JPH075365B2 - High dielectric constant dielectric ceramic composition - Google Patents

High dielectric constant dielectric ceramic composition

Info

Publication number
JPH075365B2
JPH075365B2 JP60240312A JP24031285A JPH075365B2 JP H075365 B2 JPH075365 B2 JP H075365B2 JP 60240312 A JP60240312 A JP 60240312A JP 24031285 A JP24031285 A JP 24031285A JP H075365 B2 JPH075365 B2 JP H075365B2
Authority
JP
Japan
Prior art keywords
dielectric
temperature
ceramic composition
composition
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60240312A
Other languages
Japanese (ja)
Other versions
JPS62100473A (en
Inventor
宣雄 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60240312A priority Critical patent/JPH075365B2/en
Publication of JPS62100473A publication Critical patent/JPS62100473A/en
Publication of JPH075365B2 publication Critical patent/JPH075365B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁器コンデンサ、特に低温焼成ができる積層型
磁器コンデンサの高誘電率系誘電体磁器組成物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a high dielectric constant dielectric ceramic composition of a ceramic capacitor, particularly a laminated ceramic capacitor capable of low temperature firing.

〔従来の技術〕[Conventional technology]

従来、一般に積層型磁器コンデンサは表面に内部電極が
塗布されたシート状のBaTiO3(チタン酸バリウム)を主
成分とする誘電体を複数枚積層するとともに各シートの
内部電極を交互に並列に一対の外部接続用電極に接続
し、これを焼結一体化することにより形成されている。
このような積層型磁器コンデンサは近年のエレクトロニ
クスの進展に伴い電子部品の小型化が急速に進行し、広
範な電子回路に使用されるようになってきている。
Conventionally, generally, a laminated porcelain capacitor is formed by laminating a plurality of sheet-like dielectrics containing BaTiO 3 (barium titanate) as a main component with internal electrodes coated on the surface and alternately pairing the internal electrodes of each sheet in parallel. It is formed by connecting it to the external connection electrode and sintering and integrating it.
Such multilayer ceramic capacitors have been rapidly used in a wide variety of electronic circuits due to rapid miniaturization of electronic parts with the recent progress of electronics.

しかしながら、この従来のBaTiO3を主成分とする誘電体
材料は1250〜1350℃の高温で焼成する必要があり、この
材料を積層型磁器コンデンサの誘電体として使用した場
合、内部電極は前記誘電体の焼成温度にて溶融すること
なく、かつ酸化することがない高価な貴金属であるパラ
ジウム(融点1555℃)またはその合金が使用されること
から、特に静電容量が大きいものでは内部電極数が大と
なりコスト高となるため、上記従来の積層型磁器コンデ
ンサは容量効率が高く、その他誘電的特性に優れかつ高
信頼性にあるにも拘わらず価格面がその進展に大きな障
害となっていた。従って銀(融点960℃)、銅(融点108
3℃)などの安価な金属を内部電極として使用するため
には、低温とりわけ950℃以下で焼結する高誘電率の誘
電体材料が強く望まれていた。
However, this conventional BaTiO 3 -based dielectric material must be fired at a high temperature of 1250 to 1350 ° C, and when this material is used as the dielectric of a laminated ceramic capacitor, the internal electrodes are Since palladium (melting point 1555 ° C), which is an expensive noble metal that does not melt at the firing temperature of and does not oxidize, or its alloy is used, the number of internal electrodes is large especially for those with large capacitance. Therefore, the conventional multilayer ceramic capacitor has high capacity efficiency, excellent dielectric properties, and high reliability, but the price is a major obstacle to its progress. Therefore, silver (melting point 960 ℃), copper (melting point 108
In order to use an inexpensive metal such as (3 ° C) as an internal electrode, a dielectric material having a high dielectric constant which is sintered at a low temperature, particularly at 950 ° C or less, has been strongly desired.

