JPH04318550A - Defect inspecting device - Google Patents

Defect inspecting device

Info

Publication number
JPH04318550A
JPH04318550A JP3110723A JP11072391A JPH04318550A JP H04318550 A JPH04318550 A JP H04318550A JP 3110723 A JP3110723 A JP 3110723A JP 11072391 A JP11072391 A JP 11072391A JP H04318550 A JPH04318550 A JP H04318550A
Authority
JP
Japan
Prior art keywords
phase shift
light
illumination
transmitted
epi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3110723A
Other languages
Japanese (ja)
Inventor
Kazumasa Endo
一正 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3110723A priority Critical patent/JPH04318550A/en
Publication of JPH04318550A publication Critical patent/JPH04318550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a defect inspecting device for a phase shift mask whose phase shift part and transparent part are easily discriminated. CONSTITUTION:A downward lighting system and a transmission lighting system are provided with light sources 11 and 21, aperture stops 12 and 22, wavelenght selection filters 13 and 23, and lens systems respectively. The wavelength of downward illumination light is selected so as to meet conditions under which the phase shift part is seen brightly by interference between reflected light beams from the top surface and reverse surface of a phase shift film and the wavelength of transmitted illumination light is selected so as to satisfy conditions under which the phase shift part is seen darkly. The transmitted light and/or reflected light from the mask passes through an objective lens 2 to form a pattern image on an image pickup element 4. The signal from the image pickup element 4 is compared by a comparing circuit with design data, etc., to discriminate whether or not there is a defect. Further, the pattern image is displayed even on a monitor 10 and a light shield part, the phase shift part, and the transparent part are seen in different colors in the presence of both downward lighting and transmission lighting.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体素子製造のリソ
グラフィ工程において、被投影原版として用いられるフ
ォトマスク(レチクルとも言う)の欠陥を検査するため
の装置に関し、特に、透過光の位相を変化させる位相シ
フト部(または位相シフタ部とも言う。以下位相シフト
部と称する。)を備えた位相シフトマスクの検査に適す
る欠陥検査装置に関するものである。
[Industrial Field of Application] The present invention relates to an apparatus for inspecting defects in a photomask (also called a reticle) used as a projection master in a lithography process for manufacturing semiconductor devices, and in particular, it relates to an apparatus for inspecting defects in a photomask (also called a reticle) used as a projection original in a lithography process for manufacturing semiconductor devices. The present invention relates to a defect inspection apparatus suitable for inspecting a phase shift mask equipped with a phase shift section (also referred to as a phase shift section; hereinafter referred to as a phase shift section) that allows the phase shift section to move.

【0002】0002

【従来の技術】半導体素子製造のリソグラフィ工程にお
いて、被投影原版として用いられるフォトマスクは、一
般には露光光に対してほぼ透明なガラス基板上にクロム
等の金属からなる遮光パターンが形成された構造をなし
ており、遮光部と透明部だけから構成されていた。
[Prior Art] A photomask used as a projection master in the lithography process of semiconductor device manufacturing generally has a structure in which a light-shielding pattern made of a metal such as chromium is formed on a glass substrate that is almost transparent to exposure light. It consisted of only a light-shielding part and a transparent part.

【0003】このようなフォトマスクの欠陥検査は、フ
ォトマスクの投影像を検出して、投影像の明暗分布が所
定の明暗分布となっているか否かを比較判断する方法が
採用されている。具体的には、フォトマスク投影像の検
出信号(光電検出信号)を磁気テープに格納されている
パターン設計データと比較したり、あるいは2つのフォ
トマスクについてそれぞれの投影像を比較する(いわゆ
る、die−to−die)ことにより、欠陥検出が行
なわれる。
[0003] In such photomask defect inspection, a method is adopted in which a projected image of the photomask is detected and a comparison is made to determine whether the brightness distribution of the projected image is a predetermined brightness/darkness distribution. Specifically, the detection signal (photoelectric detection signal) of a photomask projected image is compared with pattern design data stored on a magnetic tape, or the projected images of two photomasks are compared (so-called die -to-die), defect detection is performed.

【0004】一方、近年、回路パターンの微細化に対応
するために、フォトマスクの特定の箇所に透過光の位相
を変化させる位相シフト膜を付加し、投影像のコントラ
ストを高める位相シフトマスクが種々提案されている。 例えば、特公昭62−50811号公報には、空間波長
変調法の位相シフトマスクに関する技術が開示されてい
る。
On the other hand, in recent years, in order to cope with the miniaturization of circuit patterns, various phase shift masks have been developed in which a phase shift film is added to specific parts of a photomask to change the phase of transmitted light, thereby increasing the contrast of the projected image. Proposed. For example, Japanese Patent Publication No. 62-50811 discloses a technique related to a phase shift mask using spatial wavelength modulation.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
欠陥検査装置においては、透明部と遮光部の他に位相シ
フト部を備えた位相シフトマスクの検査を行なうに際し
、次のような問題点があった。この点について図2,図
3を参照して説明する。
[Problems to be Solved by the Invention] However, conventional defect inspection equipment has the following problems when inspecting a phase shift mask that has a phase shift part in addition to a transparent part and a light shielding part. Ta. This point will be explained with reference to FIGS. 2 and 3.

