its maximum vibrated height, but as a vacuum is drawn in the furnace, and therefore'on the powder, there is an additional settling of the powder because of the removal of air and gases.
  • the filter means 34 displaces the powder and causes it to fill the voided area until the entire bottom surface of the filter means 34 is juxtaposed on the upper surface of the charge and held firmly by the plunger 10, thereby assuring equalized pressurization throughout the compact and, in turn, uniform densification.
  • Thermocouples may be provided in suitable bores in the female die and mandrel, as desired.
  • bores 50 and 51 may be provided in the plates 17 and 18 of the female die, respectively, for receiving thermocouples.
  • the pressure at which the sealed joint, in the outer bottom corner of'the cavity, is broken by shearing of the flange 41 can be effectively controlled by the provision of a peripheral slot 52 at the juncture of the flange 41 and the main body of the shear ring 40.
  • This slot not only assures a sharp break upon shearing to provide a relatively smooth edge but also, depending upon the amount of metal removed, predetermines the pressure at which shearing will occur, which, in the illustrative example, is a pressure of about 500 psi. on the material.
  • the pressure continues to be incrementally increased until that for a pre selected calculated compaction and densification of the sintered material is reached.
  • pressure is reduced and held at a lower level until six successive pressure readings at the lower level, taken at five minute intervals, have been taken with no axial movement of the femaledie occurring.
  • the press is shut off, and an inert gaseous medium, such as argon gas, is introduced into the furnace. No soaking period is required.
  • the temperature recorded by the thermocouples falls below 1,00() C., the assemblage is removed from the furnace and the mandrel, except for the compression ring 25, is stripped therefrom. The re maining portion of the assemblage is then permitted to cool to ambient temperature after which the beryllium body is removed from the female die.
  • the flange 41 is maintained in spaced relationship to the remainder of the mandrel assembly by the ring 25. This facilitates removal of the formed body from the mandrel assembly. The reason is that during the completion of the forming stroke, a small portion of the heated metal is extruded into the clearance space between the peripheral surface 39 of the ring 25 and the inner peripheral surface of the cavity formed by the outer wall 31 of the container 3t), thereby creating a metal-tometal bond between the ring 25 and the wall 31. Consequently, upon removal of the mandrel, the ring 25 is lifted off the plate 5. The plate 14 is lifted with the remainder of the assemblage because the plate 14 is welded to the inner wall 32. If the ring 25 were not provided, it is apparent that the base plate 5 would be bonded to the outer assemblage, and removal of the plate would be expensive.
  • the outer peripheral surface of the ring 39 is cylindrical at its uppermargin where it is aligned with the inner peripheral wall 33 of the shear ring 40.
  • the wall is frusto-conical to provide an undercut so that the sheared surface of the ring 40 can move readily therepast without binding. This limits the metal-to-metal contact between the shear ring 40 and the ring 25 to a very short distance axially of the ring 25.
  • the predetermined calculated compaction is obtained by about inches of downward movement of the female die.
  • the pressure during sintering is about 900 p.s.i., and is subsequently reduced to about 750 p.s.i., with a temperature at about 1000 C.
  • thin asbestos rings 53 may be interposed between the surface 24 and the under face of the ring 25, and between the flange 41 and the upper face of the ring and the lower face of the ring 24.
  • asbestos rings 54 and 54a may be disposed between the top face of the plate 18 and the annular plate 49, and between the mandrel plate 13 and the top mandrel plate 14, respectively. The use of asbestos in these places is generally to reduce or prevent any tendency toward pressure welding.
  • F168. 7 and 8 a modification of the preferred embodiment is illustrated. It employs a female die 70, mandrel 71, and container 72 to form a body 73. It differs from the preferred form primarily in that no frusto-conical portions are provided on the female die 76, and the taper on the mandrel '71 is reduced so that it provides only a slight draft for facilitating the removal of the container 72 and enclosed body 73 during the stripping operation.
  • the incremental increase is 100 psi. every five minutes, instead of 50 p.s.i., and the maximum pressure is 1600 psi, instead of 900 p.s.i.. An axial movement of 17 inches is used to obtain maximum densification, and the reduced pressure is 1400 p.s.i. instead of 750 psi.
  • the time and temperature values remained unchanged.
  • the body has a length of about 23 inches, with a maximum outside diameter, at the base, of 32 inches, and an inside diameter at the base of 28 inches, tapering to about 27 inches at the top.
  • the apparatus as shown in FIG. 2 may be modified by omitting the outer wall 31,
  • the die assembly has been described in an operating position in which the common axis of the female die and mandrel is vertical and in which the relative forming stroke of the female die and mandrel is effected by downward movement of the female die. It is apparent from the illustrative example, however, that the assemblage may be disposed with its axis in other positions, and the operating stroke may be effected by moving the mandrel toward the die or by movement of both the mandrel and die toward each other.
  • An apparatus for forming metal powder into elongated hollow bodies comprising a mandrel, a female die, means temporarily supporting the die and mandrel in a fixed upright starting position wherein the mandrel is within the female die with the mandrel and die walls spaced apart radially and defining an upright annular cavity which is open at the top for receiving the powder and is closed at the bottom, sealing means having two portions bonded together and forming at the juncture a powder tight seal which bridges across and seals the operating clearance space between the outer periphery of the mandrel and inner periphery of the die at the lower outer corner of the cavity while the die and mandrel are in said starting position, one of said portions being operatively connected to the die for downward movement therewith in fixed relation thereto, and the other portion being carried by the mandrel and constrained thereby from downward movement with the die, the bond between said portions being capable of being sheared in two by downward movement of the die upon application of sufiicient downward forming
  • said movable means includes an annular plunger means in the upper portion of the cavity and adapted to move downwardly therein for exerting pressure on top of the charge, means for initially applying preliminary downward pressure to the plunger means and moving the plunger means downwardly while the die and mandrel are in said starting position, and means for causing operation of the power means for moving the die downwardly, concurrently with the downward movement of the plunger means, in a predetermined time delay relation to the initial downward movement of the plunger means.
  • said plunger means includes a rigid annular plunger receivable in the open upper end of the cavity and fitting the cavity with radial clearance at the inner and outer peripheral walls of the cavity, and filter means interposed between the bottom of the plunger and the top surface of the charge of powder in the cavity and substantially coextensive with the top surface of the charge, said filter means includes a porous pad of refractory material, said pad fits said walls of the cavity with yieldable pressure contact and is operable to permit the escape of gases and air from the cavity through the pad and into the clearance spaces between the plunger and said cavity walls while l 1 filtering out from the escaping gases any powder being conveyed thereby within the cavity.
  • said one of said portions of the sealing means is a shear ring juxtaposed against the bottom of the female die and the other portion is an annular flange integral with the ring and extending radially inwardly from the inner periphery of the die, and said mandrel has an upwardly facing portion at the bottom of the cavity on which said annular portion rests.
  • a container for the powder is disposed in, and forms part of, the die cavity
  • said container has an inner peripheral wall and an outer peripheral wall
  • the inner peripheral wall has its margin at the upper end of the cavity secured fixedly to the mandrel
  • the outer peripheral wall has its margin at its lower outer corner of the cavity operatively connected to the female die for downward movement therewith and disposed radially outwardly of, but substantially at, the juncture between said portions of the sealing means so as to move downwardly with its inner face in outwardly closely spaced relation to the inner sheared surface of the juncture.
  • the said plunger means has an upper end which is a predetermined distance above the upper end of the cavity in the starting position of the plunger means, a pressure applying member is arranged for applying downward pressure on the plunger means, said member has a bottom portion disposed radially outwardly from the plunger means and adapted to engage the upper end of the female die for moving the female die downwardly upon continued downward movement of the plunger means and member after the member has moved the plunger means to fully inserted position in the cavity.
  • a container s within the cavity and has an inner peripheral wall overlying the outer periphery of the mandrel, and the inner periphery of the said other portion is bonded to the bottom of the inner peripheral wall of the container.
  • mandrel includes a bottom support having an upwardly facing supporting face aligned with the cavity, and an upwardly facing compression ring is removably supported on said supporting face and has its upper face juxtaposed against the under face of said other part of the sealing means.
  • compression ring has its inner periphery spaced outwardly from a radially aligned surface portion on the mandrel so as to provide an annular clearance space extending from the top of the ring to the bottom of the ring, and removable refractory filler material fills said radialclearance space.
  • the external peripheral wall of the mandrel has a frusto-conical portion beginning adjacent the mandrel base and extending partway toward the top, and with its larger base disposed downwardly, said frusto-conical portion extends a substantial distance endwise of the cavity
  • the inner peripheral wall of the female die has a frusto-conical portion with its larger base disposed downwardly and below the top of the frusto-conical portion of the peripheral wall of the mandrel and with its upper base disposed above the level of the upper base of the frusto-conical portion of the mandrel wall, whereby said frusto-conical surfaces face toward each other so that, upon downward movement of the female die, they approach each other, and at the completion of the forming operation, reduce the width of the cavity throughout the major portion of its final length.

