JPS58202939A - Hot plastic working method - Google Patents

Hot plastic working method

Info

Publication number
JPS58202939A
JPS58202939A JP57086834A JP8683482A JPS58202939A JP S58202939 A JPS58202939 A JP S58202939A JP 57086834 A JP57086834 A JP 57086834A JP 8683482 A JP8683482 A JP 8683482A JP S58202939 A JPS58202939 A JP S58202939A
Authority
JP
Japan
Prior art keywords
capsule
temperature
mold
working method
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57086834A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Masato Moritoki
正人 守時
Junichi Miyanaga
宮永 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57086834A priority Critical patent/JPS58202939A/en
Publication of JPS58202939A publication Critical patent/JPS58202939A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To easily obtain a member of a desired final shape from a material which is expensive and inferior in its workability, by containing a die and a billet in a capsule which causes plastic deformation at a high temperature and under high pressure, and pressing it by hot hydrostatic pressure. CONSTITUTION:A die 2 which consists of a heat resisting material and is provided with a cavity 4 having an opening part, a billet-like base material 3 having a softening point temperature which is below a softening point or decomposition point temperature of said heat resisting material, and a capsule 1 consisting of a gas non-transmitting material which causes plastic deformation at a high temperature and under high pressure are prepared. Subsequently, said die 2 and base material 3 are contained in the capsule 1, a cover 6 is installed and the capsule 1 is sealed by welding 5. Next, the whole capsule 1 is pressed by hot hydrostatic pressure at a temperature at which the base material 3 generates a plastic flow, although the die 2 causes no decomposition nor plastic deformation. Then, the base material 3 is pressed into the inside of the cavity 4, and is deformed along a shape of the cavity.

Description

【発明の詳細な説明】 本発明は金属材料又はセラミックス材料を塑性流動を生
ずるような高い温度領域で圧縮変形させ成形用型材のキ
ャビティと同じ輪郭を有する部材を製造する方法、特に
熱間静水圧プレス(以下HIPと称する)による金属又
はセラミックス部材の成形加工方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a member having the same contour as a cavity of a molding material by compressively deforming a metal material or a ceramic material in a high temperature range that causes plastic flow, and in particular, a method for manufacturing a member having the same contour as a cavity of a molding material. The present invention relates to a method for forming metal or ceramic members using a press (hereinafter referred to as HIP).

近年、資源的に乏しく高価で且つ加工性の悪いN1基超
合金やT1合金又はセラミックスを塑性加工して最終形
状に近い部材を製造する方法として、恒温鍛造法が特に
航空機産業界で開発され実用に供されている。この方法
は、ビレット状の素材を高温度に加熱し、これと同じ温
度に加熱した耐熱金属性の金型にプレスで押し込み所定
の形状とするものであり、高温強(9)に秀れたN1基
超合金製のガスタービンディスクやT1合金製の遠心圧
縮機用ランナ等を製造するには良い方法であるが、次の
ような欠点を有する。即ち、Ni基超超合金1000〜
1200℃、 Ti合金は800〜950℃の1%温で
加工する必要があり、金型の材質として耐熱性の更に秀
れたMo合金が通常用いられるが、Mo合金は大気雰囲
気中では高温で酸化して昇華するため、製品と金型とを
すべて不活性雰囲気中に配置する必要があり、ハンドリ
ング設備も含め設備全体が非常に大損シで高価なものと
なる。そればかりでなく、低歪速度で加工するので、1
個の製品を製造するのに30分以上の時間を要し、生産
効率が小さく、量産が困難である。
In recent years, isothermal forging has been developed and put into practical use, particularly in the aircraft industry, as a method for manufacturing components close to the final shape by plastically working N1-based superalloys, T1 alloys, or ceramics, which are resource-poor, expensive, and have poor workability. It is served to. This method involves heating a billet-like material to a high temperature and pressing it into a predetermined shape by pressing into a heat-resistant metal mold heated to the same temperature. Although this is a good method for manufacturing gas turbine disks made of N1-base superalloy and centrifugal compressor runners made of T1 alloy, it has the following drawbacks. That is, Ni-based super superalloy 1000~
1200℃, Ti alloy needs to be processed at 1% temperature of 800-950℃, and Mo alloy, which has even better heat resistance, is usually used as the mold material, but Mo alloy cannot be processed at high temperatures in the air. Because it oxidizes and sublimates, it is necessary to place the product and the mold in an inert atmosphere, and the entire equipment, including the handling equipment, becomes extremely expensive and expensive. Not only that, but since it is processed at a low strain rate, 1
It takes more than 30 minutes to manufacture each product, production efficiency is low, and mass production is difficult.

一方、N1基超合金やT1合金は既述の如く高価であり
加工性も良くないため、粉末冶金法により、最終製品の
形状にできるだけ近い素材を製造し、材料歩留まりの向
上や加工費の低減を図る努力がなされつつある。
On the other hand, as mentioned above, N1-based superalloys and T1 alloys are expensive and do not have good workability, so powder metallurgy is used to manufacture materials as close to the shape of the final product as possible, improving material yield and reducing processing costs. Efforts are being made to achieve this goal.