近年、高誘電率系誘電体において、1000℃以下の低温で
焼結できる磁器組成物としていくつかの提案がなされて
いる。それらは低温で焼結できる強誘電体として、Pb
(Fe1/2Nb1/2)O3、Pb(Fe2/31/3)O3、Pb(Mg1/2
1/2)O3、Pb(Zn1/3Nb2/3)O3、Pb(Mg1/3Nb2/3)O3、P
b(Ni1/3Nb2/3)O3、およびPbTiO3のうち二成分または
三成分を組合せ、室温における所望の誘電特性を得よう
としたものである。しかしながら、これは比誘電率が大
きい場合は、誘電損失が大きかったり、あるいは絶縁抵
抗が小さいなどの欠点を有していた。更には、合成成分
がいずれも強誘電体であることからキュリー温度および
キュリー温度近くの低い温度域での誘電損失が極めて大
きいという原理的な欠点を避けることができない。
In recent years, several proposals have been made as a porcelain composition which can be sintered at a low temperature of 1000 ° C. or less in a high dielectric constant type dielectric. They are Pb as a ferroelectric that can be sintered at low temperature.
(Fe 1/2 Nb 1/2 ) O 3 , Pb (Fe 2/3 W 1/3 ) O 3 , Pb (Mg 1/2 W
1/2 ) O 3 , Pb (Zn 1/3 Nb 2/3 ) O 3 , Pb (Mg 1/3 Nb 2/3 ) O 3 , P
It is intended to obtain desired dielectric properties at room temperature by combining two or three components of b (Ni 1/3 Nb 2/3 ) O 3 and PbTiO 3 . However, this has drawbacks such as a large dielectric loss and a small insulation resistance when the relative permittivity is large. Furthermore, since the synthetic components are all ferroelectrics, the theoretical disadvantage that the dielectric loss is extremely large in the Curie temperature and a low temperature region near the Curie temperature cannot be avoided.

因みに特開昭52−21699号公報に開示された〔SrPb
1−xTiO3〔Pb(Mg1/21/2)O31−Aにおいて
x=0〜0.10,A=0.35〜0.50なる組成物が実用化され、
上記組成物の誘電体粉末が市販されている。しかしなが
ら、この組成系においては1000℃以下の低温度で焼結で
き、かつ優れた絶縁抵抗等を有する利点はあるものの誘
電損失が1.5%程度であり、積層型磁器コンデンサとし
て適用する場合、誘電損失が少なくとも1%以下である
という条件を満足しない。
Incidentally, it is disclosed in Japanese Patent Laid-Open No. 52-21699 [Sr x Pb
1-x TiO 3 ] A [Pb (Mg 1/2 W 1/2 ) O 3 ] 1-A , a composition in which x = 0 to 0.10, A = 0.35 to 0.50 is put to practical use,
Dielectric powders of the above composition are commercially available. However, this composition system has the advantage that it can be sintered at a low temperature of 1000 ° C or lower and has excellent insulation resistance, etc., but its dielectric loss is about 1.5%. Does not satisfy the condition that is at least 1%.

〔発明の目的〕[Object of the Invention]

本発明は前記欠点に鑑み種々の実験の結果案出されたも
ので、強誘電体であるPb(Fe1/2Nb1/2)O3に対して、こ
れと同一結晶構造のペロブスカイト構造を有する低温度
で焼結できる常誘電体であるBa(Cr1/2Nb1/2)O3を固溶
させることによりPb(Fe1/2Nb1/2)O3が本来有する誘電
特性を改質し、誘電損失が小さく絶縁抵抗が大きい、更
には比誘電率の温度依存性が良好な優れた高誘電率系誘
電体磁器組成物を提供することにある。
The present invention has been devised as a result of various experiments in view of the above-mentioned drawbacks, and has a perovskite structure of the same crystal structure as that of Pb (Fe 1/2 Nb 1/2 ) O 3 which is a ferroelectric substance. the paraelectric a is Ba (Cr 1/2 Nb 1/2) Pb by solid solution O 3 (Fe 1/2 Nb 1/2) dielectric properties O 3 has inherently capable sintered at a low temperature with An object of the present invention is to provide an excellent high-dielectric-constant dielectric ceramic composition which has been modified to have a small dielectric loss, a large insulation resistance, and a good temperature dependence of the relative dielectric constant.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高誘電率系誘電体磁器組成物は組成式がPb(Fe
1/2−xCeNb1/2)O3で表される組成物において、xが
0.027≦x≦0.078の範囲にあることを特徴とするもので
ある。
The high dielectric constant dielectric ceramic composition of the present invention has a composition formula of Pb (Fe
In the composition represented by 1 / 2-x Ce x Nb 1/2 ) O 3 , x is
It is characterized by being in the range of 0.027 ≦ x ≦ 0.078.