Description

June 22, 1965 D. D. RAPPRICH ETAL 3,189,942
APPARATUS FOR FORMING POWDERED METAL INTO SINTERED HOLLOW BODIES Filed July 31, 1962 5 Sheets-Sheet 1 INVENTOR.
2 @ATTORNEK BY M I 1 June 22, 1965 D. D. RAPPRICH ETAL 3,189,942
APPARATUS FOR FORMING POWDERED METAL INTO SINTERED HOLLOW BODIES Filed July 51, 1962 5 Sheets-Sheet 3 INVENTO M MW 1' gm,
ATTORNEY.
June 22, 1965 o. o. RAPPRICH ETAL 3, 39, 4
APPARATUS FOR FORMING POWDERED METAL INTO SINTERED HOLLOW BODIES 5 Sheets-Sheet 3 Filed July 31, 1962 IN ENTQR. W 9-4 7 95 ii BY A T TORNE Y June. 22, 1965 D. D. RAPPRICH ETAL 3,189,942
APPARATUS FOR FORMING POWDERED METAL INTO SINTERED HOLLOW BODIES Filed July 31, 1962 5 Sheets-Sheet 4 June 22, 1965 D. D. RAPPRICH ETAL 3,189,942
APPARATUS FOR FORMING POWDERED METAL INTO SINI'ERED HOLLOW BODIES Filed July 31, 1962 5 Sheets-Sheet 5 INVENTOR. M M W Y 1 3,189,942 APPARATUS FBR FORMING EOWDERED METAL INTE) SHNTERED HULLGW BODIES;
David Dean Rapprich, Vermilion, and Francis James Holewinsid, Tote-do, ()hio, assignors to The Brush iglryllium Company, leveland, Qhio, a corporation of Filed Juiy 31, 1962, Ser. No. 213mm 14 (Ilaims. (Cl. 18--16) This invention relates to an apparatus forrforming metal powder into sintered hollow bodies, such as sleeve-shaped and cup-shaped bodies, and the like, and more particularly for forming metal powder, in the absence of lubricants, into sintered hollow bodies each of which, at the completion of the sintering operation and before machining, not only has an axial length more than twice the wall thickness, but also is of substantially theoretical density throughout.
While the invention is useful for forming such bodies from any one of a number of metals which differ from each other widely in sintering temperatures and melting points, it is particularly useful in connection with beryllium in that beryllium powder can be formed into such bodies thereby and it cannot be so formed by the prior sintering procedures. Accordingly, hereinafter, the apparatus will be described generally as applied to the formation of such bodies from beryllium powder, except where otherwise specifically noted, its use in connection with other metals being readily apparent from the illustrative example.
A common prior technique employed in forming sintered bodies from metal powder is similar to that disclosed in US. Patent No. 2,885,287, issued May 5, 1959, wherein pressure is applied to the powder in a die cavity in a direction endwise of the cavity by means of a ram operating a punch or male die. Such technique, however, creates pressure gradients within the sintering charge of powder in the die cavity or mold assembly during the pressure sintering operation. These pressure gradients result mainly from friction between metal powder and the die wall. Due to this friction the pressure imposed on the powdered particles progressively decreases as the distance from the ram increases, whereby the particles farthest from the ram receive the least pressure. The pressure gradients, in turn, cause longitudinal density gradients within the sintered body with the result that a sintered body of non-uniform density is produced.
In attempting to reduce or overcome this non-uniformity in density, excessive ram pressures have been employed. The use of these excessive pressures generally results in excessive seizure of the powder on the die walls with resultant binding or freezing. Once freezing occurs, increased ram pressure not only does not overcome the frictional effects, but augments them to such a degree that no substantial further compaction can be effected.
A prior technique employed to form sintered hollow bodies of substantially theoretical density is disclosed in US. Patent No. 2,398,227, issued April 9, 1946. Such a technique is limited to bodies in which the length is less than twice the wall thickness, unless the lubricity of the powdered material is increased. Usually, if the lubricity is to be increased, powdered graphite or other lubricating material is added to the metal powder, or the die wall is lubricated; both are well known in the art. The lubricants are undesirable because they contaminate the sintered bodies. Even with such lubricants the length to wall thickness ratio can be increased but slightly.
The primary object of this invention is to provide a new and improved die assemblage, for efficiently forming metal powder, in the absence of lubricants, into hollow sintered sleeve or cup shaped bodies not only having a length greater than twice the wall thickness but also hav- United States Patent 3,189,942 Patented June 22, 1965 ice ing substantially the theoretical density of the metal employed.
Another object is to provide a die assemblage capable, during compacting sintering of the powdered metal, of containing the powdered metal and preventing its escape prior to compaction, and which also assists in the movement of the powder during compaction so as to reduce friction resistance of the powder and assist in. the formation of the powder into the hollow body to be made.
Another object is to provide a means for facilitating the manipulation and charging of the die assemblage, and the removal of the formed sintered body from the die assembly.
A more specific object is to provide filter means for assuring the escape of air and gases from the die cavity while preventing conveyance of the powdered metal from the cavity by the escaping gases and air.
Another object is to provide means for offsetting and compensating for die distortion resulting from pressure at high temperatures employed during sintering of beryllium, and the refractory high melting point metals, so that a die distorted in producing one body can bereused subsequently without reworking for producing a duplicate body.
Another object of the invention is to provide a three part die assemblage in which two parts define a forming cavity of predetermined starting shape, and the third part is operable for applying initial compacting pressure on the powdered metal in the die cavity prior to the main compaction of the metal therein while the cavity retains its starting shape, and of which the other parts become cooperable concurrently with the third part during the sintering of the powder, to reduce the volume of the cavity and change its shape into the final shape into which the powdered metal is to be sintered.
Other objects and advantages will become apparent from the foil-owing description wherein reference is made to the drawings, in which:
FIG. 1 is a front elevation of a furnace and die ass mblage embodying the principles of the present invention, part thereof being shown in section for clearness in illustration;
FIG. 2 is an enlarged vertical axial sectional view of the die assemblage of FIG. 1, showing the assemblage with the parts in starting position, and with a charge of metal powder in the die cavity at the beginning of the forming operation and is taken on line 22 of FIG. 1;
FIG. 3 is an enlarged view similar to FIG. 2 showing the die assemblage and metal at the end of the sintering operation;
FIG. 4 is a top plan view of a retainer in the form of a sealing annulus used in the present invention and operable for assuring escape or" gases from the powder charge and die cavity while preventing the conveyance of metal a powder from the die cavity by escaping gases;
FIG. 5 is a cross sectional view taken on the line 5-5 in FIG. 4;
FIG. 6 is a horizontal sectional view taken on the line 6-6 in FIG. 3; and
FIGS. 7 and 8 are views similar to FIGS. 2 and 3, illustrating a modification of the die assemblage.
Referring first to FIGS. 1 and 2, an apparatus for practising the present invention is illustrated. As there illustrated, the apparatus comprises a conventional vacuum sintering furnace 1 in which the temperature and degree of vacuum can be accurately controlled.
A ram 2, operated by a reversible hydraulic piston and cylinder assemblage 3, is provided. The pressure from the assemblage 3 is transmitted to the ram through a water cooled pressure transmitting member 4 which extends into the furnace from the outside. Hydraulic pressure may be supplied to the assemblage 3 by a conven- .be formed as a unitary structure.
9 tional motor driven pump P, through a reversing valve R, and a pressure control valve C, or by any available controlled pressure source.
The specific details of the ram and its controls, and of the furnace, its heating means, and vacuum pumps, and the like, are not a part of the present invention. It is necessary only that the furnace be capable of heating the die assemblage and the charge of metal powder in the die cavity to sintering temperature while maintaining the charge under vacuum, and that the ram be capable of supplying controlled mechanical pressure up to the maximum required for compacting the powder to the degree desired.