このような粉末冶金法の技術の1つとして近時、H工P
法が脚光を浴びており、現実に前述の恒温鍛造法で加工
する前のビレット状の素材の製造に用いられてψる。従
って、HIP法を用いて前記恒温鍛造法と同様の塑性加
工が実施可能になれば、大損りな恒温鍛造法用の設備を
導入する必゛要がなくなり、設備投資を減少し得るのみ
ならず、又、近年急速に開発されている短サイクル(数
時間/サイクル)のHT5.P装置を利用し、且つ一度
に多数の被処理体をH工P装置中に配置できれば量産も
可能となり、製造コストの大幅な低減が可能となるわけ
である。
As one of such powder metallurgy techniques, H-P
This method has been attracting attention, and is actually used to manufacture billet-shaped materials before being processed using the constant temperature forging method described above. Therefore, if it becomes possible to perform plastic working similar to the isothermal forging method using the HIP method, there will be no need to introduce costly equipment for the isothermal forging method, which will not only reduce capital investment, but also In addition, short cycle (several hours/cycle) HT5. If a P device is used and a large number of objects to be processed can be placed in the H-P device at once, mass production becomes possible, and manufacturing costs can be significantly reduced.

本発明は上述の問題点に鑑み、又、上述の期待効果の実
現を企図して鋭意研究の結果完成されたもので、その特
徴とするところは、耐熱材料からなり且つ少なくとも1
つの開口部を有するキャビティを具えた型と、線型のキ
ャビティ開口部に面して配置され、かつ前記耐熱材料の
軟化点又は分解点温度よりも低い軟化点温度を有するビ
レ・ント状素材とを、高温高田下で塑性変形を起すガス
不透過性材料からなるカプセル内に収容し、カプセルを
密封した後、該カプセル全体に前記型は分解又は塑性変
形を起さないが前記素材が塑性流動を生ずる程度の高温
下で熱間静水圧プレスを施して前記素材をキャビティ内
部へ田太し、キャビティ形状に沿って変形させることに
ある。
The present invention was completed as a result of intensive research in view of the above-mentioned problems and with the aim of realizing the above-mentioned expected effects.
a mold having a cavity having two openings; and a billet-like material disposed facing the linear cavity opening and having a softening point temperature lower than the softening point or decomposition point temperature of the heat-resistant material. , placed in a capsule made of a gas-impermeable material that undergoes plastic deformation under high-temperature Takata, and after sealing the capsule, the mold as a whole does not decompose or undergo plastic deformation, but the material undergoes plastic flow. The method is to apply hot isostatic pressing at a high temperature such that the material is thickened into the cavity and deformed along the shape of the cavity.

以下、本発明方法を添付図面を参照しながら説明する。Hereinafter, the method of the present invention will be explained with reference to the accompanying drawings.

第1図は本発明方法の実施に適用される蟹とビレット状
素材とを収容したカプセルの垂直断面図である。
FIG. 1 is a vertical sectional view of a capsule containing a crab and a billet-like material, which is applied to carry out the method of the present invention.

第2図は第1図のA−A線矢視断面図即ち型の゛ド面図
を示す。
FIG. 2 shows a sectional view taken along line A--A in FIG. 1, that is, a top view of the mold.

第3図〜第5図は本発明方法に用いられる型とビレット
状素材とを収容したカプセルの別の態様を示す垂直断面
図であり、又、第6図は第5図のB−B線矢視断面図で
ある。
3 to 5 are vertical sectional views showing another embodiment of a capsule containing a mold and a billet-like material used in the method of the present invention, and FIG. 6 is a vertical sectional view taken along the line BB in FIG. 5. It is an arrow sectional view.

第7図は、第5図及び第6図に示した実施例によって得
られた部材を示す斜視図である。
FIG. 7 is a perspective view showing the member obtained by the embodiment shown in FIGS. 5 and 6. FIG.

第1図及び第2図において、例えば軟鋼等の金属製のカ
プセル(1)の内部に耐熱性の高強度材料よりなる型(
2)を挿入する。型(2)ハ上方が開口したキャビティ
(4)を具えており、このキャビティ(4)の開口部に
面しそれを閉塞するように円柱状のビレット状素材(3
)を嵌挿配置する。この素材(3)は型(2)を形成す
る耐熱性材料の分解点又は軟化点温度よりも低い軟化点
温度即ち塑性変形可能な温度を有する。
1 and 2, a mold (1) made of a heat-resistant, high-strength material is placed inside a capsule (1) made of metal such as mild steel.
Insert 2). The mold (2) has a cavity (4) which is open at the top, and a cylindrical billet material (3) faces the opening of the cavity (4) and closes it.
) are inserted and arranged. This material (3) has a softening point temperature, that is, a temperature at which it can be plastically deformed, which is lower than the decomposition point or softening point temperature of the heat-resistant material forming the mold (2).