【0006】図2(a) ,(b) において、露光光
に対してほぼ透明な基板30上には、位相シフト膜32
が付加され、位相シフト部101が形成されている。な
お、基板30表面に設けられた膜31は、電子ビームを
用いて露光する場合等に設けられる導電膜であり、この
導電膜31も露光光に対して透明である。
In FIGS. 2A and 2B, a phase shift film 32 is disposed on a substrate 30 that is substantially transparent to exposure light.
is added to form a phase shift section 101. Note that the film 31 provided on the surface of the substrate 30 is a conductive film provided when exposing using an electron beam, and this conductive film 31 is also transparent to exposure light.

【0007】図2(a) ,(b) の位相シフトマス
クを透過照明すると、透過光の光強度分布は図2(c)
 に示されるように、透明部100と位相シフト部10
1とでほぼ同等の光強度となり、両者の境界で光強度が
落ち込むことになる。即ち、位相シフト部101の輪郭
に沿った暗線は認識できても、位相シフト部101と透
明部100の判別は困難である。
When the phase shift masks shown in FIGS. 2(a) and 2(b) are transmitted through illumination, the light intensity distribution of the transmitted light is as shown in FIG. 2(c).
As shown, a transparent part 100 and a phase shift part 10
1, the light intensity is almost the same, and the light intensity drops at the boundary between the two. That is, even if the dark line along the outline of the phase shift section 101 can be recognized, it is difficult to distinguish between the phase shift section 101 and the transparent section 100.

【0008】また、図3(a) ,(b) において、
表面に導電膜31を備えた基板30上には、所定の間隔
をおいて遮光膜(遮光部)33(図では3つの遮光部を
示す)が設けられており、中央の遮光部33と紙面左側
の遮光部33の間には両遮光部33に又がるように位相
シフト部201が設けられ、紙面右側の遮光部33との
間は位相シフト膜のない透明部200となっている。
[0008] Also, in FIGS. 3(a) and 3(b),
On the substrate 30 having a conductive film 31 on its surface, light-shielding films (light-shielding parts) 33 (three light-shielding parts are shown in the figure) are provided at predetermined intervals, and the light-shielding part 33 in the center and the paper surface A phase shift portion 201 is provided between the light shielding portions 33 on the left side so as to span both light shielding portions 33, and a transparent portion 200 without a phase shift film is provided between the light shielding portion 33 on the right side of the paper.

【0009】図3(a) ,(b) の位相シフトマス
クを透過照明した場合の光強度分布は、図3(c) の
ようになる。 即ち、遮光部33に対応する部分では光強度は零となり
、透明部200,位相シフト部201ではほぼ同等の光
強度となる。この場合、位相シフト部201の輪郭は遮
光部33上にあるので、図2(c) のように位相シフ
ト部201の輪郭に沿った暗線さえ認識できず、透明部
200と位相シフト部201は全く判別できない。
The light intensity distribution when the phase shift masks shown in FIGS. 3(a) and 3(b) are transmitted and illuminated is as shown in FIG. 3(c). That is, the light intensity is zero in the portion corresponding to the light shielding portion 33, and the light intensity is approximately the same in the transparent portion 200 and the phase shift portion 201. In this case, since the outline of the phase shift part 201 is on the light shielding part 33, even the dark line along the outline of the phase shift part 201 as shown in FIG. 2(c) cannot be recognized, and the transparent part 200 and the phase shift part 201 are I can't tell at all.

【0010】従って、従来の欠陥検査装置では、位相シ
フト部の形状や位相シフト部の透明部,遮光部に対する
相対位置等の検査を含む位相シフトマスクの検査を行な
うことは不可能である。
Therefore, with the conventional defect inspection apparatus, it is impossible to inspect the phase shift mask, including inspection of the shape of the phase shift part, the transparent part of the phase shift part, the relative position with respect to the light shielding part, etc.

【0011】この発明は、かかる点に鑑みてなされたも
のであり、透明部と位相シフト部との判別が容易にでき
、位相シフトマスクの検査を簡便、かつ正確に行なうこ
とのできる欠陥検査装置を提供することを目的とするも
のである。
[0011] The present invention has been made in view of the above points, and provides a defect inspection device that can easily distinguish between transparent parts and phase shift parts, and can easily and accurately inspect phase shift masks. The purpose is to provide the following.

【0012】0012

【課題を解決するための手段】本発明の欠陥検査装置は
、透過光の位相を変化させる位相シフタ部を有するフォ
トマスクを検査対象とし、上記の課題を達成するために
、前記フォトマスクを透過照明する透過照明手段と、前
記フォトマスクを落射照明する落射照明手段と、前記フ
ォトマスクからの透過光及び/又は反射光を受光し、前
記フォトマスクの像を検出する撮像手段とを備え、かつ
、前記透過照明光の波長域と前記落射照明光の波長域を
別々に設定できるように構成されたものである。
[Means for Solving the Problems] The defect inspection device of the present invention inspects a photomask having a phase shifter portion that changes the phase of transmitted light. comprising a transmitted illumination means for illuminating the photomask, an epi-illumination means for epi-illuminating the photomask, and an imaging means for receiving transmitted light and/or reflected light from the photomask and detecting an image of the photomask, and , the wavelength range of the transmitted illumination light and the wavelength range of the epi-illumination light can be set separately.