The die assemblage shown for purposes of illustration is for forming elongated sleeves of circular cross section, and may comprise a thick base plate having a flat bottom face by which it is supported on a bed 6 in proper position for cooperation of the ram 2 therewith. The die assemblage comprises a first part in the form of a mandrel or male die 7, and a cooperating second part, in the form of a female die 8. The die 8 is initially supported in fixed axial relation to the mandrel 7, as will later be described, for defining therewith an annular die cavity 9, which is closed at the bottom and open at the top. The assemblage also includes a third part in the form of an annular plunger 10 which is arranged to be forced into the open upper end of the die cavity 9 for initially compacting the material in the cavity while the cavityremains unchanged in shape, and preparatory to final forming of the charge of powder.
If desired, the mandrel 7 may be formed of a plurality of coaxial annular plates 11, 12, 13, and 14, respectively. These plates preferably have the same internal diameter and are bolted together in the coaxial relation shown, by suitable longitudinally extending bolts 7a, and are positioned on the base plate 5 in proper alignment with the ram 2.
In the particular form illustrated, the rings 11 and 12 have frusto-conical outer surfaces with their larger bases facing downwardly so that their outer peripheral surfaces form one continuous surface from the upper face of the plate 5 to the lower face of the plate 13. The plate 13 [has a cylindrical external surface of the same diameter as the smaller diameter of the external surface of the plate 12. The top plate 14 has a cylindrical outer surface which is preferably slightly larger than the external diameter of the plate 13, for purposes later to be described.
The female die 8 may comprise a series of coaxial annular plates, indicated at 15, 16, 17 and 18, respectively, these plates being arranged in coaxial relation and bolted together by bolts 8a so as to form a substantially unitary structure. The inner periphery of the plate is preferably cylindrical and spaced radially outwardly from the adjacent outer peripheral surface of the mandrel. The inner peripheral surfaces of the plates 16, 17, and 18 define a surface which, part way of its length from the bottom upwardly, is cylindrical, as indicated at 19, then frusto-conical with the larger base downwardly, as indicated at 20, and then again cylindrical, as indicated at 21. If desired, the mandrel and the female die each may However, due to the weight involved, it is preferable for ease in manipulation in assembly and removal of the sintered body, that each be formed as a series of annular plates bolted together firmly as described.
The base plate 5 is provided with an upwardly facing annular radially extending shoulder 24 which is offset downwardly axially from the upper face of the plate 5. Supported removably on the shoulder 24 is an annular compression ring 25 which forms a removable part of the mandrel. The ring 25 has an inner annular face 26 spaced radially outwardly from an exterior annular face 27 on the plate 5 between the upper face and shoulder 24 of the plate 5.
A charge of metal powder 28 to be sintered into an elongated shell is disposed in a container 30 which, in
turn, is disposed in the die cavity 9 between the external surface of the mandrel 7 and the interior peripheral surface of the female die 8.
The container 30 preferably is formed of mild steel sheet material and has an outer peripheral wall 31 and an inner peripheral wall 32. These walls are parallel, respectively, to the inner peripheral wall of the female die 8 and the outer peripheral wall of the mandrel 7 throughout the greater portion of their extent endwise of the container. The upper end of the container is open, as indicated at 33, for receiving the annular plunger 1% which effects initial compaction of the powder preparatory to movement of the female die 8 downwardly relative to the mandrel 7 during the final compacting and sintering operation.
For purposes of permitting the escape from the container of gas and air entrapped in, or evolved from, the metal powder, and driven out of the charge due to'pressure resulting from closure of the dies or lowering of the plunger 10, while preventing the conveyance of powder out of the container by the gases, filter means 34 are provided. The filter means 34 are disposed in the open end 33 of the container, and are movable downwardly by, and with, the plunger 10. The plunger 10 fits into the upper end of the container with slight radial clearance, and the filter means prevent the escape of powder with the gases and air which are discharged from the upper end of the container between the periphery of the plunger 19 and the container walls.
A suitable filter means is illustrated in FIGS. 4 and 5 and comprises an upper annular bearing plate 35 and a lower annular bearing plate 36, between which an annular filter 37 of material, such as porous mineral wool fiber capable of withstanding temperatures in excess of 1000 C., is secured in coaxial relation by conventional bolts extending through the plates 35 and 36. An example of this material is one sold under the trade name Cerafelt, by the Johns-Manville Company, and which has a high aluminum silicate content and is capable of withstanding temperatures up to 1100 C. a
As illustrated, the plates 35 and 36 are preferably coaxial and of slightly less external and slightly greater internal diameter than the external and internal diameter of the cavity in the upper end of the container. The filter 37, however, has a somewhat smaller internal diameter and greater external diameter than the cavity so that it snugly fits the interior peripheral wall surfaces of the container walls 31 and 32 at the upper end of the container 30.
In the forming of the metal powder, particularly beryllium powder, into such bodies extreme care must be taken to prevent the escape of the powder from the bottom of the die cavity during initial compaction and during sintering. For this purpose it is desirable that the bottom of the cavity, which when the container 30 is used, is
the bottom of the container, is sealed to prevent the escape of metal powder between the lower inner periphery of the female die, as indicate at 38, and the lower outer periphery of the mandrel, which in the illustrative example is defined by the outer peripheral surfaces of the compression ring 25. It should be noted, should the powder during filling of the cavity and initial compaction of the powder therein by lowering of the plunger 10, filter out between the surfaces 38 and 39, imperfect compaction of the powder in the bottom of the cavity would result due to the dissipation of the pressure at the lower outer peripheral corner of the cavity. To prevent such escape of powder a destructible sealing means is provided. This sealing means comprises two portions which are bonded together and one of which is connected to the female die at the bottom of the die for downward movement therewith and one of which is supported by the mandrel and constrained thereby from downward movement with the female die. The bond between these portions is suflicient to withstand the pressure exerted by the plunger during initial compaction of the powder by the plunger. How ever, it is capable of being sheared in two at a higher pressure which is exerted on the female die during subsequent compaction by the dies and plunger concurrently.
In the form illustrated, the sealing means is provided by the shear ring 40 which has an inner annular flange 41 which extends entirely across the upper surface of the compression ring 25, so as to engage the lower edge of the inner peripheral wall 32 of the container 36, and forms the bottom wall of the cavity. A tight seal at the inner peripheral corner of the bottom of the cavity is not essential, as is that at the outer bottom corner, inasmuch as the escape of any metal powder at this point will be prevented by the peripheral surface of the mandrel or filler material between it and the container, as will later be explained. However, a continuous weld of the flange 4.1 to the lower edge of the wall 32 is preferable, being desirable both for assembly and disassembly of the die assemblage.
The inner portion of the ring 4t] forms one portion of the sealing means and the other margin of the flange 41 forms the other portion of the sealing means. These portions are integral and consequently bonded together and form a joint capable of withstanding the initial compacting pressure. When a container is used also, the ring 4t) is provided with an internal peripheral shoulder 42, adjacent the outer periphery of the flange 41, to which the lower margin of the outer wall 31 of the container 30 is welded. The lower plate is preferably chamfered, as indicated at 44, at its lower internal edge to provide clearance for the weld of the wall 31 to the ring 40 at the shoulder 42. The ring 40 is not attached to the compression ring but merely rests in place on the top of the compression ring 25. The plate 15 is insulated by sheets of asbestos insulation 45, interposed between its surfaces and the surfaces of other structure juxtaposed thereagainst.