なお、xの範囲を上記の範囲に限定した理由は、磁器コ
ンデンサ、特に積層型磁器コンデンサとして要求される
誘電特性、即ち比誘電率が7500以上、誘電損失が1.00%
以下、絶縁抵抗が3.0×1011Ω・cm以上かつ比誘電率の
温度依存性が良好であらねばならないという誘電特性の
いずれかを満足しないためであり、0.028>xの場合、
比誘電率の温度依存性が大きく、x>0.078の場合、比
誘電率が7500未満、かつ絶縁抵抗が3.0×1011Ω・cm未
満といずれも誘電特性を満足しないためである。
The reason for limiting the range of x to the above range is that the dielectric characteristics required for a porcelain capacitor, particularly a laminated porcelain capacitor, that is, a relative dielectric constant of 7500 or more and a dielectric loss of 1.00%.
This is because any of the dielectric characteristics that the insulation resistance is 3.0 × 10 11 Ω · cm or more and the temperature dependence of the relative permittivity must be good below 0.028> x,
This is because the temperature dependence of the relative permittivity is large, and when x> 0.078, the relative permittivity is less than 7500 and the insulation resistance is less than 3.0 × 10 11 Ω · cm, which do not satisfy the dielectric properties.

〔実施例〕〔Example〕

次に本発明を実施例に基づき説明する。 Next, the present invention will be described based on examples.

出発原料としてPbO2,Fe2O3,Nb2O5,およびCe2(Co2
・9H2Oを第1表の組成比となる様にそれぞれ秤量し、分
散剤および分散媒とともにボールミルにて湿式混合した
後、この原料スラリーを乾燥し、950℃の温度で3時間
仮焼した。次いでこの仮焼物を粗砕後、振動ミルにて微
粉砕し、得られた平均粒径0.7〜0.8μmの微粉末にポリ
ビニルアルコールを重量で約1%添加して顆粒状に造粒
した後、約900Kg/cm2の圧力で直径約12mm、厚さ1.0mmの
円板状に成形した。この円板状成形体のポリビニルアル
コールを500℃にて焼失せしめた後、900℃〜950℃の温
度で2時間、酸素を含む雰囲気で焼成した。
PbO 2 , Fe 2 O 3 , Nb 2 O 5 , and Ce 2 (Co 2 ) 3 as starting materials
9H 2 O was weighed so as to have the composition ratio shown in Table 1, wet-mixed with a dispersant and a dispersion medium in a ball mill, and then this raw material slurry was dried and calcined at a temperature of 950 ° C. for 3 hours. . Then, this calcined product was roughly crushed and then finely crushed with a vibration mill, and about 1% by weight of polyvinyl alcohol was added to the obtained fine powder having an average particle size of 0.7 to 0.8 μm to form granules. A disk having a diameter of about 12 mm and a thickness of 1.0 mm was formed at a pressure of about 900 kg / cm 2 . After the polyvinyl alcohol of this disk-shaped molded body was burnt out at 500 ° C., it was baked at a temperature of 900 ° C. to 950 ° C. for 2 hours in an atmosphere containing oxygen.