【0013】[0013]

【作用】前述した図2(b) を参照して、本発明の作
用を説明する。位相シフトマスクの位相シフト部101
は、露光光に対して所定の位相差を与える為に、特定の
厚さの透明薄膜によって構成されている。例えば、位相
シフト部101が露光波長λに対して位相差πを与える
為の条件は、位相差πを光路差換算すれば、λ/2とな
るため、 |n1 −n0 |・d=λ/2  …(1)で与えら
れる。但し、位相シフト膜32の屈折率,厚さをそれぞ
れn1 ,dとし、位相シフトマスクが配置される場所
の雰囲気(通常空気)の屈折率をn0 とする。
[Operation] The operation of the present invention will be explained with reference to FIG. 2(b) mentioned above. Phase shift section 101 of phase shift mask
is composed of a transparent thin film having a specific thickness in order to provide a predetermined phase difference to the exposure light. For example, the condition for the phase shift unit 101 to give a phase difference π to the exposure wavelength λ is λ/2 if the phase difference π is converted into an optical path difference, so |n1 −n0 |・d=λ/ 2...Given by (1). However, the refractive index and thickness of the phase shift film 32 are n1 and d, respectively, and the refractive index of the atmosphere (usually air) where the phase shift mask is placed is n0.

【0014】次に、位相シフト膜32表面(雰囲気と位
相シフト膜32との界面)で反射した光と位相シフト膜
32裏面(位相シフト膜32と導電膜31との界面)で
反射した光の干渉によって位相シフト部101が明るく
見える時の照明光の波長と、暗く見える時の照明光の波
長を求める。位相シフト膜32の屈折率をn1 ,導電
膜31の屈折率をn3 としたとき、n1とn3 の関
係がn1 >n3 となる場合は、反射の際の位相変化
を考慮すれば(n1 >n3 であれば、位相シフト膜
32裏面での反射の際位相がπ変化する)、 2n1 d=(2m+1)λ/2  (明)  …(2
)2n1 d=2m・λ/2        (暗) 
 …(3)なる条件式が成立する。但しmは整数とする
Next, the light reflected on the surface of the phase shift film 32 (the interface between the atmosphere and the phase shift film 32) and the light reflected on the back surface of the phase shift film 32 (the interface between the phase shift film 32 and the conductive film 31) are separated. The wavelength of the illumination light when the phase shift section 101 appears bright and the wavelength of the illumination light when it appears dark due to interference are determined. When the refractive index of the phase shift film 32 is n1 and the refractive index of the conductive film 31 is n3, if the relationship between n1 and n3 is n1 > n3, then if the phase change upon reflection is taken into account (n1 > n3 If so, the phase changes by π upon reflection on the back surface of the phase shift film 32), 2n1 d=(2m+1)λ/2 (bright)...(2
)2n1 d=2m・λ/2 (dark)
...The conditional expression (3) holds true. However, m is an integer.

【0015】逆に、n1 <n3 ならば、位相シフト
膜32裏面での反射の際に位相変化が起こらないので、
2n1 d=2m・λ/2        (明)  
…(4)2n1 d=(2m+1)λ/2  (暗) 
 …(5)となる。
On the other hand, if n1 < n3, no phase change occurs upon reflection on the back surface of the phase shift film 32.
2n1 d=2m・λ/2 (bright)
...(4)2n1 d=(2m+1)λ/2 (dark)
...(5).

【0016】例えば、露光波長λ=365nm用の位相
シフトマスクにおいて、位相シフト部101が透過光に
対してπの位相差を与える場合、位相シフト膜32の厚
さdは、n1 =1.5,n0 =1として、(1)式
よりd=365nmとなる。この位相シフトマスクを落
射照明して、反射光を検出する場合、n1 >n3 で
あれば、位相シフト部101が明るく見える照明光の波
長は、(2) 式により、λ=730nm,438nm
,…となる。逆に位相シフト部101が暗く見える波長
は、λ=547.5nm,365nm,…となる。
For example, in a phase shift mask for exposure wavelength λ=365 nm, when the phase shift section 101 gives a phase difference of π to transmitted light, the thickness d of the phase shift film 32 is n1 = 1.5. , n0 =1, d=365 nm from equation (1). When epi-illuminating this phase shift mask and detecting reflected light, if n1 > n3, the wavelength of the illumination light that makes the phase shift section 101 appear bright is λ=730 nm, 438 nm according to equation (2).
,... becomes. Conversely, the wavelengths at which the phase shift section 101 appears dark are λ=547.5 nm, 365 nm, . . . .

【0017】したがって、n1 >n3 である場合は
、落射照明用の波長として例えばg線(436nm)を
使用すれば、遮光部33と位相シフト部101でg線が
反射され(反射強度は遮光部33の方が高い)、透明部
100ではわずかな量しか反射されない。また、透過照
明用の波長としてe線(546nm)を使用すれば、位
相シフト部101と透明部100においてはe線が透過
し、遮光部33はe線が透過しない。
Therefore, if n1 > n3, for example, if g-line (436 nm) is used as the wavelength for epi-illumination, the g-line will be reflected by the light shielding part 33 and the phase shift part 101 (the reflection intensity will be different from the light shielding part). 33), only a small amount is reflected by the transparent portion 100. Further, if e-line (546 nm) is used as the wavelength for transmitted illumination, the e-line is transmitted through the phase shift section 101 and the transparent section 100, and the e-line is not transmitted through the light shielding section 33.

