JPH0553756B2 - - Google Patents

Info

Publication number
JPH0553756B2
JPH0553756B2 JP1282928A JP28292889A JPH0553756B2 JP H0553756 B2 JPH0553756 B2 JP H0553756B2 JP 1282928 A JP1282928 A JP 1282928A JP 28292889 A JP28292889 A JP 28292889A JP H0553756 B2 JPH0553756 B2 JP H0553756B2
Authority
JP
Japan
Prior art keywords
compressed
powder
die
agent
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1282928A
Other languages
Japanese (ja)
Other versions
JPH03146476A (en
Inventor
Susumu Mizunuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1282928A priority Critical patent/JPH03146476A/en
Publication of JPH03146476A publication Critical patent/JPH03146476A/en
Publication of JPH0553756B2 publication Critical patent/JPH0553756B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉体材料や鋳込み材料あるいは複合材
料を迅速に高密度圧縮することにより高機能を持
つた各種材料部品を製造する技術分野に属する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention belongs to the technical field of manufacturing various material parts with high functionality by rapidly compressing powder materials, cast materials, or composite materials at high density. .

〔従来の技術〕[Conventional technology]

これらの材料を高密度に圧縮化する技術として
は、HIPや凝HIPが知られている。本発明は凝
HIPの内の一つであるセラコン法の改善に関する
ものである(参考文献:The International
Journal of Powder Metallurgy and Powder
Technology、July、1985)。セラコン法は通常の
プレス機を用い、ダイス内に圧力媒体である高温
に加熱されたセラミツク粒やカーボン粒を充填
し、被圧縮材料である高温に加熱された粉末成形
体や粉末のカプセル充填体を圧力媒体の中心部に
セツトしパンチを下降することにより高温高圧を
かける方法である。
HIP and condensation HIP are known as techniques for compressing these materials to high density. The present invention is
This is related to the improvement of the Ceracon method, which is one of the HIP methods (Reference: The International
Journal of Powder Metallurgy and Powder
Technology, July, 1985). The Ceracon method uses a normal press machine to fill a die with ceramic grains or carbon grains heated to a high temperature as a pressure medium, and then presses the material to be compressed, which is a powder compact or capsule filled body heated to a high temperature. This is a method of applying high temperature and pressure by setting the punch at the center of the pressure medium and lowering the punch.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来法では、ダイス外で加熱された圧力媒体と
被圧縮材料をダイスにセツトするので、被圧縮材
料は加熱、圧縮時とプレス終了から冷却までの間
長時間高温にさらされる。したがつて、アモルフ
アスなどの非平衡組成をもつ材料の高密度化をお
こなうためには、被圧縮材料を高周波加熱した
り、プレス後被圧縮材料を迅速に取り出して冷却
する方法などを工夫しなければならない。また、
高温に加熱した圧力媒体がダイス内面に接触して
おり、ダイスが高温になるのでダイスを冷却する
ためにさまざまな工夫が必要になる。
In the conventional method, the pressure medium heated outside the die and the material to be compressed are set in the die, so the material to be compressed is exposed to high temperatures for a long time during heating and compression and from the end of pressing until cooling. Therefore, in order to increase the density of materials with non-equilibrium compositions such as amorphous amorphous, it is necessary to devise methods such as high-frequency heating of the material to be compressed or methods for quickly removing and cooling the material to be compressed after pressing. Must be. Also,
The heated pressure medium is in contact with the inner surface of the die, and the die becomes hot, so various measures must be taken to cool the die.

本発明は被圧縮材料を短時間で加熱、圧縮、冷
却し、さらにダイスの温度上昇を少なくすること
を目的とするものである。
The object of the present invention is to heat, compress, and cool a material to be compressed in a short time, and further to reduce the temperature rise of a die.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する手段について、種々検討を
おこない、以下のような方法が最適であることが
明らかになつた。すなわち、プレス機に設置され
たダイス内に圧力媒体である粉粒体とともに被圧
縮材料をダイス中心部にセツトし、さらに該被圧
縮材料の外周に加熱剤を配置し、該加熱剤に着火
した後パンチを下降させて被圧縮材料を高温高圧
下で圧縮するのである。加熱剤としてはたとえば
テルミツト系発熱剤を使えばよい。
We have conducted various studies on means to solve the above problems, and it has become clear that the following method is optimal. That is, the material to be compressed is placed in the center of the die together with powder or granules as a pressure medium in a die installed in a press machine, a heating agent is placed around the outer periphery of the material to be compressed, and the heating agent is ignited. The material to be compressed is compressed under high temperature and pressure by lowering the rear punch. As the heating agent, for example, a thermite heating agent may be used.

