JPH075367A - Infrared microscope - Google Patents

Infrared microscope

Info

Publication number
JPH075367A
JPH075367A JP19162792A JP19162792A JPH075367A JP H075367 A JPH075367 A JP H075367A JP 19162792 A JP19162792 A JP 19162792A JP 19162792 A JP19162792 A JP 19162792A JP H075367 A JPH075367 A JP H075367A
Authority
JP
Japan
Prior art keywords
aperture
image
sample
optical system
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19162792A
Other languages
Japanese (ja)
Inventor
Shiro Tsuji
史郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19162792A priority Critical patent/JPH075367A/en
Publication of JPH075367A publication Critical patent/JPH075367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To simplify structure, to simultaneously observe entire visual field and the position of a masking aperture, and to reduce the deterioration of an image by synthesizing the image of a sample which does not pass through the aperture and the image of the aperture to be in the same positional relation as in the case of infrared measurement. CONSTITUTION:The image of the sample S is formed at the position of the aperture 2 by an objective optical system 5, and in the case of measurement by visual observation, simultaneously, the image is also formed on an image surface I by a half mirror 3 arranged halfway and transmitted to an optical system 7 for visual observation. The image of the aperture 2 is superposed on the image of the sample S so as to be observed in the optical system 7. Since illumination for the aperture 2 is independent of illumination for a sample in the optical system 7, the color of the illumination for the aperture is changed by interposing a filter, or the image of the aperture may be colored by coloring the edge or the whole of the aperture 2 and the back of a mirror 4. Then, the synthetic image is easily changed in accordance with the kind of the sample S, and the image of the aperture is easily discriminated from the image of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小な異物の同定など
に用いる赤外顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared microscope used for identifying minute foreign matters.

【0002】[0002]

【従来の技術】顕微赤外測定装置の一般的構造を図4に
示す。干渉計からの赤外光は、透過測定か反射測定かに
よって、透過/反射切替ミラー80で、透過照明光学系
か反射照明光学系かに光路を切替え、コンデンサー6若
しくは対物光学系5によって集光され、試料を照射す
る。試料を透過(反射)した赤外光は対物光学系5で集
められ、MTC検出器85に導かれている。分析に当た
っては、試料像を可視光で観察しながら、試料中の分析
領域を決める。分析を行う場合、分析領域外の光が測定
系に入らないようにするために、可変型マスキングアパ
ーチャー1を使用して分析領域の大きさに合わせてマス
キングする必要があるが、試料のマスキングアパーチャ
ーでマスクされた部分は見えないため、分析領域にアパ
ーチャーの大きさを合わせることが難しく、アパーチャ
ーが分析領域内に侵入した状態、つまりアパーチャーを
狭く設定し過ぎると言う問題があった。そこで、マスキ
ングアパーチャーの前で光路を2つに分け、アパーチャ
ーを通った光と、通らない光をもう1度合成することに
より、視野全体とアパーチャーを同時に見ることを可能
とする提案もあるが、この方法では、アパーチャーでマ
スクされた試料の像と、アパーチャーでマスクされない
像を重ねているために、光路が複雑となることに加え、
試料の測定しようとする部分(マスクされない部分)で
は、同じ像が2つ重ね合わせられることとなるため、わ
ずかな光軸のずれにより測定しようとする部分の像が著
しく劣化し、目視観察に不便となると言う問題があっ
た。
2. Description of the Related Art A general structure of a microscopic infrared measuring device is shown in FIG. The infrared light from the interferometer is switched between a transmission illumination optical system and a reflection illumination optical system by a transmission / reflection switching mirror 80 depending on whether it is a transmission measurement or a reflection measurement, and is condensed by a condenser 6 or an objective optical system 5. And illuminate the sample. The infrared light transmitted (reflected) through the sample is collected by the objective optical system 5 and guided to the MTC detector 85. In analysis, the analysis region in the sample is determined while observing the sample image with visible light. When performing analysis, in order to prevent light outside the analysis region from entering the measurement system, it is necessary to use the variable masking aperture 1 for masking according to the size of the analysis region. Since the part masked by is not visible, it is difficult to match the size of the aperture with the analysis region, and there is a problem that the aperture enters the analysis region, that is, the aperture is set too narrow. Therefore, there is also a proposal that it is possible to see the entire field of view and the aperture at the same time by dividing the optical path in front of the masking aperture and combining the light that passed through the aperture and the light that does not pass through it again. In this method, since the image of the sample masked by the aperture and the image not masked by the aperture are superimposed, the optical path becomes complicated,
At the part of the sample to be measured (the part that is not masked), the same two images will be superimposed, so the image of the part to be measured will be significantly deteriorated by a slight deviation of the optical axis, which is inconvenient for visual observation. There was a problem that