【0018】即ち、g線の落射照明とe線の透過照明で
上述した位相シフトマスクを観察すると、遮光部33は
g線のみの色(青)、透明部100は主としてe線の色
(黄緑)、位相シフト部101はg線とe線の混じった
色(青+黄緑)に見えることになり、遮光部33,透明
部100,位相シフト部101の色判別が可能となる。 もちろん、落射照明だけでも反射光強度の差(遮光部3
3>位相シフト部101>透明部100)によって、三
者の判別が可能である。この際、透過照明光と落射照明
光の強度を調節すれば(例えば、落射照明光を弱めて透
明部100でのg線の反射がほとんど零となるようにす
る)、透明部100と位相シフト部101の色の差がよ
り明確となる。
That is, when observing the above-mentioned phase shift mask under g-line epi-illumination and e-line transmitted illumination, the light-shielding portion 33 is colored only by the g-line (blue), and the transparent portion 100 is mainly colored by the e-line (yellow). green), the phase shift section 101 appears as a mixture of g-line and e-line (blue+yellow-green), making it possible to distinguish the colors of the light shielding section 33, the transparent section 100, and the phase shift section 101. Of course, even with epi-illumination alone, there is a difference in the intensity of reflected light (light shielding part 3
Three types can be distinguished by 3>phase shift section 101>transparent section 100). At this time, by adjusting the intensity of the transmitted illumination light and the epi-illumination light (for example, by weakening the epi-illumination light so that the reflection of the g-line at the transparent part 100 becomes almost zero), the phase shift between the transparent part 100 and the epi-illumination light can be adjusted. The difference in color of the portion 101 becomes clearer.

【0019】なお、図2,図3の位相シフトマスクには
基板30上に導電膜31が設けられているが、この導電
膜31は必ずしも必要なものではない。導電膜31がな
い場合は、基板30の屈折率をn2 として、n1 >
n2 の場合の条件が、式(2) ,式(3) となり
、n1 <n2 の場合の条件が式(4) ,式(5)
 となることは言うまでもない。
Note that although the phase shift mask shown in FIGS. 2 and 3 is provided with a conductive film 31 on the substrate 30, this conductive film 31 is not necessarily required. When there is no conductive film 31, the refractive index of the substrate 30 is n2, and n1>
The conditions for n2 are equations (2) and (3), and the conditions for n1 < n2 are equations (4) and (5).
It goes without saying that this will happen.

【0020】続いて、位相シフト部の欠損部の検出につ
いて、図4を参照して説明する。図(a) において、
2つの遮光部33の間に設けられた位相シフト部201
の略中央部には円形の欠損部201a(位相シフト膜の
ない透明部)がある。このような欠陥部分を透過照明で
観察すると、その透過光の強度分布は、図4(b) の
ようになり、欠損部の輪郭に対応した部分(位相シフト
部201と欠損部201aの境界)で透過光強度が落ち
込み、欠損部201aの輪郭が検出される。
Next, detection of the defective portion of the phase shift portion will be explained with reference to FIG. 4. In figure (a),
Phase shift section 201 provided between two light shielding sections 33
There is a circular cutout 201a (a transparent portion without a phase shift film) approximately in the center. When such a defective part is observed with transmitted illumination, the intensity distribution of the transmitted light is as shown in Fig. 4(b), and the part corresponding to the outline of the defective part (the boundary between the phase shift part 201 and the defective part 201a) The transmitted light intensity drops at , and the outline of the defective portion 201a is detected.

【0021】また、落射照明で観察した場合の反射光強
度は図4(c) になる。即ち、反射光強度は遮光部3
3で最も高く、位相シフト部201では遮光部33に比
べて反射光強度が低くなり、欠損部201aでは反射光
強度が位相シフト部201よりも更に低くなる。
Further, the reflected light intensity when observed with epi-illumination is shown in FIG. 4(c). That is, the reflected light intensity is
3, the reflected light intensity is lower in the phase shift portion 201 than in the light shielding portion 33, and the reflected light intensity in the defective portion 201a is even lower than that in the phase shift portion 201.

【0022】従って、落射照明だけでも位相シフト部2
01の欠損部201aを特定することは可能であるが、
実際の検査に際しては、まず、落射照明を用いて遮光部
,位相シフト部,透明部の判別に用い、その後、欠損部
の検出に透過照明を用いると、より正確に欠陥の検査を
行なうことができる。
Therefore, even with epi-illumination alone, the phase shift section 2
Although it is possible to identify the missing part 201a of 01,
During actual inspection, first use epi-illumination to distinguish between light-blocking areas, phase-shifted areas, and transparent areas, and then use transmitted illumination to detect defective areas to more accurately inspect defects. can.