素材(3)とカプセル(1)とは溶接(5)などの手段
により気密に結合され、カプセル(1)内は密封される
The material (3) and the capsule (1) are hermetically joined by means such as welding (5), and the inside of the capsule (1) is sealed.

かくして密封されたカプセルは全体をH工P装置内に装
填し、型(2)は分解又は塑性変形を起さないがカプセ
ル(1)及び素材(3)が塑性変形し得る温度まで昇温
した後、圧媒ガスを圧入し、全体を圧縮する。型(2)
はこの温度、圧力では変形しないため圧力の増大と共に
素材(3)は型(2)のキャビティ(4)に押し込まれ
、キャビティの輪郭に沿った形状に変形され成形加工さ
れる。これをH工P装置から取り出し、カプセル(1)
を機械的に又は化学的に除去して、成形品と型(2)と
を分離するのである。
The entire capsule thus sealed was loaded into the H-P equipment, and the temperature was raised to a temperature at which mold (2) did not decompose or undergo plastic deformation, but capsule (1) and material (3) could undergo plastic deformation. After that, pressurized gas is injected to compress the whole. Type (2)
is not deformed at this temperature and pressure, so as the pressure increases, the material (3) is forced into the cavity (4) of the mold (2), and is deformed and molded into a shape that follows the contour of the cavity. Take this out of the H-P device and create a capsule (1).
The molded article and the mold (2) are separated by mechanically or chemically removing them.

型(2)の材質は、素材(3)の種類およびHIP処理
温度により適宜選択されるが、HIP処理が1000′
C以下の温度で行なわれるときは、アルミナ等の酸化物
セラミックスを使用することもできるが、それ以上の温
度でH工P処理を行なう場合には、窒化珪素で代表され
る窒化物セラミックス。
The material of the mold (2) is appropriately selected depending on the type of material (3) and the HIP treatment temperature.
Oxide ceramics such as alumina can be used when the H-P treatment is carried out at temperatures below Celsius, but nitride ceramics such as silicon nitride are used when the H-P treatment is carried out at temperatures higher than that.

炭化珪素等の炭化物セラミックス、あるいはモリブデン
合金、ウオルフンム合金、黒鉛等が使用できる。カプセ
ル(1)や型(2)の材料′:′とじて金属を用いる場
合には、カプセル(1)と素材(3)、素材(3)と型
(2)。
Carbide ceramics such as silicon carbide, molybdenum alloys, Wolfham alloys, graphite, etc. can be used. Materials for capsule (1) and mold (2): When metal is used for binding, capsule (1) and material (3), material (3) and mold (2).

又はカプセル(1)と型(2)とが界面で拡散接合する
ことがあるので、窒化硼素等を離型剤としてそれらの界
面に予め塗布しておくことが好ましい。
Alternatively, since the capsule (1) and the mold (2) may be diffusion bonded at the interface, it is preferable to apply boron nitride or the like as a mold release agent to the interface in advance.

本発明方法を有利に適用し得るビレット状素材としては
特に限定はなく、N1基超合金、 Ti合金。
The billet-like material to which the method of the present invention can be advantageously applied is not particularly limited, and includes N1-based superalloys and Ti alloys.

Fθ基合金、コバルト、クロム、ウォルフラム、バナジ
ウム、モリブデン等、およびそれらの合金。
Fθ-based alloys, cobalt, chromium, wolfram, vanadium, molybdenum, etc., and alloys thereof.

炭化物や窒化物等のセラミックス等、種々挙げることが
できるが、就中、N1基超合金、 Ti合金及び?e基
合金が特に好ましい。
Various ceramics such as carbides and nitrides can be mentioned, among others, N1-base superalloys, Ti alloys and... Particularly preferred are e-based alloys.

カプセル(1)[H工P処理時の圧媒ガスを内部に侵入
させない役割を果すと共に、圧媒の静水圧を′試料に加
える圧力伝達用隔膜となるものであるから、その材質と
しては加圧下で塑性を示し、処理温度において充分気密
性を保ち、最終段階において、機械的あるいは化学的方
法により型および成形品から容易に除去できる材質が望
ましい。
Capsule (1) [It plays the role of preventing pressure medium gas from entering the interior during H-P processing, and also acts as a pressure transmitting diaphragm that applies the hydrostatic pressure of the pressure medium to the sample. Materials that exhibit plasticity under pressure, are sufficiently airtight at processing temperatures, and can be easily removed from molds and molded articles by mechanical or chemical methods in the final stage are desirable.

かかる観点から、鉄、モリブデン、ニラクル。From this point of view, iron, molybdenum, niracle.

白金等の金属、またはガラスなどが用いられる。Metals such as platinum, glass, etc. are used.