【0003】[0003]

【発明が解決しようとする課題】構造が簡単で、かつ視
野全体とマスキングアパーチャーの位置とを同時観察が
でき、しかも、像の劣化が少ない赤外顕微鏡を提供する
ことを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an infrared microscope having a simple structure, capable of simultaneously observing the entire field of view and the position of the masking aperture, and having little image deterioration.

【0004】[0004]

【課題を解決するための手段】赤外顕微鏡において、測
定光軸上に開口部を有するアパーチャーと、測定光軸上
に出入自在に設けられた同アパーチャーの照射用可視光
源と、上記アパーチャーと対物光学系との間に測定光軸
上に斜めに出入自在に設けられたハーフミラーと、測定
光軸外に設けた凹面鏡と、測定光軸に対して同凹面鏡と
反対側に設けた可視観察用光学系を有し、上記凹面鏡に
よってアパーチャーの可視像を可視観察用光学系の光軸
上に形成させ、アパーチャーを通らない試料の顕微鏡像
とアパーチャーの像を、可視観察用光学系の光軸上に形
成して、両者を赤外測定時と同じ位置関係になるように
合成し、アパーチャーでマスクされた部分の像も観察し
ながら、アパーチャーの大きさを調整できるようにし
た。
In an infrared microscope, an aperture having an opening on the measurement optical axis, a visible light source for irradiation of the aperture provided on the measurement optical axis so that the aperture can freely move in and out, the aperture and the objective. A half mirror that is installed diagonally between the optical system and the measurement optical axis, a concave mirror that is provided outside the measurement optical axis, and a visible observation that is provided on the opposite side of the measurement optical axis from the concave mirror. It has an optical system, and the visible image of the aperture is formed on the optical axis of the visible observation optical system by the concave mirror, and the microscope image of the sample and the image of the aperture that do not pass through the aperture are the optical axis of the visible observation optical system. They were formed on top of each other, and they were combined so as to have the same positional relationship as during infrared measurement, and the size of the aperture could be adjusted while observing the image of the part masked by the aperture.

【0005】[0005]

【作用】アパーチャーを通らない試料の像とアパーチャ
ーだけの像とを、ハーフミラーを使って合成することに
より同時に見えるようにすることで、試料像の二重性が
なくなり、試料像においてアパーチャーがマキシングし
ている領域を正確に視認することができるようになっ
た。しかも、アパーチャーの像と試料の像とが独立して
いるため、アパーチャー用照明光の色や光量,照射場所
を変えたり、アパーチャーの縁や全体に着色したり、フ
ィルターを入れる等の方法により、試料の種類に合わせ
て観察用合成像を、測定しようとする部分が一番はっき
り見えるように容易に変えることができる。
[Function] By combining the image of the sample that does not pass through the aperture and the image of only the aperture with a half mirror so that they can be seen at the same time, the duality of the sample image is eliminated and the aperture is mixed in the sample image. You can now see the area you are in. Moreover, since the image of the aperture and the image of the sample are independent, the color and amount of illumination light for the aperture, the irradiation location, the edge of the aperture and the whole, and the filter can be used. The composite image for observation can be easily changed according to the type of sample so that the portion to be measured can be seen most clearly.