As illustrated, the interior and exterior peripheral walls of the container are spaced from the exterior and interior peripheral walls of the female die 8 and mandrel 7, respectively, throughout the major portion of their lengths. This provides an annular clearance space 46 between the wall 32 and the exterior wall of the mandrel 7, which space extends from near the top of the mandrel entirely to the bottom thereof, and connects with the space be tween the walls 26 and 27 of the compression ring 25 and plate 5. Likewise, it provides an annular clearance space 47 between the peripheral wall 31 of the container and inner peripheral wall 20 of the female die, which space extends from the top of the female die down to the ring 15. The spaces 4-6 and 47 are filled with backup material such as Alundum or silicon carbide. The upper margin of the inner wall 32 of the container is juxtaposed against and welded at its upper edge to the upper margin of the outer peripheral wall of the plate 14. The upper edge of the outer peripheral wall 31 is welded to a suitable pressure plate 49 which is juxtaposed on the upper face of the plate 18 and closes the upper end of the space 47. As mentioned, the lower margin of the outer wall 31 is welded to the shear ring 40.
It is apparent that with this structure, the powder 28 within the container 34) cannot leak out the joint between the outer wall of the cavity and bottom wall formed by the flange 41, and thus into the space between the inner wall 38 of the female die and the outer wall 39 of the mandrel.
, As to leakage of the metal powder between the inner peripheral edge of the flange 41 and the lower edge of the inner wall 32 this, of course, is prevented by the welded joint between the inner periphery of the flange 41 and the lower edge of the wall 32. Even if no weld were provided at this point, exfiltration of the metal powder would be so limited as to be negligible by the Alundum in the space between the inner wall 32 and the mandrel 7.
In operation, it is necessary first to move the plunger 10 downwardly into the open end of the container fail for effecting settling and slight initial compaction of the metal powder. For forcing the plunger 10 downwardly, suitable coaxial pressure rings 55 and 56 are provided. These rings are supported by the upper surface of the plunger 1t. and are forced downwardly by engagement of the upper surface of the ring 56 by a header 57 engaged, in turn, by the force transmitting member 4. Upon admission of pressure to assemblage 3, the ram 2 forces the rings, and thereby the annular plunger 1%), downwardly slowly, thus forcing the filter means 34 downwardly in the upper end of the cavity defined by the container 30. This downward movement settles and initially compacts the powder slightly within the container. This operation is performed in the absence of heating or at a temperature below sintering, thus allowing the gases and air gradually to escape. When a predetermined initial compacting pressure on the powder is reached, for example, 100 p.s.i., a vacuum is drawn in the furnace and the compacting pressure continued. The vacuum is gradually increased until it is approximately 2000 microns, this degree of vacuum being reached in a minimum of about two hours.
The vacuum is maintained and the temperature of the furnace is then slowly raised to approximately 1000 C. in about 15 hours. The compacting pressure is then raised in increments of p.s.i. each five minutes until a maximum of 900 p.s.i. is reached. Before this pressure is reached, the plunger 10 has entered the cavity to its full depth, thereby allowing the ring to bear on the plate 4?. When the pressure reaches a predetermined amount, with the ring on the plate 49, the female die 3 and the plunger 10 begin moving downwardly together.
It is to be noted that the upper end of the inner wall 32 of the container, as mentioned, is welded fixedly to the ring 14, as indicated at 48, so that the wall 32 cannot move downwardly and wrinkle. On the other hand, the outer wall 31 is securely welded, to the shoulder 42 of the shear ring 49 so that it is constrained to pull downwardly therewith, and is thereby prevented from wrinkling. As soon as the downward pressure on the female die 8 is sufiicient, for example 500 p.s.i., the seal closing the outer peripheral corner of the die cavity is sheared, leaving the flange 41 supported on the compressor ring 25. This seal, in the form illustrated, is the juncture of the flange 41 with the shear ring 40. p
The effect of frictional binding of the power is somewhat reduced because the outer wall 31 is of the container 36 is held under tension and the frusto-conicai portion of its surface faces somewhat downwardly toward the upwardly facing frusto-conical portion of the mandrel and moves downwardly with the powder to a great extent. This downward motion of the female die 8 continues until the final forming position is reached, as indicated in FIG. 3, this final position being determined by the shape of the annular elongated body to be formed and the density desired.
As a result of this initial settling and slight compaction while the mandrel 7 and female die 8 remain in fixed axial position, followed by continued compaction imposed by the plunger 1% and augmented by the downward movement of the female die 8 relative to the mandrel 7, elongated hollow sleeve shaped and cup shaped bodies can be obtained. These bodies, in the as formed condition, have almost theoretical density, are free from contaminating lubricants, and have a length greater than twice the wall thickness.
However, when forming the bodies of beryllium, the temperatures used are such that quite often the highly heated mandrel, and sometimes the female die, exceed their elastic limit at the elevated temperature, and become distorted by the forming pressures at such relatively high temperatures. Under such conditions ordinarily it is necessary for the female die and mandrel to be replaced after eachuse if the next succeeding body is to be identical with the one first formed. It is to eliminate this replacement that the Alundum is provided in the spaces 46 and 47, in that substantial distortion in the die and mandrel can be compensated for by filling the spaces 46 and 47 between the next container 39 and the die and mandrel with the Alundum or other such back-up material. Of course, if the container substantially fits the mandrel and the female die without back-up material, the back-up material may be omitted, but generally the container cannot be so accurately fitted and, in any event, the backup material assures ease in separation of the walls 31 and 32 of the container 30 from the female die 8 and the mandrel 7.
In those instances in which the metal power can be formed at lower temperatures and is of such a nature that it does not adhere objectionably to the forming faces of the mandrel and female die, the container 30 can be omitted. However, in such instances it is still necessary to provide a seal between the bottom wall of the cavity 9 and the bottom margin of the inner wall of the female die 8, for preventing the loss of material at the juncture of the lower inner peripheral margin of the female die 8 and the outer peripheral margin of the mandrel 7. This, too, can be accomplished by means of the shear ring 40 and flange 41. When the container 30 is not employed, an asbestos annulus may be disposed in the space between the wall 27 of the plate and the wall 26 of the compression ring to prevent the metal powder from entering this space and bonding to the ring 25.
With the powder thus prevented from escaping, effective initial compaction can be obtained which would not be obtainable were the powder permitted to escape at the outer lower corner of the cavity during initial compaction.
In order to charge the dies for forming a body, the following procedure may be employed.
The inner wall 32 of the container is first rigidly secured to the inner periphery of the annular flange 41 of the shear ring 40, preferably by a continuous weld. The outer wall 31 of the container 3i) is next placed in position with its lower edge resting on the upper face of the flange 41 at the margin adjacent the juncture of the flange with the main body of the shear ring 40, and fitting against inwardly facing annular shoulder 42 provided at the juncture. This lower margin of the wall 31 and juxtaposed shoulder 42 of the ring are welded together, preferably by a continuous weld. The compression ring 25 is then placed on the surface 24 of the plate 5 in coaxial relation to the mandrel 7, in which position its inner peripheral surface 26 is spaced outwardly from the outer peripheral wall 27 of the plate 5. The assemblage of the container 30 and the shear ring 40 is then laid in position with the flange 41 lying on the upper surface of the compression ring 25, and with the inner peripheral surface 38 of the shear ring radially aligned with the outer peripheral surface 39 of the ring 25 and spaced therefrom with slight operating clearance. Next the plate 15 is positioned on the retainer 40 with the sheets of insulation in place. The plates 16, 17 and 18 are then successively stacked in place and the ring 40, plate 15, and superposed plates 16, 1'7 and 18 are bolted'together. The refractory powder, such as Alundum or silicon carbide, is then placed in the spaces 46 and 47 and the assemblage vibrated to assure complete filling of the spaces 46 and 47. Next to the top plate 14 of the mandrel is positioned in place and welded at its upper margin to the upper edge of the inner wall 32, as indicated at 4.8. The plate 49 is then laid on the top of the plate 18 with its inner margin overhanging and closing the upper end of the clearance space 47, which now has been filled, and is then welded to the upper edge of the outer wall 31 of the container.
