JPH0751737A - Production of high-si-containing seamless stainless steel tube having excellent corrosion resistance and ductility and toughness - Google Patents

Production of high-si-containing seamless stainless steel tube having excellent corrosion resistance and ductility and toughness

Info

Publication number
JPH0751737A
JPH0751737A JP20391993A JP20391993A JPH0751737A JP H0751737 A JPH0751737 A JP H0751737A JP 20391993 A JP20391993 A JP 20391993A JP 20391993 A JP20391993 A JP 20391993A JP H0751737 A JPH0751737 A JP H0751737A
Authority
JP
Japan
Prior art keywords
corrosion resistance
sulfuric acid
content
stainless steel
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20391993A
Other languages
Japanese (ja)
Other versions
JP2949013B2 (en
Inventor
Tatsuyuki Hirai
龍至 平井
Norimi Wada
典巳 和田
Yasuo Kobayashi
泰男 小林
Ryuichiro Ebara
隆一郎 江原
Hideo Nakamoto
英雄 中本
Yoshikazu Yamada
義和 山田
Hajime Nagano
長野  肇
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20391993A priority Critical patent/JP2949013B2/en
Publication of JPH0751737A publication Critical patent/JPH0751737A/en
Application granted granted Critical
Publication of JP2949013B2 publication Critical patent/JP2949013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To provide a stainless steel tube having good corrosion resistance in environment in concd. sulfuric acids and excellent ductility and toughness by specifying the component range and production conditions of a high-Si-contg. stainless steel so as to facilitate production of the seamless steel tube by hot press piercing and extruding. CONSTITUTION:A steel ingot having the compsn. components consisting of, by weight%, <=0.08% C, 5.0 to 8.0% Si, <=2.0% Mn, 10 to 35% Ni, 10 to 25% Cr and the balance Fe and inevitable impurities and contg. the Cr, Sr and Ni in the contents satisfying equation I is used. This steel ingot is soaked in 1050 to 1150 deg.C and a temp. region satisfying equation II and thereafter the hot press piercing and extruding are ended in a >=950 deg.C temp. region. As a result, the high-Si-contg. seamless stainless steel tube having the corrosion resistance in the environment of >=65 deg.C in 95% sulfuric acid and >=150 deg.C in 98% sulfuric acid and the excellent ductility and toughness is obtd. This steel tube is used to piping of drying columns, absorption columns, etc., of a sulfuric acid production plant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、硫酸製造プラントの
乾燥塔、吸収塔等の装置材料として有用な、延靭性なら
びに高温、高濃度硫酸中での耐食性に優れた高Si含有
ステンレス継目無鋼管の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel seamless steel pipe containing a high Si content, which is useful as a material for a drying tower, an absorption tower, etc. of a sulfuric acid production plant and which has excellent ductility and corrosion resistance in high temperature and high concentration sulfuric acid. Manufacturing method.

【0002】[0002]

【従来の技術】接触式硫酸製造法で重要となる吸収、乾
燥、冷却行程において、装置材料は一般的に、濃度95
〜99%、温度65〜120℃の硫酸環境に曝される。
中でも配管類には、従来、Cr鋳鉄、高Si鋳鉄、ステ
ンレス鋼、高Ni合金等が使用されている。しかし、鋳
鉄では装置の設計上、制限を受けるばかりでなく、内部
欠陥が多いためメインテナンスにも難がある。一方、ス
テンレス鋼及び高Ni合金は構造用材料として適してい
るが、SUS316L等の汎用ステンレスでは上記環境
に耐えず、また、UNS N10276等の高Ni合金
でも100℃以上の温度では使用できない。
2. Description of the Related Art In the absorption, drying and cooling processes, which are important in the catalytic sulfuric acid production method, the equipment material generally has a concentration of 95%.
Exposed to sulfuric acid environment of ~ 99%, temperature 65-120 ° C.
Among them, for the pipes, Cr cast iron, high Si cast iron, stainless steel, high Ni alloy, etc. have been conventionally used. However, cast iron is not only restricted by the design of the apparatus, but also has a lot of internal defects, which makes maintenance difficult. On the other hand, although stainless steel and high Ni alloy are suitable as structural materials, general-purpose stainless steel such as SUS316L cannot withstand the above environment, and even high Ni alloy such as UNS N10276 cannot be used at a temperature of 100 ° C. or higher.