【0006】[0006]

【実施例】図1に本発明の一実施例における透過測定モ
ードで可視観察をする場合の光学系配置図を示す。図1
において、Sは試料、1は可視光を照射する可視観察用
光源で、可変マスキングアパーチャー2を照射してい
る。このアパーチャー2は測定光学系の光軸上で試料像
の位置に置かれている。可変マスキングアパーチャー2
は、開口部の大きさを変化させることができる。3はハ
ーフミラー、4は凹面鏡であり、その曲率中心は可変マ
スキングアパーチャー2の開口中心とハーフミラー3の
鏡面に対して対称な位置(像面Iの位置)にあり、光源
8で照明された可変マスキングアパーチャー2の像が、
その像面Iに結像され、可視観察用光学系7に送られ
る。6はコンデンサーで光源(不図示)からの光を試料
Sに集光する。5は対物光学系で、試料Sの像をアパー
チャー2の位置に結像させるが、同時に可視観察測定時
では、途中に配置されたハーフミラー3により、像面I
にも結像され、可視観察用光学系7に送られ、可視観察
用光学系7において、アパーチャー2像が試料S像と重
畳して観察できる。ハーフミラー3は可動式で、必要に
応じて光軸上に出入される。可視観察用光学系7におい
て、アパーチャー像が試料像とより識別されるように照
明する方が良いが、アパーチャー2の照明は、試料照明
と独立しているので、フィルターを介在させて、アパー
チャー用照明の色を変えたり、アパーチャーの縁や全
体,ミラー4の裏に着色して、アパーチャー像を着色し
ても良く、試料の種類に合わせて合成像を容易に変える
ことができ、アパーチャー像と試料像とが識別し易くな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a layout diagram of an optical system for visible observation in a transmission measurement mode according to an embodiment of the present invention. Figure 1
In the figure, S is a sample, 1 is a visible light source for irradiating visible light, and irradiates the variable masking aperture 2. This aperture 2 is placed at the position of the sample image on the optical axis of the measurement optical system. Variable masking aperture 2
Can change the size of the opening. Reference numeral 3 is a half mirror, and 4 is a concave mirror, and the center of curvature thereof is located at a position symmetrical to the center of the aperture of the variable masking aperture 2 and the mirror surface of the half mirror 3 (position of image plane I), and illuminated by the light source 8. The image of the variable masking aperture 2
An image is formed on the image plane I and sent to the visible observation optical system 7. A condenser 6 condenses light from a light source (not shown) on the sample S. An objective optical system 5 forms an image of the sample S at the position of the aperture 2, and at the same time, at the time of visible observation measurement, the half mirror 3 disposed in the middle causes an image plane I
Is also imaged and sent to the visible observation optical system 7, and in the visible observation optical system 7, the aperture 2 image and the sample S image can be superimposed and observed. The half mirror 3 is movable, and is moved in and out along the optical axis as needed. In the visible observation optical system 7, it is better to illuminate the aperture image so as to be more discriminated from the sample image. However, since the illumination of the aperture 2 is independent of the sample illumination, a filter is used to intervene for the aperture. The aperture image may be colored by changing the color of illumination, coloring the edge or the whole of the aperture, or the back of the mirror 4, and the composite image can be easily changed according to the type of sample. It becomes easy to distinguish from the sample image.

【0007】図2は透過測定モードで測定時の光学系配
置図で、可視観察用光源1を光軸上から退避させ、赤外
検出用光学系8をその跡に進出させ、ハーフミラー3を
光軸上から外し、試料像が赤外検出用光学系8に導入さ
れるようにする。下方の光源(不図示)からは赤外光が
照射され、コンデンサー6で試料Sに集光され、試料S
を透過した光即ち試料透過像が、対物光学系5でアパー
チャー2の配置してある対物像面に結像され、アパーチ
ャー2で視野が制限された後、赤外検出用光学系8に導
かれる。
FIG. 2 is an optical system layout diagram during measurement in the transmission measurement mode. The visible light source 1 is retracted from the optical axis, the infrared detection optical system 8 is advanced to the mark, and the half mirror 3 is moved. The sample image is removed from the optical axis so that the sample image is introduced into the infrared detection optical system 8. Infrared light is emitted from a lower light source (not shown) and is condensed on the sample S by the condenser 6,
The light transmitted through the sample, that is, the sample transmission image is imaged by the objective optical system 5 on the objective image plane where the aperture 2 is arranged, and after the field of view is limited by the aperture 2, it is guided to the infrared detection optical system 8. .