Next, the metal powder, such as beryllium powder, is loaded into the container until the container is approximately filled, usually to about /1 of an inch of the top. The assemblage thus far described is vibrated duringthe metal powder filling operation so as to assure effective settling and preliminary packing of the metal powder and the elimination of as many air pockets as possible in the charge of powder. Next the filter means 34 is placed on the top of the powder and spans the space between the inner and outer walls of the container 30 and is in wiping contact therewith so as to permit the escape of air and gases through the filter while preventing the escape of powder therewith.
Next the annular plunger 10 is placed on top of the filter means 34. The annular plunger 10 is particularly desirable in that'it prevents the formation of low density areas which would otherwise be present around the upper end of the'charge. There is always a possibility of such improper compaction at this location as a result'of a void in the body becoming filled by powder so that the void migrates to the top of the compact prior to and during compaction, thereby causing a powder slump. Powder slumps may result from a number of causes. For example, when the loaded assemblage is placed in the furnace, the powder level is at its maximum vibrated height, but as a vacuum is drawn in the furnace, and therefore'on the powder, there is an additional settling of the powder because of the removal of air and gases. Further settling of the powder occurs as the compact is brought up to sintering temperature. As such a slump occurs, the filter means 34 displaces the powder and causes it to fill the voided area until the entire bottom surface of the filter means 34 is juxtaposed on the upper surface of the charge and held firmly by the plunger 10, thereby assuring equalized pressurization throughout the compact and, in turn, uniform densification. With the die assemblage arranged as thus described it is sintered while subjected to the ram pressure, as heretofore described.
Thermocouples may be provided in suitable bores in the female die and mandrel, as desired. For example, bores 50 and 51 may be provided in the plates 17 and 18 of the female die, respectively, for receiving thermocouples.
At this point it is to be noted that the pressure at which the sealed joint, in the outer bottom corner of'the cavity, is broken by shearing of the flange 41 can be effectively controlled by the provision of a peripheral slot 52 at the juncture of the flange 41 and the main body of the shear ring 40. This slot not only assures a sharp break upon shearing to provide a relatively smooth edge but also, depending upon the amount of metal removed, predetermines the pressure at which shearing will occur, which, in the illustrative example, is a pressure of about 500 psi. on the material.
After the shearing occurs, thus destroying the seal at the lower outer corner of the cavity, the pressure continues to be incrementally increased until that for a pre selected calculated compaction and densification of the sintered material is reached. When this maximum densification has been reached, pressure is reduced and held at a lower level until six successive pressure readings at the lower level, taken at five minute intervals, have been taken with no axial movement of the femaledie occurring. After reaching the required compaction, the press is shut off, and an inert gaseous medium, such as argon gas, is introduced into the furnace. No soaking period is required. As soon as the temperature recorded by the thermocouples falls below 1,00() C., the assemblage is removed from the furnace and the mandrel, except for the compression ring 25, is stripped therefrom. The re maining portion of the assemblage is then permitted to cool to ambient temperature after which the beryllium body is removed from the female die.
It is noted the flange 41 is maintained in spaced relationship to the remainder of the mandrel assembly by the ring 25. This facilitates removal of the formed body from the mandrel assembly. The reason is that during the completion of the forming stroke, a small portion of the heated metal is extruded into the clearance space between the peripheral surface 39 of the ring 25 and the inner peripheral surface of the cavity formed by the outer wall 31 of the container 3t), thereby creating a metal-tometal bond between the ring 25 and the wall 31. Consequently, upon removal of the mandrel, the ring 25 is lifted off the plate 5. The plate 14 is lifted with the remainder of the assemblage because the plate 14 is welded to the inner wall 32. If the ring 25 were not provided, it is apparent that the base plate 5 would be bonded to the outer assemblage, and removal of the plate would be expensive.
It is to be noted that the outer peripheral surface of the ring 39 is cylindrical at its uppermargin where it is aligned with the inner peripheral wall 33 of the shear ring 40. For a short distance therebeneath, the wall is frusto-conical to provide an undercut so that the sheared surface of the ring 40 can move readily therepast without binding. This limits the metal-to-metal contact between the shear ring 40 and the ring 25 to a very short distance axially of the ring 25.
In the form illustrated in FIG. 1, wherein the powder charge before compaction is about 23 inches long and has an inner diameter at the base of about 29 inches and an outer diameter of about 32 inches, the predetermined calculated compaction is obtained by about inches of downward movement of the female die. The pressure during sintering is about 900 p.s.i., and is subsequently reduced to about 750 p.s.i., with a temperature at about 1000 C. Due to the frusto-conical shape of the portion of the container wall 31 overlying the wall and adjoining parts of walls 15 and 21, its overhanging relation to that of the frusto-conical portion of the container wall 32 overlying the outer peripheral walls of the plates 11 and 12, these portions of the container walls approach each other during sintering, consequent upon downward movement of the female die, and thus assist in distributing the applied pressure more effectively and in reducing friction. The value in the above example will be varied, of course, with the size and shape of the body, the degree of densification required, and the particular metal used.
For ease in disassembling, thin asbestos rings 53, approximately /s of an inch thick, may be interposed between the surface 24 and the under face of the ring 25, and between the flange 41 and the upper face of the ring and the lower face of the ring 24. Like asbestos rings 54 and 54a may be disposed between the top face of the plate 18 and the annular plate 49, and between the mandrel plate 13 and the top mandrel plate 14, respectively. The use of asbestos in these places is generally to reduce or prevent any tendency toward pressure welding.
In F168. 7 and 8, a modification of the preferred embodiment is illustrated. It employs a female die 70, mandrel 71, and container 72 to form a body 73. It differs from the preferred form primarily in that no frusto-conical portions are provided on the female die 76, and the taper on the mandrel '71 is reduced so that it provides only a slight draft for facilitating the removal of the container 72 and enclosed body 73 during the stripping operation. In this modification, the incremental increase is 100 psi. every five minutes, instead of 50 p.s.i., and the maximum pressure is 1600 psi, instead of 900 p.s.i.. An axial movement of 17 inches is used to obtain maximum densification, and the reduced pressure is 1400 p.s.i. instead of 750 psi. The time and temperature values remained unchanged.
The body has a length of about 23 inches, with a maximum outside diameter, at the base, of 32 inches, and an inside diameter at the base of 28 inches, tapering to about 27 inches at the top.
As mentioned, with some metals, the apparatus as shown in FIG. 2 may be modified by omitting the outer wall 31,
the inner wall 32, and compression ring 25, or any one of them, without departing from the scope of the invention.