このようにすると被圧縮材料は急速に加熱され
るが、加熱剤とダイス内面の間の距離を十分とつ
ておけばダイスが高温に加熱されることはない。
また加熱剤近傍の被圧縮材料や圧力媒体は加熱さ
れても、周囲の圧力媒体が冷媒となり被圧縮材料
は加熱圧縮後急速に冷却される。すなわち、この
ような方法により被圧縮材料がきわめて短時間で
加熱圧縮されるとともにダイスも高温にさらされ
ることがない。
In this way, the material to be compressed is heated rapidly, but if a sufficient distance is maintained between the heating agent and the inner surface of the die, the die will not be heated to a high temperature.
Further, even if the material to be compressed and the pressure medium near the heating agent are heated, the surrounding pressure medium serves as a refrigerant and the material to be compressed is rapidly cooled after being heated and compressed. That is, by such a method, the material to be compressed can be heated and compressed in a very short time, and the die is not exposed to high temperatures.

テルミツト系発熱剤は金属酸化物粉末と、金属
や半金属の単体あるいはこれらの合金粉末からな
り、両者の酸化還元反応により発熱する。代表的
な例は、酸化鉄粉末とアルミニウム粉末の組合せ
であるがこの場合は最高到達温度が2000℃以上に
なる。また、酸化鉄と珪素あるいはフエロシリコ
ン粉末の組合せを用いれば、1000℃程度の温度が
得られる。このほか各種の組合せが知られている
ので必要な温度に対応した発熱剤を用いればよ
い。
Thermite-based exothermic agents consist of metal oxide powder and metal or metalloid metal or alloy powder, and generate heat through redox reaction between the two. A typical example is a combination of iron oxide powder and aluminum powder, in which case the maximum temperature reached is 2000°C or higher. Furthermore, if a combination of iron oxide and silicon or ferrosilicon powder is used, a temperature of about 1000°C can be obtained. Since various other combinations are known, it is sufficient to use an exothermic agent that corresponds to the required temperature.

これらの発熱剤は電気火花などにより着火でき
る。したがつてプレス容器上部から圧力媒体内部
の発熱剤に銅線を引き、プレス直前に電気的回路
で火花を発熱剤近傍で発生させれば着火する。
These exothermic agents can be ignited by an electric spark or the like. Therefore, if a copper wire is drawn from the top of the press container to the exothermic agent inside the pressure medium and a spark is generated near the exothermic agent using an electric circuit immediately before pressing, ignition will occur.

なお、着火を容易にするために着火剤を発熱剤
の表面に塗布しておく場合もある。着火剤として
はたとえばアルミニウム+ほう素に酸化剤として
過酸化バリユウムを加えたものなどがよい。
Incidentally, in order to facilitate ignition, an ignition agent may be applied to the surface of the exothermic agent. A suitable ignition agent is, for example, aluminum + boron with barium peroxide added as an oxidizing agent.

〔実施例〕〔Example〕

粒径−100メツシユのSUS304ステンレス球状
粉を20mmφ×20mm高さのステンレス製カプセルに
真空封入したものを被圧縮材料4とした。これを
第1図に示すように内寸100mmφ×100mm高さのダ
イス1内に圧力媒体5および加熱剤6とともに充
填した。圧力媒体5は平均50μmの球状アルミナ
粉+20%グラフアイト粉である。加熱剤6である
テルミツト系発熱剤としては、酸化鉄79.2重量
%、珪素20.8重量%の混合物を冷間プレスで円筒
状に成形したものを使用した。この円筒状加熱剤
6の寸法は外径50mmφ、内径40mmφ、高さ50mmで
ある。なお、着火を容易にするために着火剤とし
て、アルミニウムに少量(5〜30%)のほう素を
加えたものに酸化剤として過酸化バリユウムを加
えたものを主成分とし、さらに約10%の酸化銅、
過酸化ストロンシユウムを混合した粉末を加えた
ものを、加熱剤6の上部表面の一部に乗せた。
Material to be compressed 4 was obtained by vacuum-sealing SUS304 stainless steel spherical powder with a particle size of -100 mesh into a stainless steel capsule with a diameter of 20 mm and a height of 20 mm. This was filled together with a pressure medium 5 and a heating agent 6 into a die 1 having an inner dimension of 100 mmφ and a height of 100 mm as shown in FIG. The pressure medium 5 is spherical alumina powder with an average diameter of 50 μm + 20% graphite powder. As the thermite exothermic agent, heating agent 6, a mixture of 79.2% by weight of iron oxide and 20.8% by weight of silicon was formed into a cylindrical shape by cold pressing. The dimensions of this cylindrical heating agent 6 are an outer diameter of 50 mmφ, an inner diameter of 40 mmφ, and a height of 50 mm. In order to facilitate ignition, the main ingredient is aluminum with a small amount (5 to 30%) of boron added and barium peroxide as an oxidizing agent. copper oxide,
A powder mixed with strontium peroxide was added to a part of the upper surface of the heating agent 6.