型(2)と素材(3)とカプセル(1)の各材質の組合
せは    1□本発明方法における要点であり、型(
2)を構成する材料はできるだけ耐熱性穴なるものが要
求され、その軟化点温度若しくは分解温度は素材(3)
の軟化点温度すなわち塑性変形乃至は塑性流動を生じ得
る温度よりもはるかに高くなければならず、又、カプセ
ル(1)の材質も素材(3)の軟化点温度で少なくとも
軟化し加圧により塑性変形し得るようなものを選択する
要がある。
The combination of the mold (2), the material (3), and the capsule (1) is the key point in the method of the present invention, and the mold (
The material constituting 2) is required to be as heat-resistant as possible, and its softening point or decomposition temperature is higher than that of the material (3).
The softening point temperature of the capsule (1) must be much higher than the temperature at which plastic deformation or plastic flow can occur, and the material of the capsule (1) at least softens at the softening point temperature of the material (3) and becomes plastic under pressure. It is necessary to choose something that can be transformed.

そのような3者の組合わせの下で、HIP処理を施す際
の温度を、型(2)は分解又は塑性変形を起さないが、
素材(3)が塑性流動を生ずる程度に選定制御すること
が肝要であり、その他のH工P条件・については従来一
般に慣用されている条・件を採用することができる。
Under such a combination of the three, the temperature at which the HIP treatment is performed is such that mold (2) does not decompose or plastically deform;
It is important to select and control the material (3) to such an extent that plastic flow occurs, and for the other H-work P conditions, conventionally commonly used conditions can be adopted.

又、カプセル(1)ハ密封後、H工P処理に付されるが
、カプセル内を脱気しないままにH工P装置a内で昇温
すると、カプセル中に存在する空気中の窒素、酸素等の
ガスは最終的にはビレット状素材に吸収されるが、この
ガス吸収反応、酸化反応等は主として高温領域で生起す
るため、最初の昇湛段諧ではガス吸収反応が殆んど生起
しないまま、カプセル内のガスは温度の上昇に伴なって
膨張し、カプセルは内圧を受けることとなる。例えば常
温で密封を施したカプセルが500〜600℃まで昇温
された状態では、内圧は約3気圧程度となり、加つるに
高温によってカプセルの材料(例えば軟m)の強度が著
しく低下しているため、カプセルはその内圧により膨張
変形し遂には破損するに至り、種々の不都合が生ずる。
In addition, after the capsule (1) is sealed, it is subjected to the H-P treatment, but if the temperature is raised in the H-P apparatus a without degassing the inside of the capsule, nitrogen and oxygen in the air present in the capsule will be removed. These gases are eventually absorbed into the billet-like material, but since these gas absorption reactions, oxidation reactions, etc. mainly occur in high temperature regions, gas absorption reactions hardly occur during the first ascent stage. As the temperature rises, the gas inside the capsule expands and the capsule is subjected to internal pressure. For example, when a sealed capsule at room temperature is heated to 500 to 600 degrees Celsius, the internal pressure will be about 3 atm, and the strength of the capsule material (for example, soft mould) will drop significantly due to the high temperature. As a result, the capsule expands and deforms due to its internal pressure and eventually breaks, causing various inconveniences.

従って、このような場合には昇温と共に昇圧し、上記の
弊害が生じないよう慎重なHIP操作プログラムを設定
する要があり、斯くする。ことによって、最終的にはカ
プセル内のガスはビレット状素材に吸収1され、生成し
た極く僅少の酸化物は実質的に全く品質に悪影響を及ぼ
すことなく、却って好ましい窒化反応を生ずる場合もあ
る。又、成形体表面に酸化物被膜が生成しても、それが
却って型(2)との拡散接合を妨げ、HIP処理後の成
形体の離型を容易にし好ましいこともある。しかしなが
ら、一方、このような酸化物の生成を忌避する場合も多
く、特に複数のビレット状素材を用いて成形と同時に拡
散接合を行なうような場合には、型(2)のキャビティ
(4)の内壁に適宜な凹所を設けてゲッタ材を充填して
おくことは好ましいことである。かかるゲッタ材として
は、カプセル内に残留するガス、特に酸素を昇温状態に
おいても吸収し得る物質であり、チタニウム、ジルコニ
ウム、ニオビウム、珪i、バナジウム、アルミニウム及
びそれらの何れかをt成分とする合金よりなる群の少な
くとも1つの金属からなる箔、細線又は圧粉体が特に好
ましい。
Therefore, in such a case, it is necessary to raise the pressure as well as the temperature and carefully set a HIP operation program so that the above-mentioned adverse effects do not occur. As a result, the gas inside the capsule is eventually absorbed by the billet-like material1, and the extremely small amount of oxide produced has virtually no negative effect on quality, and may even result in a favorable nitriding reaction. . Further, even if an oxide film is formed on the surface of the molded article, it may be preferable because it may actually hinder the diffusion bonding with the mold (2) and facilitate the release of the molded article after the HIP treatment. However, on the other hand, it is often necessary to avoid the formation of such oxides, especially when diffusion bonding is performed at the same time as molding using multiple billet materials. It is preferable to provide a suitable recess in the inner wall and fill it with getter material. The getter material is a substance that can absorb the gas remaining in the capsule, especially oxygen, even at elevated temperatures, and has titanium, zirconium, niobium, silicon, vanadium, aluminum, or any of these as the t component. Particularly preferred are foils, thin wires, or green compacts made of at least one metal from the group consisting of alloys.