【0003】一般に乾燥塔での操業環境は、濃度95
%、温度65℃程度の硫酸中であるが、配管類の一部に
おいては100℃程度まで温度が上昇することもある。
さらに、98%硫酸環境である吸収塔は、現状100〜
120℃で操業されているが、温度を上げることにより
操業効率の向上を図ることが可能となるため、150℃
以上での使用に耐える配管が必要とされている。
Generally, the operating environment in a drying tower is a concentration of 95
%, The temperature is about 65 ° C., but the temperature may rise to about 100 ° C. in some of the piping.
Furthermore, the absorption tower which is 98% sulfuric acid environment is currently 100-
It is operated at 120 ° C, but it is possible to improve operating efficiency by raising the temperature, so 150 ° C
Piping that can withstand the above needs is required.

【0004】上記環境での使用を目的としたステンレス
鋼として、特開昭52−4418号公報及び特開平2−
290949号公報には、ステンレス鋼のSi含有量を
高めることにより、95%及び98%のいずれの硫酸濃
度においても高温まで良好な耐食性が得られると開示さ
れている。
As stainless steel intended for use in the above environment, Japanese Patent Laid-Open No. 4418/1982 and Japanese Patent Laid-Open No.
Japanese Patent No. 290949 discloses that by increasing the Si content of stainless steel, good corrosion resistance can be obtained up to high temperatures at both sulfuric acid concentrations of 95% and 98%.

【0005】[0005]

【発明が解決しようとする課題】しかし、高Si含有ス
テンレス鋼ではSi含有量の増加に伴い、硬い(HV:
500〜1000)金属間化合物やδフェライト等の脆
化相が生成する。特に鋳造過程において最終凝固する鋼
塊中心に近い部位ほど偏析が著しいため、この脆化相が
増加し、熱間加工性に劣るばかりでなく、製品となった
鋼管の延靭性も著しく劣化する。したがって、通常の鋳
造法によって得られた鋼塊では、熱間押出による鋼管製
造が困難であり、且つ構造用材料として重要な延靭性に
も劣るという問題点を有する。しかるに、上記の特開昭
52−4418号公報及び特開平2−290949号公
報によるものでは、この点が十分に考慮されていない。
However, in the high Si content stainless steel, as the Si content increases, it becomes hard (HV:
(500 to 1000) An embrittlement phase such as an intermetallic compound or δ ferrite is generated. In particular, in the casting process, since the segregation is more prominent in the region closer to the center of the steel solidified finally, the embrittlement phase increases, and not only the hot workability is deteriorated, but also the ductility of the product steel pipe is significantly deteriorated. Therefore, a steel ingot obtained by a normal casting method has a problem that it is difficult to manufacture a steel pipe by hot extrusion and the ductility which is important as a structural material is poor. However, the above-mentioned Japanese Patent Laid-Open Nos. 52-4418 and 2-290949 do not sufficiently consider this point.

【0006】この発明は上記のような従来技術における
問題を解決するためになされたもので、熱間プレス穿
孔、押出による継目無鋼管の製造が容易となる高Si含
有ステンレス鋼の成分範囲及び製造条件を規定すること
により、95%硫酸中においては65℃以上、98%硫
酸中では150℃以上の環境で良好な耐食性を有し、か
つ構造用材料としての延靭性に優れたステンレス鋼管を
得ることを目的とする。
The present invention has been made in order to solve the problems in the prior art as described above, and the composition range and production of a high Si content stainless steel which facilitates the production of a seamless steel pipe by hot press punching and extrusion. By specifying the conditions, a stainless steel pipe having good corrosion resistance in an environment of 65 ° C. or higher in 95% sulfuric acid and 150 ° C. or higher in 98% sulfuric acid and excellent in ductility as a structural material is obtained. The purpose is to

【0007】[0007]