For convenience in illustration, the die assembly has been described in an operating position in which the common axis of the female die and mandrel is vertical and in which the relative forming stroke of the female die and mandrel is effected by downward movement of the female die. It is apparent from the illustrative example, however, that the assemblage may be disposed with its axis in other positions, and the operating stroke may be effected by moving the mandrel toward the die or by movement of both the mandrel and die toward each other.
Although the above description and illustration are of a detailed character, it is to be understood that changes and modifications may be resorted to without departing from the spirit of the invention.
Having thus described our invention, we claim:
I. An apparatus for forming metal powder into elongated hollow bodies and comprising a mandrel, a female die, means temporarily supporting the die and mandrel in a fixed upright starting position wherein the mandrel is within the female die with the mandrel and die walls spaced apart radially and defining an upright annular cavity which is open at the top for receiving the powder and is closed at the bottom, sealing means having two portions bonded together and forming at the juncture a powder tight seal which bridges across and seals the operating clearance space between the outer periphery of the mandrel and inner periphery of the die at the lower outer corner of the cavity while the die and mandrel are in said starting position, one of said portions being operatively connected to the die for downward movement therewith in fixed relation thereto, and the other portion being carried by the mandrel and constrained thereby from downward movement with the die, the bond between said portions being capable of being sheared in two by downward movement of the die upon application of sufiicient downward forming pressure by the female die, and power means for applying sufficient force to the female die to cause said downward forming pressure and downward movement of the female die and destruction of the seal provided by the sealing means at said juncture.
2. An apparatus according to claim 1 wherein movable means are provided for exerting on the charge of powder, for causing preliminary settling and compaction of the powder in the cavity while the die and mandrel remain in starting position, a downward preliminary pressure less than said forming pressure, and said seal is capable of withstanding said preliminary pressure.
3. An apparatus in accordance with claim 2 wherein said movable means includes an annular plunger means in the upper portion of the cavity and adapted to move downwardly therein for exerting pressure on top of the charge, means for initially applying preliminary downward pressure to the plunger means and moving the plunger means downwardly while the die and mandrel are in said starting position, and means for causing operation of the power means for moving the die downwardly, concurrently with the downward movement of the plunger means, in a predetermined time delay relation to the initial downward movement of the plunger means.
4. An apparaus according to claim 3 wherein said plunger means includes a rigid annular plunger receivable in the open upper end of the cavity and fitting the cavity with radial clearance at the inner and outer peripheral walls of the cavity, and filter means interposed between the bottom of the plunger and the top surface of the charge of powder in the cavity and substantially coextensive with the top surface of the charge, said filter means includes a porous pad of refractory material, said pad fits said walls of the cavity with yieldable pressure contact and is operable to permit the escape of gases and air from the cavity through the pad and into the clearance spaces between the plunger and said cavity walls while l 1 filtering out from the escaping gases any powder being conveyed thereby within the cavity.
5. An apparatus according to claim 1 wherein said one of said portions of the sealing means is a shear ring juxtaposed against the bottom of the female die and the other portion is an annular flange integral with the ring and extending radially inwardly from the inner periphery of the die, and said mandrel has an upwardly facing portion at the bottom of the cavity on which said annular portion rests.
6. An apparatus according to claim 5 wherein the flange has a notch extending partway through its thickness at its juncture with the ring, said notch extends around the entire outer periphery of said flange and is of predetermined depth, whereby the pressure at which the portions shear in two at the juncture is predetermined by the depth of the notch.
7. An apparatus according to claim 1 wherein a container for the powder is disposed in, and forms part of, the die cavity, said container has an inner peripheral wall and an outer peripheral wall, the inner peripheral wall has its margin at the upper end of the cavity secured fixedly to the mandrel, the outer peripheral wall has its margin at its lower outer corner of the cavity operatively connected to the female die for downward movement therewith and disposed radially outwardly of, but substantially at, the juncture between said portions of the sealing means so as to move downwardly with its inner face in outwardly closely spaced relation to the inner sheared surface of the juncture.
8. An apparatus according to claim 7 wherein the inner Wall of the container, beginning at a location near its upper end and continuing entirely to its bottom end is in spaced relation radially to the outer peripheral wall of the mandrel, the outer wall of the container from its upper end down to a location close to its lower end is spaced radially inwardly from the inner peripheral wall of the female die, and refractory removable back-up material fills the spaces between the container walls and the adjacent walls of the mandrel and die adjacent to them, respectively.
9. An apparatus according to claim 2 wherein the said plunger means has an upper end which is a predetermined distance above the upper end of the cavity in the starting position of the plunger means, a pressure applying member is arranged for applying downward pressure on the plunger means, said member has a bottom portion disposed radially outwardly from the plunger means and adapted to engage the upper end of the female die for moving the female die downwardly upon continued downward movement of the plunger means and member after the member has moved the plunger means to fully inserted position in the cavity.
It). The structure according to claim ll wherein said other portion of the sealing mean'sextends from itsjuncture with said one portion entirely across the bottom of the die cavity and forms the bottom wall thereof.
11. The sructure according to claim 10 wherein a container s within the cavity and has an inner peripheral wall overlying the outer periphery of the mandrel, and the inner periphery of the said other portion is bonded to the bottom of the inner peripheral wall of the container.
12. The structure according to claim 1 wherein the mandrel includes a bottom support having an upwardly facing supporting face aligned with the cavity, and an upwardly facing compression ring is removably supported on said supporting face and has its upper face juxtaposed against the under face of said other part of the sealing means.
13. An apparatus according to claim 12 wherein the compression ring has its inner periphery spaced outwardly from a radially aligned surface portion on the mandrel so as to provide an annular clearance space extending from the top of the ring to the bottom of the ring, and removable refractory filler material fills said radialclearance space.
14. An apparatus according to claim 1 wherein, in the starting position of the die and mandrel, the external peripheral wall of the mandrel has a frusto-conical portion beginning adjacent the mandrel base and extending partway toward the top, and with its larger base disposed downwardly, said frusto-conical portion extends a substantial distance endwise of the cavity, the inner peripheral wall of the female die has a frusto-conical portion with its larger base disposed downwardly and below the top of the frusto-conical portion of the peripheral wall of the mandrel and with its upper base disposed above the level of the upper base of the frusto-conical portion of the mandrel wall, whereby said frusto-conical surfaces face toward each other so that, upon downward movement of the female die, they approach each other, and at the completion of the forming operation, reduce the width of the cavity throughout the major portion of its final length.
References Cited by the Examiner UNITED STATES PATENTS 2,540,457 2/51 Rice 29-4205 7 2,809,395 10/57 Gregory et al. 18-16 2,900,664 8/59 Hampel et al 18-16 3,060,506 10/62 Uschmann 18-16.5 3,060,560 10/62 Biehl et al 29-4205 3,082,820 3/63 Ednell 18-16 3,115,676 12/63 Quartullo 18-16 MICHAEL V. BRINDISI, Primary Examiner. WHITMORE A. WILTZ, Examiner.