このようなゲッタ材をキャビティ(4)に通ずる適宜な
部位に配置した密封カプセルをH工P処理に付すと、湿
度の上昇に伴なって、型(2)や素材(3)の表面に吸
着されていたガス成分はキャピテイ(4)に放出され、
キャビティ(4)内に残存する空気と共にゲッタ材に吸
着されるので、成形体表面に酸化物等の有害な化合物が
形成されることが殆んど防出される。
When a sealed capsule in which such a getter material is placed at an appropriate location communicating with the cavity (4) is subjected to H-P treatment, as the humidity increases, it will be adsorbed to the surface of the mold (2) and the material (3). The gas component that was
Since it is adsorbed by the getter material together with the air remaining in the cavity (4), the formation of harmful compounds such as oxides on the surface of the molded product is almost completely prevented.

しかし乍ら上述の方法では高価なH工P装置を占有する
時間が長くなり(H工P処理のサイクル所要時間が増大
し)、効率が著しく低下するため、HIF処理に先立っ
て予熱炉中で予熱し、HIP処理時間の短縮を図ること
が好ましい。
However, in the above method, the time required to occupy the expensive H-P process increases (the cycle time required for H-P process increases), and the efficiency decreases significantly. It is preferable to preheat to shorten the HIP treatment time.

本発明方法に予熱を適用する場合は、カプセル(1)に
型(2)とビレット状素材(3)とを収容後、密封する
ことなく予熱炉に装入し、窒素ガス等の不活性ガス雰囲
気中で型材質、素材材質等の状況に応じて1000℃〜
1500℃又はそれを1廻る温度に加熱する。
When preheating is applied to the method of the present invention, the mold (2) and the billet material (3) are placed in the capsule (1) and then charged into a preheating furnace without being sealed, and the inert gas such as nitrogen gas is 1000℃~ depending on the mold material, raw material, etc. in the atmosphere
Heat to 1500°C or one degree below.

好ましい予熱温度は、予熱完了後のカプセル密封作業、
H工P装置への装入作業中の冷却を見越して、HIP処
理温度と少なくとも同等かそれを若干越える温度である
。所定の温度までの予熱が完了したならば、カプセル懐
石ちに密封され、H工P処理に付される゛。1このよう
にカプセルが予熱後直ちに密封された状態においては、
例えば約1000℃に予熱された場合、内部ガスの70
〜75%は熱膨張により力、プセルより放出され、内部
残留ガスの量rl′i常温時の25〜30%に減少して
おり、事実上減圧密封した場合と略々同様となり、酸素
による悪影響を最小限に留めることができる。
The preferred preheating temperature is the capsule sealing operation after completion of preheating,
The temperature is at least equal to or slightly higher than the HIP processing temperature in anticipation of cooling during charging into the HIP equipment. Once preheating to a predetermined temperature is completed, the capsule is sealed and subjected to H-processing. 1 In this way, when the capsule is sealed immediately after preheating,
For example, when preheated to about 1000°C, 70% of the internal gas
~75% is released from the force due to thermal expansion, and the amount of internal residual gas rl'i is reduced to 25-30% of normal temperature, which is virtually the same as when sealed under reduced pressure, and the adverse effects of oxygen. can be kept to a minimum.

以上はカプセル(1)中に型(2)及びビレット状素材
(3)全収容して内部を完全に脱気することなく密封し
た後、H工P処理に付する場合を示したが、製品に厳密
な品質水準又は規格が要求される場合は、カプセル(1
)を密封するに先立って内部を略々完全に脱気しあるい
は吸着された水分を除去しておくことが好ましい。例え
ばカプセル(1)に脱気用のパイプを接続し、必要に応
じ昇温しで真空吸引した後、密封するのである。第3図
にそのためのカプセルの例を示・す。
The above example shows the case where the mold (2) and billet material (3) are all housed in the capsule (1), sealed without completely deaerating the inside, and then subjected to the H/P treatment. capsules (1
) It is preferable to substantially completely deaerate the interior or remove adsorbed moisture before sealing the container. For example, a degassing pipe is connected to the capsule (1), the temperature is raised as necessary, vacuum suction is applied, and then the capsule is sealed. Figure 3 shows an example of a capsule for this purpose.

同図において、カプセル(1)は素材(3)を挿入した
後、脱気用のパイプ(7)の付いた蓋(6)を装着し、
溶接(5)により気密構造とする。
In the same figure, after inserting the material (3) into the capsule (1), a lid (6) with a degassing pipe (7) is attached,
The structure is made airtight by welding (5).

全体を昇温すれば、型(2)および素材(3)に吸着さ
れていたガスは放出されると共に水分は蒸発気化する。
When the temperature of the whole is raised, the gas adsorbed on the mold (2) and the material (3) is released and the moisture is evaporated.