【0008】測定と可視観察との切換えに当り、上述し
たように、可視観察用光源1と赤外検出用光学系8との
位置を交代させる代わりに、図3に示すように、測定光
学系の光軸上に45°の傾きで、全反射ミラー9を出入
させるようにしてもよい。また、上述説明は透過測定の
場合についてのみ行ったが、図3に示すように、対物光
学系5とハーフミラー3との間に反射測定時の試料照明
光導入用のハーフミラー10を挿入することで、試料照
明光を対物光学系5により試料S上に集光し、試料Sか
らの反射光を対物光学系5、ハーフミラー10を通し、
上述した所を同様にして観察測定することができる。
When switching between measurement and visible observation, as described above, instead of changing the positions of the light source 1 for visible observation and the optical system 8 for infrared detection, as shown in FIG. The total reflection mirror 9 may be moved in and out at an inclination of 45 ° on the optical axis of. Although the above description was given only in the case of the transmission measurement, as shown in FIG. 3, the half mirror 10 for introducing the sample illumination light during the reflection measurement is inserted between the objective optical system 5 and the half mirror 3. Thereby, the sample illumination light is condensed on the sample S by the objective optical system 5, and the reflected light from the sample S is passed through the objective optical system 5 and the half mirror 10,
The above-mentioned place can be observed and measured in the same manner.

【0009】[0009]

【発明の効果】本発明によれば、アパーチャーを通らな
い試料の像とアパーチャーの像とを、赤外測定時と同じ
位置関係となるように合成することにより、マキシング
アパーチャーを試料の大きさに合わせることや、視野全
体に対する測定部分の位置を知ることが容易に行える。
しかも、構造が簡単で、わずかな光軸のずれによる試料
の像の劣化もない。更に、フィルター等を用いることに
より、試料の像とアパーチャーの像を独立して変化さ
せ、試料ごとに最も観察しやすい合成像を得ることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, the image of the sample that does not pass through the aperture and the image of the aperture are synthesized so as to have the same positional relationship as in the infrared measurement, so that the maxin guar aperture can be adjusted to the size of the sample. It is easy to match and to know the position of the measurement part with respect to the entire visual field.
Moreover, the structure is simple, and the image of the sample is not deteriorated by a slight deviation of the optical axis. Furthermore, by using a filter or the like, the image of the sample and the image of the aperture can be changed independently, and a combined image that is most observable can be obtained for each sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の透過観察モードにおける光
学系配置図
FIG. 1 is a layout diagram of an optical system in a transmission observation mode according to an embodiment of the present invention.

【図2】本発明の一実施例の透過測定モードにおける光
学系配置図
FIG. 2 is a layout diagram of an optical system in a transmission measurement mode according to an embodiment of the present invention.

【図3】従来例の構成図FIG. 3 is a block diagram of a conventional example

【符号の説明】[Explanation of symbols]

S 試料 I 像面 1 可視観察用光源 2 可変マキシングアパーチャー 3 ハーフミラー 4 球面鏡 5 対物光学系 6 コンデンサ光学系 7 可視観察用光学系 S Sample I Image plane 1 Visual observation light source 2 Variable maxine aperture 3 Half mirror 4 Spherical mirror 5 Objective optical system 6 Condenser optical system 7 Visible observation optical system

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月9日[Submission date] November 9, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の透過観察モードにおける光
学系配置図
FIG. 1 is a layout diagram of an optical system in a transmission observation mode according to an embodiment of the present invention.

【図2】本発明の一実施例の透過測定モードにおける光
学系配置図
FIG. 2 is a layout diagram of an optical system in a transmission measurement mode according to an embodiment of the present invention.

【図3】本発明の別実施例の光学系配置図FIG. 3 is a layout view of an optical system according to another embodiment of the present invention.

【図4】従来例の構成図FIG. 4 is a block diagram of a conventional example

【符号の説明】 S 試料 I 像面 1 可視観察用光源 2 可変マキシングアパーチャー 3 ハーフミラー 4 球面鏡 5 対物光学系 6 コンデンサ光学系 7 可視観察用光学系[Explanation of Codes] S Sample I Image plane 1 Light source for visible observation 2 Variable maxine aperture 3 Half mirror 4 Spherical mirror 5 Objective optical system 6 Condenser optical system 7 Visible observation optical system