【0023】なお、本発明における透過照明光と落射照
明光の波長は、それぞれ位相シフト部が暗く見える条件
(式(3) 又は式(5) )、位相シフト部が明るく
見える条件(式(2) 又は式(4) )を厳密に満た
している必要はない。前述した条件を満たすように波長
選択すれば、位相シフトマスクの像のコントラストが最
も高くなり、検査を行なう上で好ましいが、落射照明の
波長が位相シフト部と透明部とで反射光強度に差がでる
ような波長とし、透過照明光として落射照明光以外の波
長の光を選択すれば、遮光部,位相シフト部,透明部の
色分解による判別は可能である。
The wavelengths of the transmitted illumination light and the epi-illumination light in the present invention are determined by the conditions under which the phase shift portion appears dark (Equation (3) or Equation (5)) and the conditions under which the phase shift portion appears bright (Equation (2)). ) or formula (4) ) need not be strictly satisfied. If the wavelength is selected to satisfy the above-mentioned conditions, the contrast of the image of the phase shift mask will be the highest, which is preferable for inspection. If the wavelength is set such that a wavelength of 100% is produced, and if light of a wavelength other than the epi-illumination light is selected as the transmitted illumination light, it is possible to distinguish the light-shielding part, the phase shift part, and the transparent part by color separation.

【0024】[0024]

【実施例】図1は、本発明実施例による欠陥検査装置の
構成図である。説明を具体的にするために、本実施例に
おいて検査対象となる位相シフトマスク1は前述した図
2,図3に示された構造をなし、露光波長365nmで
使用されるものとする。また、n1 (位相シフト膜の
屈折率)>n3 (導電膜の屈折率)とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a defect inspection apparatus according to an embodiment of the present invention. To make the description concrete, it is assumed that the phase shift mask 1 to be inspected in this example has the structure shown in FIGS. 2 and 3 described above, and is used at an exposure wavelength of 365 nm. Further, n1 (refractive index of phase shift film)>n3 (refractive index of conductive film).

【0025】図において、落射照明用光源21からの光
束は、空間的コヒーレンス可変のための開口絞り22を
経て、波長選択フィルター23に入射し、ここで前述し
た(2) 式を満たす所定の波長域の光(例えばg線)
だけが選択される。波長選択フィルター23を透過した
落射照明光は、コンデンサーレンズ24通って平行光束
となり、マスク1のパターン形成面と共役関係となる位
置に配置された視野絞り25によって位相シフトマスク
の検査領域に対応する大きさに絞られる。続いて、落射
照明光はリレーレンズ26を介して半透過鏡27に至り
、ここで下方に反射される。落射照明光は、対物レンズ
2の入射瞳位置で光源像を結んだ後、対物レンズ2を介
して水平に保持されたマスク1に照射される。以上の落
射照明は、ケーラー照明の構成をとっており、位相シフ
トマスクに対して均一な落射照明がなされる。
In the figure, a light beam from an epi-illumination light source 21 passes through an aperture diaphragm 22 for varying spatial coherence, and enters a wavelength selection filter 23, where it is filtered at a predetermined wavelength that satisfies equation (2) above. area light (e.g. g-line)
only are selected. The epi-illumination light that has passed through the wavelength selection filter 23 passes through a condenser lens 24 and becomes a parallel beam of light, which is then arranged to correspond to the inspection area of the phase shift mask by a field stop 25 arranged in a conjugate relationship with the pattern forming surface of the mask 1. narrowed down to size. Subsequently, the epi-illumination light reaches the semi-transmissive mirror 27 via the relay lens 26, where it is reflected downward. After the epi-illumination light forms a light source image at the entrance pupil position of the objective lens 2, it is irradiated via the objective lens 2 onto the mask 1 held horizontally. The epi-illumination described above has a Kohler illumination configuration, and uniform epi-illumination is applied to the phase shift mask.

【0026】一方、透過照明用の光源11からの光束は
、空間的コヒーレンス可変のための開口絞り12を経て
、波長選択フィルター13に入射し、ここで前述した(
3) 式を満たす所定の波長域の光(例えばe線)だけ
が選択される。波長選択フィルター13を透過した透過
照明光は、コンデンサーレンズ14通って平行光束とな
り、マスク1のパターン形成面と共役関係となる位置に
配置された視野絞り15によって位相シフトマスクの検
査領域に対応する大きさに絞られる。続いて、透過照明
光はリレーレンズ16を介して反射鏡17に至り、ここ
で上方に反射される。透過照明光は、レンズ18の入射
瞳位置で光源像を結んだ後、レンズ18を介してマスク
1に照射される。以上の透過照明系は、落射照明系と同
様にケーラー照明の構成をとっており、位相シフトマス
クに対して均一な透過照明がなされる。
On the other hand, the light beam from the light source 11 for transmitted illumination passes through the aperture diaphragm 12 for variable spatial coherence, and enters the wavelength selection filter 13, where it is filtered as described above (
3) Only light in a predetermined wavelength range (for example, e-ray) that satisfies the formula is selected. The transmitted illumination light that has passed through the wavelength selection filter 13 passes through a condenser lens 14 and becomes a parallel beam of light, which is then arranged to correspond to the inspection area of the phase shift mask by a field stop 15 arranged in a conjugate relationship with the pattern forming surface of the mask 1. narrowed down to size. Subsequently, the transmitted illumination light reaches the reflecting mirror 17 via the relay lens 16, where it is reflected upward. The transmitted illumination light forms a light source image at the entrance pupil position of the lens 18, and then is irradiated onto the mask 1 through the lens 18. The above-described transmitted illumination system has a Koehler illumination configuration similar to the epi-illumination system, and provides uniform transmitted illumination to the phase shift mask.