その状態でパイプ(7)を図示しない真空ポンプに接続
し、真空吸引した後、パイプ(7)を圧潰。
In this state, the pipe (7) is connected to a vacuum pump (not shown), and after vacuum suction is applied, the pipe (7) is crushed.

鍛接し、余分なパイプを除去して、全体をHIP処理に
付するのである。このような場合は素材(3)は予備焼
結体のような多孔質体であっても充分良質且つ緻密な成
形体を得ることができる。
After forge welding, the excess pipe is removed and the whole is subjected to HIP treatment. In such a case, even if the raw material (3) is a porous body such as a pre-sintered body, a sufficiently high quality and dense molded body can be obtained.

第4図は一体型ガスタービンロータを成形する場合の例
を示したものである。この場合、型は、型(i)および
型(2)の2つの部分を組み合わせて構成される。カプ
セル(1)内に型(25(2ffを挿入し、素材(3)
を嵌挿した後、脱気パイプ(7)の付いた蓋(6)を装
着し、溶接により気密とする。その後は前記第3図の場
合と同1の手順で処理するのである。
FIG. 4 shows an example of molding an integrated gas turbine rotor. In this case, the mold is constructed by combining two parts: type (i) and type (2). Insert the mold (25 (2ff) into the capsule (1) and insert the material (3)
After fitting, the lid (6) with the deaeration pipe (7) is attached and made airtight by welding. After that, the process is carried out in the same procedure as in the case of FIG. 3 above.

第5図及び第6図は、型(i)および(4を組み合わせ
て形成されたキャビティ(4)が上方と2つの側方に向
って開口している場合の例を示す。即ち上方の開口部に
面して、それを閉塞するように素材(3)が配置され、
又、両側方の円形開口部に面してはそれぞれ素材(3)
 (3)が配置されて、全体が方形カプセル(1)内に
収容される。この場合も脱気管(7)から真空吸引を行
ない、内部のガス及び水分等を充分除去した上でカプセ
ルを密封し、H工P処理に付す。
5 and 6 show an example in which the cavity (4) formed by combining the molds (i) and (4) opens upward and toward two sides. That is, the upper opening The material (3) is placed so as to face the part and close it,
Also, facing the circular opening on both sides are the materials (3).
(3) is arranged and the whole is housed within the rectangular capsule (1). In this case as well, vacuum suction is applied through the degassing tube (7) to sufficiently remove internal gas, moisture, etc., and the capsule is sealed and subjected to the H/P treatment.

H工P処理における静水用により上方開口部より圧入さ
れた素材(3)と側方開口部より圧入されたr 〃 素材+8) (3)とはキャビティ(4)の内部で合流
し、それぞれの表面は全く酸化されずに清浄に保たれた
状態で接触するため、良好な拡散接合が行なわれ、全体
に均質且つ緻密な成形体が得られる。
The material (3) press-fitted from the upper opening and the r〃 material +8) (3) press-fitted from the side opening merge inside the cavity (4) due to the static water use in the H engineering P process, and each Since the surfaces contact each other in a clean state without being oxidized at all, good diffusion bonding is achieved and a homogeneous and dense molded body is obtained as a whole.

第7図はこのようにして得られた成形体である。FIG. 7 shows the molded body thus obtained.

本発明方法においてはキャビティの容積に応じてそれに
見合うビレット状素材の体積あるいは重量を予め定めて
おくことにより、概ねキャビティの形状通りの成形体を
一挙に得ることができ、仕上げ加工による手間や成形屑
の発生を最少限に抑えることができる。即ち、高能率性
つ高歩留りを以って高価[つ加工性の悪いN1基超合金
やT1合金あるいはセラミックス等から所望の最終形状
に近い部材を容易に製造することができる。
In the method of the present invention, by predetermining the volume or weight of the billet-like material corresponding to the volume of the cavity, it is possible to obtain a molded product that roughly matches the shape of the cavity at once, reducing the time and effort required for finishing and molding. Generation of waste can be minimized. That is, it is possible to easily manufacture a member having a shape close to a desired final shape from expensive [and poor workability] N1-based superalloys, T1 alloys, ceramics, etc. with high efficiency and high yield.

又、本発明方法によれば、H工P処理で成形を行なうた
め、ビレット製造用その他の1.1的のために設備した
既設のH工P装置をそのまま利用することができ、新た
な設備投資を二切必要とせず、又、H工P炉中に多数の
カプセルを同時に装入して処理すれば、H工P処理サイ
クルの最近の短縮化と相俟って量産も可能となる。斯く
して従来の恒温鍛造法では莫大な設備投資の上、不活性
雰囲気中で類型な操作により、1サイクルで1個宛とい
う非能率な生産方式を全潰なくされていた状況に比し、
本発明により著しい合理化力;達成されるものである。
In addition, according to the method of the present invention, since forming is performed by H-processing, the existing H-processing equipment installed for billet production and other purposes in 1.1 can be used as is, and new equipment can be used. It does not require any investment, and if a large number of capsules are charged and processed in the H-P furnace at the same time, mass production becomes possible in conjunction with the recent shortening of the H-P processing cycle. In this way, compared to the conventional constant temperature forging method, which requires a huge investment in equipment and requires similar operations in an inert atmosphere, the inefficient production system of one piece per cycle has been completely eliminated.
A significant streamlining power is achieved by the present invention.