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定光軸上に開口部を有するアパーチャー
と、測定光軸上に出入自在に設けられた同アパーチャー
の照射用可視光源と、上記アパーチャーと対物光学系と
の間に測定光軸上に斜めに出入自在に設けられたハーフ
ミラーと、測定光軸外に設けた凹面鏡と、測定光軸に対
して同凹面鏡と反対側に設けた可視観察用光学系を有
し、上記凹面鏡によってアパーチャーの可視像を可視観
察用光学系の光軸上に形成させ、アパーチャーを通らな
い試料の顕微鏡像とアパーチャーの像を、可視観察用光
学系の光軸上に形成して、両者を赤外測定時と同じ位置
関係になるように合成し、アパーチャーでマスクされた
部分の像も観察しながら、アパーチャーの大きさを調整
できるようにしたことを特徴とする赤外顕微鏡。
1. An aperture having an opening on the measurement optical axis, a visible light source for irradiation of the aperture provided on the measurement optical axis so as to be able to move in and out, and a measurement optical axis between the aperture and the objective optical system. It has a half mirror that can be slanted in and out above, a concave mirror that is provided outside the measurement optical axis, and a visible observation optical system that is provided on the opposite side of the measurement optical axis from the concave mirror. A visible image of the aperture is formed on the optical axis of the visible observation optical system, and a microscope image of the sample that does not pass through the aperture and an image of the aperture are formed on the optical axis of the visible observation optical system. An infrared microscope characterized in that the size of the aperture can be adjusted while observing the image of the part masked by the aperture, which was synthesized so as to have the same positional relationship as during external measurement.
JP19162792A 1992-06-25 1992-06-25 Infrared microscope Pending JPH075367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19162792A JPH075367A (en) 1992-06-25 1992-06-25 Infrared microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19162792A JPH075367A (en) 1992-06-25 1992-06-25 Infrared microscope

Publications (1)

Publication Number Publication Date
JPH075367A true JPH075367A (en) 1995-01-10

Family

ID=16277794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19162792A Pending JPH075367A (en) 1992-06-25 1992-06-25 Infrared microscope

Country Status (1)

Country Link
JP (1) JPH075367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082950A (en) * 2006-09-28 2008-04-10 Olympus Corp Microspectroscopic system
JP2008286584A (en) * 2007-05-16 2008-11-27 Otsuka Denshi Co Ltd Optical characteristic measuring device and focus adjusting method
JP2008286583A (en) * 2007-05-16 2008-11-27 Otsuka Denshi Co Ltd Optical characteristic measuring device and measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082950A (en) * 2006-09-28 2008-04-10 Olympus Corp Microspectroscopic system
JP2008286584A (en) * 2007-05-16 2008-11-27 Otsuka Denshi Co Ltd Optical characteristic measuring device and focus adjusting method
JP2008286583A (en) * 2007-05-16 2008-11-27 Otsuka Denshi Co Ltd Optical characteristic measuring device and measuring method
KR101423339B1 (en) * 2007-05-16 2014-07-24 오츠카 일렉트로닉스 가부시키가이샤 Optical characteristic mesuring apparatus using light reflected from object to be measured and focus adjusting method therefor

Similar Documents

Publication Publication Date Title
US6633375B1 (en) Method and device for optically examining structured surfaces of objects
JP3577164B2 (en) Lighting device and color / shape measuring device
US6618154B2 (en) Optical measurement arrangement, in particular for layer thickness measurement
US5241362A (en) Microscopic spectrometer with auxiliary imaging system
JPH075367A (en) Infrared microscope
US5301007A (en) Microscopic spectrometer
JPH08145888A (en) Fluorescence calorimeter
US4017147A (en) Comparison microscope
US4269517A (en) Microscope for quantitative determination of substance in specimen
JP2575981B2 (en) Infrared microscope
JP3872856B2 (en) Fluorescence microscope
US4364646A (en) Position adjusting device for ophthalmologic instrument
JPH0894518A (en) Infrared microscope
JPH05340869A (en) Thin film measuring instrument
JPH0486614A (en) Illuminating device for microscope
JPH0618410A (en) Infrared micromeasuring device
JPH0524203Y2 (en)
JPH02206426A (en) Method and apparatus for analyzing surface hue of skin
JP2797987B2 (en) Infrared microscope
GB2357158A (en) Inspecting objects with multi-wavelength ultraviolet radiation
JPH08106051A (en) Vertical illuminating device for microscope
JPH04318550A (en) Defect inspecting device
JPH0572120A (en) Infrared microscopic measuring device
JPH06229933A (en) Observation method
JP2505776B2 (en) Optical device