【0027】さて次に、マスク1からの反射光及び/又
は透過光は、対物レンズ2によって集光され、半透過鏡
27を透過し、リレーレンズ3を介して例えばカラーC
CD等からなる撮像素子4上に、マスクパターンの像を
形成する。
Next, the reflected light and/or transmitted light from the mask 1 is condensed by the objective lens 2, transmitted through the semi-transparent mirror 27, and transmitted through the relay lens 3 to, for example, color C.
An image of a mask pattern is formed on an image sensor 4 made of a CD or the like.

【0028】撮像素子4からの光電変換信号は、モニタ
10に送られるとともに、画像メモリ5を介して、位相
シフトマスクの設計データが記憶された磁気テープ(M
T)7,バッファメモリ8,比較器6,判定回路9を備
えた比較判定回路20に送られる。比較判定回路20で
はMT7のデータに基づいてマスク1の所定の領域の像
が求められ、バッファメモリ8に一旦格納される。比較
器6では、バッファメモリ8の内容と画像メモリ5の内
容が比較され、判定回路9において欠陥の有無が判定さ
れる。
The photoelectric conversion signal from the image sensor 4 is sent to the monitor 10 and is also sent to the magnetic tape (M
T) 7, a buffer memory 8, a comparator 6, and a determination circuit 9. The comparison/judgment circuit 20 obtains an image of a predetermined area of the mask 1 based on the data of the MT 7 and temporarily stores it in the buffer memory 8 . The comparator 6 compares the contents of the buffer memory 8 with the contents of the image memory 5, and the determination circuit 9 determines whether there is a defect.

【0029】ここで、撮像素子4に形成されるパターン
像の強度分布は、先に説明したように、落射照明のみの
場合は、反射光強度が遮光部33>位相シフト部101
,201>透明部100,200となり、透過照明のみ
の場合は透明部100,200≧位相シフト部101,
201>遮光部33(=零)となるので、落射照明のみ
、又は落射照明と透過照明を同時に行なって、三者の判
別および位相シフト部101,201の位置の測定等を
行なった後に、透過照明によって位相シフト部101,
201や透明部100,200内の欠陥部分(不要な遮
光膜33の残存を含む)の検出を行なうことが好ましい
。この際、開口絞り12,22によって、パターン像の
コントラストがもっとも高くなるように各照明系の開口
数を調整すると良い。
Here, the intensity distribution of the pattern image formed on the image sensor 4 is such that, as described above, in the case of epi-illumination only, the intensity of the reflected light is such that the light shielding part 33 > the phase shift part 101
, 201>transparent part 100, 200, and in the case of only transmitted illumination, transparent part 100, 200≧phase shift part 101,
201>shading part 33 (=zero), therefore, only epi-illumination or epi-illumination and transmitted illumination are performed at the same time to distinguish between the three and measure the positions of the phase shift parts 101 and 201. The phase shift unit 101,
It is preferable to detect defective portions in the transparent portions 201 and the transparent portions 100 and 200 (including unnecessary remaining portions of the light shielding film 33). At this time, it is preferable to adjust the numerical aperture of each illumination system using the aperture stops 12 and 22 so that the contrast of the pattern image is maximized.

【0030】また、マスクパターンの落射照明と透過照
明の同時照明による像をモニタに表示すれば、遮光部3
3,位相シフト部101,201透明部100,200
がそれぞれ異なった色に見え、作業者が視覚的に三者を
判別できる。
Furthermore, if an image of the mask pattern obtained by simultaneous epi-illumination and transmitted illumination is displayed on a monitor, the light-shielding portion 3
3. Phase shift section 101, 201 transparent section 100, 200
Each color appears to be different, allowing workers to visually distinguish between the three.

【0031】なお、図1の実施例では、落射照明の光源
21と透過照明の光源11を別々に設けているが、単一
の光源としてダイロクイックミラー(特定波長域の光を
反射し、残りの光を透過させる)等を用いて光束を分割
し、ライトガイドファイバーによって各々の照明系(落
射照明系,透過照明系)へ導く構成をとっても良い。
In the embodiment shown in FIG. 1, the light source 21 for epi-illumination and the light source 11 for transmitted illumination are provided separately, but a diroquick mirror (which reflects light in a specific wavelength range, It is also possible to adopt a configuration in which the light beam is split by using a light beam (by transmitting the remaining light), etc., and guided to each illumination system (epi-illumination system, transmitted illumination system) by a light guide fiber.

【0032】また、図1ではマスク1からの透過光と反
射光を同一の撮像素子4で受光しているが、観察系(図
1では半透過鏡27から撮像素子4まで)内に、ダイク
ロイックミラーを入れて色分解し、2つ以上の撮像素子
を用いて画像処理をすることにより遮光部33,位相シ
フト部101,201,透明部100,200を判別す
るようにしても良い。
In addition, although the transmitted light and reflected light from the mask 1 are received by the same image sensor 4 in FIG. 1, a dichroic The light blocking portion 33, the phase shift portions 101 and 201, and the transparent portions 100 and 200 may be determined by inserting a mirror to perform color separation and performing image processing using two or more image sensors.