Claims (1)

1. AN APPARATUS FOR FORMING MEATL POWDER INTO ELONGATED HOLLOW BODIES AND COMPRISING A MANDREL, A FEMALE DIE, MEANS TEMPORARILY SUPPORTING THE DIE AND MANDREL IN A FIXED UPRIGHT STARTING POSITION WHEREIN THE MANDREL IS WITHIN THE FEMALE DIE WITH THE MANDREL AND DIE WALLS SPACED APART RADIALLY AND DEFINING AN UPRIGHT ANNULAR CAVITY WHICH IS OPEN AT THE TOP FOR RECEIVING THE POWDER AND IS CLOSED AT THE BOTTOM, SEALING MEANS HAVING TWO PORTIONS BONDED TOGETHER AND FORMING AT THE JUNCTURE A POWDER TIGHT SEAL WHICH BRIDGES ACROSS AND SEALS THE OPERATING CLEARANCE SPACE BETWEEN THE OUTER PERIPHERY OF THE MANDREL AND INNER PERIPHERY OF THE DIE AT THE LOWER OUTER CORNER OF THE CAVITY WHILE THE DIE AND MANDREL ARE IN SAID STARTING POSITION, ONE OF SAID PORTIONS BEING OPERATIVELY CONNECTED TO THE DIE FOR DOWNWARD MOVEMENT THEREWITH IN FIXED RELATION THERETO, AND THE OTHER PORTION BEING CARRIED BY THE MANDREL AND CONSTRAINED THEREBY FROM DOWNWARD MOVEMENT WITH THE DIE, THE BOND BETWEEN SAID PORTIONS BEING CAPABLE OF BEING SHEARED IN TWO BY DOWNWARD MOVEMENT OF THE DIE UPON APPLICATION OF SUFFICIENT DOWNWARD FORMING PRESSURE BY THE FEMALE DIE, AND POWER MEANS FOR APPLYING SUFFICIENT FORCE TO THE FEMALE DIE TO CAUSE SAID DOWNWARD FORMING PRESSURE AND DOWNWARD MOVEMENT OF THE FEMAL DIE AND DESTRUCTION OF THE SEAL PROVIDED BY THE SEALING MEANS AT SAID JUNCTURE.
US213709A 1962-07-31 1962-07-31 Apparatus for forming powdered metal into sintered hollow bodies Expired - Lifetime US3189942A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US213709A US3189942A (en) 1962-07-31 1962-07-31 Apparatus for forming powdered metal into sintered hollow bodies
US461217A US3260596A (en) 1962-07-31 1965-04-12 Method for forming powdered metal into sintered hollow bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US213709A US3189942A (en) 1962-07-31 1962-07-31 Apparatus for forming powdered metal into sintered hollow bodies