次に本発明の態様を実施例について述べる。Next, aspects of the present invention will be described with reference to examples.

実施例1 直径105+o+、厚さ80mgのlN−1100素材
を、窒化珪素製の型と共に第3図と同様のカプセル(S
US 304製)にl ’OO0℃に加熱しつつ真空封
入した。これをHIP装置内に入れ、装置内のアルゴン
ガス圧力を50ちとじた後、昇温して1100℃で温度
保持し30分間経過後に、アルゴンガスを徐々に加圧注
入し650類とした。650獅に到達後、2時間保持し
てから降温し減圧した。
Example 1 A capsule (S
(manufactured by US 304) while heating to 0°C. This was placed in a HIP device, and after reducing the argon gas pressure in the device by 50°C, the temperature was raised and maintained at 1100° C. After 30 minutes, argon gas was gradually injected under pressure to obtain 650 class. After reaching 650 l, it was held for 2 hours, then the temperature was lowered and the pressure was reduced.

カプセルfHXP装置から取り出し、旋削にてカプセル
を除去して製品を取り出した。得られた製品の形状はほ
ぼ型易同じ輪郭を有していた。     1実施例2 直径80 m 、厚さ70111IのTl −6At−
4V合金素材を、アルミナ製の型と共に第4回と同様の
カプセル(軟鋼製)に、室温で真空封入した。これをH
工P装置内に入れ、装置内のアルゴンガス圧力を50に
!Aとした後、昇温して930℃で温度保持し30分経
過後にアルゴンガスを加圧注入し、60oyAとした。
The capsule was taken out from the fHXP apparatus, the capsule was removed by turning, and the product was taken out. The shape of the obtained product had almost the same shape and contour. 1 Example 2 Tl-6At- with a diameter of 80 m and a thickness of 70111I
The 4V alloy material was vacuum-sealed at room temperature into the same capsule (made of mild steel) as in the fourth case together with an alumina mold. This is H
Put it into the equipment and set the argon gas pressure inside the equipment to 50! After reaching A, the temperature was raised and maintained at 930° C. After 30 minutes, argon gas was injected under pressure to set the temperature to 60 oyA.

650顎で1時間保持した後、降温し減圧した。実施例
1と同様にしてカプセルを除去した後、製品を取り出し
た。得られた一品の形状はほぼ型と同じ輪郭を有してい
た。
After holding at 650 jaws for 1 hour, the temperature was lowered and the pressure was reduced. After removing the capsules in the same manner as in Example 1, the product was taken out. The shape of the obtained product had almost the same outline as the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に適用される型とビレット状
素材とを収容したカプセルの垂直−■面図、第2図はそ
のA−A線矢視断面°図、第3図〜第5図は本発明方法
に用いられる型とビレット状素材とを収容したカプセル
の別の態様を示す垂直断面図、第e!図は第5図のB−
B線矢視断面図であり、第7図は第5図及び第6図に示
した実施例によって得られた部材を示す斜視図である。 (1)・・・・・・・・・・−カプセル、(2)・・・
・・・・・・・・型。 (3)・・・・・・・・・・、ビレット状素材、 (4
)・・・・・・・キャビティ。
Fig. 1 is a vertical side view of a capsule containing a mold and a billet material applied to the method of the present invention, Fig. 2 is a cross-sectional view taken along the line A-A, and Figs. Figure 5 is a vertical cross-sectional view showing another embodiment of the capsule containing the mold and billet-like material used in the method of the present invention, No. e! The figure is B- in Figure 5.
FIG. 7 is a sectional view taken along the line B, and FIG. 7 is a perspective view showing the member obtained by the embodiment shown in FIGS. 5 and 6. (1)・・・・・・・・・・Capsule, (2)・・・
・・・・・・・・・Type. (3)・・・・・・・・・・Billet-like material, (4
)·······cavity.

Claims (1)