【0033】この他、透過照明光と落射照明光を互いに
振動方向の異なる直線偏光するとともに観察系内に偏光
選択手段を配置し、マスクからの透過光及び/又は反射
光の偏光分離された光強度を検出することによっても遮
光部33,位相シフト部101,201,透明部100
,200の判別が可能である。
In addition, the transmitted illumination light and the epi-illumination light are linearly polarized with different vibration directions, and a polarization selection means is arranged in the observation system to separate the polarization of the transmitted light and/or reflected light from the mask. By detecting the intensity, the light shielding section 33, phase shift section 101, 201, transparent section 100
, 200 is possible.

【0034】[0034]

【発明の効果】以上のように本発明の欠陥検査装置にお
いては、別々に波長設定可能な透過照明手段と落射照明
手段を備え、マスクからの透過光及び/又は反射光によ
るパターン像を検出するので、落射照明光及び透過照明
光の波長を特定の条件を満たすように設定することで、
遮光部,位相シフト部,透明部の三者について光強度弁
別又は色弁別によって容易に判別できる。従って、本発
明の欠陥検査装置を用いれば、従来のマスク検査装置で
は不可能であった位相シフト部の欠陥や配置位置を含む
位相シフトマスクの検査を簡便かつ正確に行なうことが
できる。
As described above, the defect inspection apparatus of the present invention includes a transmitted illumination means and an epi-illumination means whose wavelengths can be set separately, and detects a pattern image by transmitted light and/or reflected light from a mask. Therefore, by setting the wavelengths of epi-illumination light and transmitted illumination light to meet specific conditions,
The light shielding part, phase shift part, and transparent part can be easily distinguished by light intensity discrimination or color discrimination. Therefore, by using the defect inspection apparatus of the present invention, it is possible to easily and accurately inspect a phase shift mask including defects and arrangement positions of phase shift portions, which has been impossible with conventional mask inspection apparatuses.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例による欠陥検査装置の構成図であ
る。
FIG. 1 is a configuration diagram of a defect inspection apparatus according to an embodiment of the present invention.

【図2】図2(a) は位相シフトマスクの部分平面図
、図2(b) は図2(a) に対応する位相シフトマ
スクの部分断面図、図2(c) は図2(a) ,(b
) に示された位相シフトマスクを透過照明した場合の
光強度分布図である。
[Fig. 2] Fig. 2(a) is a partial plan view of the phase shift mask, Fig. 2(b) is a partial sectional view of the phase shift mask corresponding to Fig. 2(a), and Fig. 2(c) is a partial plan view of the phase shift mask. ), (b
) is a light intensity distribution diagram when the phase shift mask shown in FIG.

【図3】図3(a) は位相シフトマスクの部分平面図
、図3(b) は図3(a) に対応する位相シフトマ
スクの部分断面図、図3(c) は図3(a) ,(b
) に示された位相シフトマスクを透過照明した場合の
光強度分布図である。
3(a) is a partial plan view of the phase shift mask, FIG. 3(b) is a partial sectional view of the phase shift mask corresponding to FIG. 3(a), and FIG. 3(c) is a partial plan view of the phase shift mask. ), (b
) is a light intensity distribution diagram when the phase shift mask shown in FIG.

【図4】図4は位相シフトマスクの欠陥部の平面図、図
4(b) は図4(a) に示された位相シフトマスク
を透過照明した場合の光強度分布図、図4(c) は図
4(a) に示された位相シフトマスクを落射照明した
場合の光強度分布図である。
FIG. 4 is a plan view of a defective part of the phase shift mask, FIG. 4(b) is a light intensity distribution diagram when the phase shift mask shown in FIG. 4(a) is illuminated through transmission, and FIG. 4(c) ) is a light intensity distribution diagram when the phase shift mask shown in FIG. 4(a) is epi-illuminated.

【符号の説明】[Explanation of symbols]