着火はピストル型の火打ち石式火花発生器を圧
力媒体上部にもぐらせて火花を上記着火剤の近傍
で発生させることによりおこなつた。
Ignition was accomplished by placing a pistol-type flint-type spark generator above the pressure medium to generate a spark near the ignition agent.

発熱体の温度は着火後約1分で最高温度の1000
℃に達し、約2分間最高温度を保つた後急速に温
度が低下し、10分後には500℃以下となつた。
The temperature of the heating element reaches its maximum temperature of 1000℃ approximately 1 minute after ignition.
℃, and after maintaining the maximum temperature for about 2 minutes, the temperature rapidly decreased to below 500℃ after 10 minutes.

着火後1分後からパンチ2を下降させ約1分間
400tonの圧力をかけた。
1 minute after ignition, lower the punch 2 for about 1 minute.
A pressure of 400 tons was applied.

被圧縮材料4の相対密度はほぼ100%に達して
いた。
The relative density of the compressed material 4 had reached almost 100%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す一部断面概略図
である。 1……ダイス、2……加圧用上パンチ、3……
ノツクアウト用下パンチ、4……被圧縮材料、5
……圧力媒体、6……加熱剤。
FIG. 1 is a partially cross-sectional schematic diagram showing an embodiment of the present invention. 1...Dice, 2...Upper punch for pressurization, 3...
Lower punch for knockout, 4... Material to be compressed, 5
...Pressure medium, 6...Heating agent.

【特許請求の範囲】[Claims]

1 ジルコン粉末に対し、炭化ケイ素短繊維10〜
70重量%を配合した混合物を、非酸化性雰囲気
中、温度1400℃以上、圧力100Kg/cm2以上の条件
で焼結することを特徴とする炭化ケイ素繊維強化
ジルコン複合焼結体の製造方法。
1 zircon powder to silicon carbide short fiber 10~
A method for producing a silicon carbide fiber-reinforced zircon composite sintered body, which comprises sintering a mixture containing 70% by weight at a temperature of 1400° C. or higher and a pressure of 100 kg/cm 2 or higher in a non-oxidizing atmosphere.

JP1282928A 1989-11-01 1989-11-01 Method for compressing material under heating and high pressure in die Granted JPH03146476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1282928A JPH03146476A (en) 1989-11-01 1989-11-01 Method for compressing material under heating and high pressure in die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282928A JPH03146476A (en) 1989-11-01 1989-11-01 Method for compressing material under heating and high pressure in die

Publications (2)

Publication Number Publication Date
JPH03146476A JPH03146476A (en) 1991-06-21
JPH0553756B2 true JPH0553756B2 (en) 1993-08-10

Family

ID=17658930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282928A Granted JPH03146476A (en) 1989-11-01 1989-11-01 Method for compressing material under heating and high pressure in die

Country Status (1)

Country Link
JP (1) JPH03146476A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247775A (en) * 1993-02-19 1994-09-06 Yoshio Miyamoto Gas pressure combustion sintering method

Also Published As

Publication number Publication date
JPH03146476A (en) 1991-06-21

Similar Documents

Publication Publication Date Title
KR100187877B1 (en) Method and apparatus for heating metal powders
US3356496A (en) Method of producing high density metallic products
US3689259A (en) Method of consolidating metallic bodies
US4810289A (en) Hot isostatic pressing of high performance electrical components
JPS62238344A (en) Mechanical alloying method
JPH0336490A (en) Equilateral press and equilateral press method therefor in microwave heating
US6344169B2 (en) Method for compaction of powders for powder metallurgy
US4069042A (en) Method of pressing and forging metal powder
US2884688A (en) Sintered ni-al-zr compositions
JPS646241B2 (en)
US3728111A (en) Method of manufacturing billets from powder
JPH0553756B2 (en)
US3352951A (en) Method for induction sintering refractory carbide articles
JP2762225B2 (en) Spark plasma sintering method and apparatus
EP0011981B1 (en) Method of manufacturing powder compacts
JP3168630B2 (en) Manufacturing method of electrode material
US4704252A (en) Isostatic hot forming of powder metal material
EP0062400B1 (en) Forming high-density carbon material by hot pressing
US2964400A (en) Method of and apparatus for making articles from powdered metal briquets
JP4475615B2 (en) Spark plasma sintering method and apparatus
US4131460A (en) Method of producing a sintered composition
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure
RU2101135C1 (en) Device for hot-molding of conducting powders
JPH04198402A (en) Production and apparatus for magnet element
RU2161084C1 (en) Method for making large-size semifinished product of powder and age-hardened composition materials