【特許請求の範囲】 1、 耐熱材料からなり且つ少なくとも1つの開[1部
を有するキャビティを具えた型と、該型のキャビティ開
口部に面して配置され且つ前記耐熱材料の軟化点又は分
解点温度よりも低い軟化点温度を有するビレット状素材
とを高温高圧下で塑性変形を起すガス不透過性材料から
なるカプセル内に収容し、カプセルを密封した後、該カ
プセル全体に前記型は分解又は塑性変形を起さないが前
記素材が塑性流動を生ずる程度の高温下で熱間静水上プ
レスを施して前記素材をキャピテイ内部へ工人し、キャ
ビティ形状に沿って変形させることを特徴とする熱間塑
性加工方法。 2、 カプセルを不活性ガス雰囲気中で予熱した後密封
する特許請求の範囲第1項記載の熱間塑性加工方法。 8、 予熱が熱間静水圧プレスの温度と少くとも同程度
の温度に達する進行なわれる特許請求の範囲第2項記載
の熱間塑性加工方法。 4、 カプセルを真空脱気した後密封する特許請求の範
囲第1項記載の熱間塑性加工方法。 5、 真空脱気を昇温状態で行なう特許請求の範囲第4
項記載の熱間塑性加工方法。 6、 ビレット状素材がN1基超合金、T1合金または
lie基合金である前記特許請求の範囲各項の何れ力\
に記載の熱間塑性加工方法。 7、 型がアルミナ、窒化珪素、炭化珪素、モ1ノブデ
ン合金、ウオルフ′ラム合金または黒鉛からなる前記特
許請求の範囲各項の何れかに記載の熱間塑性加工方法。 8、 素材、型、カプセル相互間の界面に窒化硼素を離
型剤として塗布する前記特許請求の範囲各項の何れかに
記載の熱間塑性加工方法。
[Scope of Claims] 1. A mold comprising a cavity made of a heat-resistant material and having at least one opening; A billet material having a softening point temperature lower than the point temperature is placed in a capsule made of a gas-impermeable material that undergoes plastic deformation under high temperature and high pressure, and after the capsule is sealed, the mold is decomposed into the entire capsule. Alternatively, the material is pressed into the cavity by hot isostatic pressing at a high temperature that does not cause plastic deformation but causes plastic flow of the material, and the material is deformed along the shape of the cavity. Inter-plastic processing method. 2. The hot plastic working method according to claim 1, wherein the capsule is sealed after being preheated in an inert gas atmosphere. 8. The hot plastic working method according to claim 2, wherein the preheating is performed to reach a temperature at least comparable to the temperature of hot isostatic pressing. 4. The hot plastic working method according to claim 1, wherein the capsule is sealed after being vacuum degassed. 5. Claim 4 in which vacuum deaeration is performed at elevated temperature
Hot plastic working method described in section. 6. Any of the above claims in which the billet-like material is an N1-based superalloy, a T1-based alloy, or a lie-based alloy.
Hot plastic working method described in. 7. The hot plastic working method according to any one of the claims above, wherein the mold is made of alumina, silicon nitride, silicon carbide, molybdenum alloy, Wolfram alloy, or graphite. 8. The hot plastic working method according to any one of the claims above, wherein boron nitride is applied as a mold release agent to the interface between the material, the mold, and the capsule.
JP57086834A 1982-05-21 1982-05-21 Hot plastic working method Pending JPS58202939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57086834A JPS58202939A (en) 1982-05-21 1982-05-21 Hot plastic working method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57086834A JPS58202939A (en) 1982-05-21 1982-05-21 Hot plastic working method

Publications (1)

Publication Number Publication Date
JPS58202939A true JPS58202939A (en) 1983-11-26

Family

ID=13897836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57086834A Pending JPS58202939A (en) 1982-05-21 1982-05-21 Hot plastic working method

Country Status (1)

Country Link
JP (1) JPS58202939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201705A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Production of sintered powder body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126030A (en) * 1980-03-05 1981-10-02 Kobe Steel Ltd Production of irregular shape metallic articles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126030A (en) * 1980-03-05 1981-10-02 Kobe Steel Ltd Production of irregular shape metallic articles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201705A (en) * 1985-03-01 1986-09-06 Daido Steel Co Ltd Production of sintered powder body

Similar Documents

Publication Publication Date Title
US3700435A (en) Method for making powder metallurgy shapes
US4568516A (en) Method of manufacturing an object of a powdered material by isostatic pressing
US4526747A (en) Process for fabricating parts such as gas turbine compressors
US4851055A (en) Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4808249A (en) Method for making an integral titanium alloy article having at least two distinct microstructural regions
EP0707910B1 (en) Porous metal body and process for producing same
JP2634213B2 (en) Method for producing powder molded article by isostatic press
US4659546A (en) Formation of porous bodies
US4368074A (en) Method of producing a high temperature metal powder component
JPS5839708A (en) Hot hydrostatic pressing method
US4069042A (en) Method of pressing and forging metal powder
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
JPS58202939A (en) Hot plastic working method
JPH01287205A (en) Method for producing object by powder metallurgy
CN111215623B (en) Powder metallurgy densification pressureless sintering method of Ti-Al alloy
JP2535408B2 (en) Hot isostatic pressing apparatus and processing method
JPH03122059A (en) Preparation of powdered ceramic product
CN111283203B (en) Method for promoting blank densification by utilizing hydrogen absorption expansion of titanium-containing material
JPS5888171A (en) Manufacture of high density silicon nitride sintered body
JPS6232241B2 (en)
JP4326110B2 (en) Method for producing Ti-Al intermetallic compound member
CN108927439A (en) A kind of material billow forming processing method based on chemical reaction
KR102605561B1 (en) Canning free hot isostatic pressure powder metallurgy method
JPS585962B2 (en) Hot isostatic pressing method
JPH06330104A (en) Production of core for production member having hollow part and production of member having hollow part