1  位相シフトマスク 2  対物レンズ 4  撮像素子 5  画像メモリ 6  比較器 7  MT 8  バッファメモリ 9  判定回路 10  モニター 11  透過照明用光源 21  落射照明用光源 20  比較判定回路 12,22  開口絞り 13,23  波長選択フィルタ 17  反射鏡 27  半透過鏡 30  基板 31  導電膜 32  位相シフト膜 100,200  透明部 101,201  位相シフト部 1 Phase shift mask 2 Objective lens 4 Imaging device 5 Image memory 6 Comparator 7 MT 8 Buffer memory 9 Judgment circuit 10 Monitor 11 Light source for transmitted illumination 21 Light source for epi-illumination 20 Comparison judgment circuit 12, 22 Aperture diaphragm 13, 23 Wavelength selection filter 17 Reflector 27 Semi-transparent mirror 30 Board 31 Conductive film 32 Phase shift film 100,200 Transparent part 101, 201 Phase shift section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  透過光の位相を変化させる位相シフタ
部を有するフォトマスクを検査対象とする欠陥検査装置
において、前記フォトマスクを透過照明する透過照明手
段と、前記フォトマスクを落射照明する落射照明手段と
、前記フォトマスクからの透過光及び/又は反射光を受
光し、前記フォトマスクの像を検出する撮像手段とを備
え、かつ、前記透過照明光の波長域と前記落射照明光の
波長域は別々に設定可能であることを特徴とする欠陥検
査装置。
1. A defect inspection apparatus that inspects a photomask having a phase shifter section that changes the phase of transmitted light, comprising a transmitted illumination means for transmitting illumination of the photomask, and an epi-illumination unit for epi-illuminating the photomask. and an imaging means for receiving transmitted light and/or reflected light from the photomask and detecting an image of the photomask, and a wavelength range of the transmitted illumination light and a wavelength range of the epi-illumination light. A defect inspection device characterized in that can be set separately.
【請求項2】  前記透過照明手段と前記落射照明手段
の少なくとも一方は、光強度の変更が可能であることを
特徴とする請求項1記載の欠陥検査装置。
2. The defect inspection apparatus according to claim 1, wherein the light intensity of at least one of the transmitted illumination means and the epi-illumination means can be changed.
JP3110723A 1991-04-17 1991-04-17 Defect inspecting device Pending JPH04318550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110723A JPH04318550A (en) 1991-04-17 1991-04-17 Defect inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110723A JPH04318550A (en) 1991-04-17 1991-04-17 Defect inspecting device

Publications (1)

Publication Number Publication Date
JPH04318550A true JPH04318550A (en) 1992-11-10

Family

ID=14542859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110723A Pending JPH04318550A (en) 1991-04-17 1991-04-17 Defect inspecting device

Country Status (1)

Country Link
JP (1) JPH04318550A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177508A (en) * 1992-09-07 2003-06-27 Fujitsu Ltd Inspecting method for photomask
JP2008249921A (en) * 2007-03-30 2008-10-16 Advanced Mask Inspection Technology Kk Reticle defect inspection device and reticle defect inspection method
JP2008292359A (en) * 2007-05-25 2008-12-04 Ngk Spark Plug Co Ltd Workpiece inspecting method
WO2016170860A1 (en) * 2015-04-22 2016-10-27 株式会社ブイ・テクノロジー Appearance inspection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177508A (en) * 1992-09-07 2003-06-27 Fujitsu Ltd Inspecting method for photomask
JP2008249921A (en) * 2007-03-30 2008-10-16 Advanced Mask Inspection Technology Kk Reticle defect inspection device and reticle defect inspection method
US7911599B2 (en) 2007-03-30 2011-03-22 Kabushiki Kaisha Toshiba Reticle defect inspection apparatus and reticle defect inspection method
US8072592B2 (en) 2007-03-30 2011-12-06 Kabushiki Kaisha Toshiba Reticle defect inspection apparatus and reticle defect inspection method
JP2008292359A (en) * 2007-05-25 2008-12-04 Ngk Spark Plug Co Ltd Workpiece inspecting method
WO2016170860A1 (en) * 2015-04-22 2016-10-27 株式会社ブイ・テクノロジー Appearance inspection device
JP2016206000A (en) * 2015-04-22 2016-12-08 株式会社ブイ・テクノロジー Appearance inspection device
KR20170137723A (en) * 2015-04-22 2017-12-13 가부시키가이샤 브이 테크놀로지 Appearance inspection device
CN107533015A (en) * 2015-04-22 2018-01-02 V科技股份有限公司 Appearance inspection device
CN107533015B (en) * 2015-04-22 2020-10-30 株式会社V 技术 Appearance inspection device
TWI713518B (en) * 2015-04-22 2020-12-21 日商V科技股份有限公司 Visual inspection apparatus

Similar Documents

Publication Publication Date Title
KR0141496B1 (en) Method and apparatus for detecting defect on photomask
US7551273B2 (en) Mask defect inspection apparatus
JPH0583901B2 (en)
JP2002535687A (en) Method and apparatus for optically inspecting a patterned surface of an object
JP2001194321A (en) Semiconductor wafer inspection device
JP3398472B2 (en) Inspection method and inspection device
JP4001653B2 (en) Optical inspection of samples using multichannel response from the sample
JPH04328549A (en) Method and device for inspecting photomask
JPH1097053A (en) Inspection device for pattern defect
JPH04321047A (en) Device and method for inspecting photomask
JPH05119468A (en) Mask inspecting device
JP3053097B2 (en) Photomask defect detection method and apparatus
US7760349B2 (en) Mask-defect inspecting apparatus with movable focusing lens
JPH04318550A (en) Defect inspecting device
US20020036772A1 (en) Defect inspection apparatus for phase shift mask
KR100273835B1 (en) Method and apparatus for inspecting slight defects in a photomask pattern
JPH04328548A (en) Method and device for inspecting photomask
US4636078A (en) Microscopic detection of membrane surface defects through interference patterns
US6396944B1 (en) Inspection method for Levenson PSM mask
JPH04181251A (en) Photomask inspecting device
JP4521548B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP2005049663A (en) Mask inspection apparatus and mask inspection method
JPH0527410A (en) Device for inspecting photomask
JP3067191B2 (en) Phase difference measuring apparatus and method
JP3324013B2 (en) Transmittance measurement method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000905