Publications (1)

Publication Number Publication Date
US3189942A true US3189942A (en) 1965-06-22

Family

ID=22796192

Family Applications (1)

Application Number Title Priority Date Filing Date
US213709A Expired - Lifetime US3189942A (en) 1962-07-31 1962-07-31 Apparatus for forming powdered metal into sintered hollow bodies

Country Status (1)

Country Link
US (1) US3189942A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577842A (en) * 1968-07-04 1971-05-11 Matsushita Electric Ind Co Ltd Apparatus for compression molding a powder within a container
US3986803A (en) * 1975-12-04 1976-10-19 United Technologies Corporation Cover positioning device for container in a compacting press
US3988088A (en) * 1975-12-04 1976-10-26 United Technologies Corporation Press for particulate material
US4666389A (en) * 1985-01-25 1987-05-19 The Texas A&M University System Apparatus for forming compacts from solid particles
US4797085A (en) * 1986-12-04 1989-01-10 Aerojet-General Corporation Forming apparatus employing a shape memory alloy die
WO1995010407A1 (en) * 1993-10-08 1995-04-20 Fisons Plc Process for the production of medicament formulations

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540457A (en) * 1945-12-05 1951-02-06 Isthmian Metals Inc Method of making metal articles and products
US2809395A (en) * 1954-07-02 1957-10-15 Coal Industry Patents Ltd Hydraulic powder press
US2900664A (en) * 1955-09-01 1959-08-25 Kolmar Laboratories Apparatus for compressing finely divided solids
US3060560A (en) * 1959-01-12 1962-10-30 Int Harvester Co Method for cold extruding high density articles from ferrous metal powder
US3060506A (en) * 1957-06-24 1962-10-30 Uschmann Curt Molding press
US3082820A (en) * 1960-01-05 1963-03-26 Ednell Daniel Fredrik Machines for moulding of pulp, especially of fiber pulp
US3115676A (en) * 1960-11-23 1963-12-31 American Beryllium Company Inc High speed forging apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540457A (en) * 1945-12-05 1951-02-06 Isthmian Metals Inc Method of making metal articles and products
US2809395A (en) * 1954-07-02 1957-10-15 Coal Industry Patents Ltd Hydraulic powder press
US2900664A (en) * 1955-09-01 1959-08-25 Kolmar Laboratories Apparatus for compressing finely divided solids
US3060506A (en) * 1957-06-24 1962-10-30 Uschmann Curt Molding press
US3060560A (en) * 1959-01-12 1962-10-30 Int Harvester Co Method for cold extruding high density articles from ferrous metal powder
US3082820A (en) * 1960-01-05 1963-03-26 Ednell Daniel Fredrik Machines for moulding of pulp, especially of fiber pulp
US3115676A (en) * 1960-11-23 1963-12-31 American Beryllium Company Inc High speed forging apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3577842A (en) * 1968-07-04 1971-05-11 Matsushita Electric Ind Co Ltd Apparatus for compression molding a powder within a container
US3986803A (en) * 1975-12-04 1976-10-19 United Technologies Corporation Cover positioning device for container in a compacting press
US3988088A (en) * 1975-12-04 1976-10-26 United Technologies Corporation Press for particulate material
US4666389A (en) * 1985-01-25 1987-05-19 The Texas A&M University System Apparatus for forming compacts from solid particles
US4797085A (en) * 1986-12-04 1989-01-10 Aerojet-General Corporation Forming apparatus employing a shape memory alloy die
WO1995010407A1 (en) * 1993-10-08 1995-04-20 Fisons Plc Process for the production of medicament formulations
AU678614B2 (en) * 1993-10-08 1997-06-05 Fisons Plc Process for the production of medicament formulations
US5670167A (en) * 1993-10-08 1997-09-23 Fisons Plc Process for the production of medicament formulations

Similar Documents

Publication Publication Date Title
US4142888A (en) Container for hot consolidating powder
US3356496A (en) Method of producing high density metallic products
US4446100A (en) Method of manufacturing an object of metallic or ceramic material
US3922769A (en) Method for making composite wire
EP0471642A2 (en) Container for encapsulation of workpieces for high pressure processing
US3189942A (en) Apparatus for forming powdered metal into sintered hollow bodies
US4647426A (en) Production of billet and extruded products from particulate materials
US4478789A (en) Method of manufacturing an object of metallic or ceramic material
USRE31355E (en) Method for hot consolidating powder
US3728111A (en) Method of manufacturing billets from powder
US4601877A (en) Press sintering process for green compacts and apparatus therefor
US4178178A (en) Method of sealing hot isostatic containers
US3611546A (en) Method of highly-densifying powdered metal
US3260596A (en) Method for forming powdered metal into sintered hollow bodies
US3613157A (en) Pressure chamber for treating material with high pressure,such as isostatic compression of powder bodies
GB1585583A (en) Container for hot consolidating powder
US4756752A (en) Compacted powder article and method for making same
US4904538A (en) One step HIP canning of powder metallurgy composites
US3628779A (en) Furnace for heat-treating objects under high pressure
US3518336A (en) Method of forming a compact article of particulate material
US2374747A (en) Method of making tubular bearings
Morgan et al. Isostatic compaction of metal powders
US3543345A (en) Apparatus for rapid fluid compacting
US4785574A (en) Apparatus for the production of billet and extruded products from particulate materials
US3869233A (en) Apparatus for rapid isostatic pressing