最後に、得られた円板状焼成体の上下両面に銀電極を80
0℃にて焼付けた。同様にして強誘電体であるPb(Fe2/3
1/3)O3に、同じ強誘電体であるPb(Fe1/2Nb1/2)O3
を固溶させた組成式がPb(Fe2/31/3(Fe1/2N
b1/21−xO3で表され、x=0.5の誘電体磁器組成物
を比較例とした。こうして得た円板状のコンデンサ試料
の諸特性を第1表に示す。
Finally, 80 silver electrodes were formed on the upper and lower surfaces of the obtained disc-shaped fired body.
It was baked at 0 ° C. Similarly, Pb (Fe 2/3
W 1/3 ) O 3 has the same ferroelectric substance as Pb (Fe 1/2 Nb 1/2 ) O 3
The composition formula of solid solution is Pb (Fe 2/3 W 1/3 ) x (Fe 1/2 N
A dielectric ceramic composition represented by b 1/2 ) 1-xO 3 and x = 0.5 was used as a comparative example. Various characteristics of the disk-shaped capacitor sample thus obtained are shown in Table 1.

但し、表中の比誘電率は1.0KHz、1.0Vrmsの入力信号を
用いてキャパシタンスブリッジにて測定した室温での静
電容量値と試料の寸法から計算した値を示し、誘電損失
(Tanδ)は室温での1.0KHz1.0Vrmsの入力信号における
測定値を示す。また絶縁抵抗は、絶縁抵抗計にて直流電
圧250Vを印加して1分後の値と試料の寸法から体積抵抗
率(Ω・cm)を計算した値を示し、比誘電率の温度特性
は、−30℃、+25℃、+85℃の各温度において上記と同
様の条件にて静電容量を測定し、+25℃での静電容量に
対する各温度での静電容量の変化率を算出し、ε-30
25およびε8525として示した。
However, the relative permittivity in the table shows the value calculated from the capacitance value at room temperature measured by the capacitance bridge using the input signal of 1.0 KHz and 1.0 Vrms and the dimension of the sample, and the dielectric loss (Tanδ) is Measured value at 1.0KHz 1.0Vrms input signal at room temperature. The insulation resistance is a value obtained by applying a DC voltage of 250 V with an insulation resistance tester after 1 minute and the volume resistivity (Ω · cm) calculated from the size of the sample. Measure the capacitance under the same conditions as above at each temperature of -30 ℃, + 25 ℃, and + 85 ℃, and calculate the rate of change of the capacitance at each temperature with respect to the capacitance at + 25 ℃. -30 / ε
25 and ε 85 / ε 25 .

第1表から明らかなように、試料番号1は、比誘電率の
温度依存性が極めて大きく、試料番号12は比誘電率が小
さく、かつ絶縁抵抗が低くなっている。また比較例では
誘電損失が極めて大きく、絶縁抵抗も極めて低く、いず
れも実用的な誘電特性が得られていない。
As is clear from Table 1, the sample No. 1 has a very large temperature dependence of the relative permittivity, and the sample No. 12 has a small relative permittivity and a low insulation resistance. Further, in the comparative examples, the dielectric loss is extremely large and the insulation resistance is extremely low, and practical dielectric characteristics are not obtained in any of the examples.

それに対し、本発明の請求範囲内の誘電体磁器組成物は
比誘電率が7500〜12960と十分大きく、誘電損失(Tan
δ)も0.34〜0.75と小さく、絶縁抵抗(Ω・cm)は5.5
×1011〜2.4×1012と非常に大きくかつ前述の比誘電率
の温度特性も良好でいずれも優れた誘電特性を有してい
るが、とりわけ試料番号7乃至10がより望ましいことが
理解される。
On the other hand, the dielectric ceramic composition within the scope of the claims of the present invention has a sufficiently large relative permittivity of 7500 to 12960, and thus the dielectric loss (Tan
δ) is as small as 0.34 to 0.75, and the insulation resistance (Ω · cm) is 5.5.
It is very large as × 10 11 to 2.4 × 10 12 and has good temperature characteristics of the above-mentioned relative permittivity, and all have excellent dielectric characteristics. However, it is understood that sample numbers 7 to 10 are more preferable. It

〔発明の効果〕〔The invention's effect〕

本発明の請求範囲内の誘電体磁器組成物は、比誘電率、
誘電損失(Tanδ)、絶縁抵抗(Ω・cm)、比誘電率の
温度特性のいずれの特性においても満足し得るものであ
る。
The dielectric ceramic composition within the scope of the present invention has a relative permittivity,
All of the dielectric loss (Tanδ), insulation resistance (Ω · cm), and relative dielectric constant temperature characteristics are satisfactory.

また、本発明において、焼成温度が900℃〜950℃の範囲
で焼成することができ、かつ焼結磁器の誘電特性を全て
満足するものであることから、銀および銅などの安価な
金属を内部電極とする積層型磁器コンデンサの誘電体磁
器として十分実用性のあることが理解される。
Further, in the present invention, since the firing temperature can be fired in the range of 900 ° C to 950 ° C, and all the dielectric characteristics of the sintered porcelain are satisfied, inexpensive metals such as silver and copper can be used internally. It is understood that it is sufficiently practical as a dielectric porcelain of a laminated porcelain capacitor used as an electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】組成式が、 Pb(Fe1/2−x Ce Nb1/2)O3 で表される組成物において、xが0.027≦x≦0.078の範
囲にあることを特徴とする高誘電率系誘電体磁器組成
物。
1. A composition formula, in the composition represented by Pb (Fe 1/2-x Ce x Nb 1/2) O 3, characterized in that x is in the range of 0.027 ≦ x ≦ 0.078 High dielectric constant dielectric ceramic composition.
JP60240312A 1985-10-25 1985-10-25 High dielectric constant dielectric ceramic composition Expired - Lifetime JPH075365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60240312A JPH075365B2 (en) 1985-10-25 1985-10-25 High dielectric constant dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240312A JPH075365B2 (en) 1985-10-25 1985-10-25 High dielectric constant dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JPS62100473A JPS62100473A (en) 1987-05-09
JPH075365B2 true JPH075365B2 (en) 1995-01-25

Family

ID=17057584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240312A Expired - Lifetime JPH075365B2 (en) 1985-10-25 1985-10-25 High dielectric constant dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPH075365B2 (en)

Also Published As

Publication number Publication date
JPS62100473A (en) 1987-05-09

Similar Documents

Publication Publication Date Title
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JP2594320B2 (en) Dielectric ceramic composition
JPH0785460B2 (en) Multilayer porcelain capacitor
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
JPH05213670A (en) High temperature baking x7r dielectric ceramic composition using barium titanate with grain of very fine particle
JPS6128619B2 (en)
JP2571386B2 (en) High dielectric constant dielectric porcelain composition
JPH075365B2 (en) High dielectric constant dielectric ceramic composition
JPH075364B2 (en) High dielectric constant dielectric ceramic composition
JPH0680564B2 (en) High dielectric constant dielectric ceramic composition
JP2789110B2 (en) High dielectric constant porcelain composition
JPH0568423B2 (en)
JPH0680563B2 (en) High dielectric constant dielectric ceramic composition
JPS6234707B2 (en)
JP2821768B2 (en) Multilayer ceramic capacitors
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JPS6230151B2 (en)
JPH0825791B2 (en) Non-reducing dielectric ceramic composition
JPS6211444B2 (en)
JP2700900B2 (en) Non-reducing dielectric porcelain composition
JPS63156062A (en) High permittivity ceramic composition and manufacture
JPS6135144B2 (en)
JPS62281205A (en) Dielectric ceramic composition
JPS6211443B2 (en)
JPS622408A (en) Non-reducing dielectric ceramic composition