【課題を解決するための手段】上記課題は、以下に述べ
る成分限定、製造条件により解決される。第1発明は、
重量%で、C:0.08%以下と、Si:5.0〜8.
0%と、Mn:2.0%以下と、Ni:10〜35%
と、Cr:10〜25%と、残部Fe及び不可避的不純
物からなり、Cr,Si及びNi含有量が(1)式を満
たした鋼塊を、1050〜1150℃、且つ(2)式を
満足する温度域T(℃)に均熱後、熱間プレス穿孔、押
出を950℃以上の温度域で終了することを特徴とする
耐食性、延靭性に優れた高Si含有ステンレス継目無鋼
管の製造方法である。
The above-mentioned problems can be solved by the following component limitation and manufacturing conditions. The first invention is
% By weight, C: 0.08% or less, and Si: 5.0-8.
0%, Mn: 2.0% or less, Ni: 10 to 35%
And Cr: 10 to 25%, balance Fe and unavoidable impurities, and a steel ingot having Cr, Si and Ni contents satisfying the expression (1), satisfying the expression (2) to 1050 to 1150 ° C. After soaking in a temperature range T (° C.), the method for producing a high Si-containing stainless seamless steel pipe excellent in corrosion resistance and ductility, characterized in that hot press punching and extrusion are completed in a temperature range of 950 ° C. or higher. Is.

【0008】第2発明は、重量%で、C:0.08%以
下と、Si:5.0〜8.0%と、Mn:2.0%以下
と、Ni:10〜35%と、Cr:10〜25%と、C
u:0.5〜3.0%、Mo:0.2〜2.0%及びP
d:0.005〜1.0%からなる群から選択された1
種以上と、残部Fe及び不可避的不純物からなり、C
r,Mo,Si及びNi含有量が(3)式を満たした鋼
塊を、1050〜1150℃、且つ(2)式を満足する
温度域T(℃)に均熱後、熱間プレス穿孔、押出を95
0℃以上の温度域で終了することを特徴とする耐食性、
延靭性に優れた高Si含有ステンレス継目無鋼管の製造
方法である。
The second aspect of the present invention is, in% by weight, C: 0.08% or less, Si: 5.0 to 8.0%, Mn: 2.0% or less, and Ni: 10 to 35%. Cr: 10 to 25%, C
u: 0.5 to 3.0%, Mo: 0.2 to 2.0% and P
d: 1 selected from the group consisting of 0.005 to 1.0%
C and more, and the balance Fe and unavoidable impurities, and C
After soaking a steel ingot whose r, Mo, Si and Ni contents satisfy the expression (3) to a temperature range T (° C) which satisfies the expression (2) and 1050 to 1150 ° C, hot press punching, 95 extrusion
Corrosion resistance, characterized by finishing in a temperature range of 0 ° C or higher,
It is a method for producing a high Si-containing stainless seamless steel pipe having excellent ductility.

【0009】 Cr(%) +3×Si(%) −Ni(%) −14<5 …(1) T<1470−35×Si(%) −5×Ni(%) …(2) Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14<5 …(3)Cr (%) + 3 × Si (%) −Ni (%) −14 <5 (1) T <1470−35 × Si (%) −5 × Ni (%) (2) Cr (% ) + Mo (%) + 3 × Si (%) − Ni (%) − 14 <5 (3)

【0010】[0010]

【作用】以下に、この発明のステンレス鋼管の成分添加
理由、成分限定理由を述べる。Cは含有量が多くなると
炭化物を形成し、耐食性を劣化させるため、その上限値
は0.08%とする。
The reason for adding the components and the reason for limiting the components of the stainless steel pipe of the present invention will be described below. When the content of C is large, it forms carbides and deteriorates the corrosion resistance, so the upper limit is made 0.08%.

【0011】Siは高温、高濃度硫酸中での耐食性を著
しく向上させる成分であるが、上記環境で良好な耐食性
を得るには、5.0%以上含有する必要がある。また、
8.0%を超えて添加すると多量の金属間化合物の生成
により、鋳造時に凝固割れが発生し、鋼塊の製造が不可
能となる。したがって、Si含有量は5.0〜8.0%
とする。
Si is a component that remarkably improves the corrosion resistance in high temperature and high concentration sulfuric acid, but in order to obtain good corrosion resistance in the above environment, it is necessary to contain Si by 5.0% or more. Also,
If it is added in excess of 8.0%, a large amount of intermetallic compound is generated, solidification cracking occurs during casting, and it becomes impossible to manufacture a steel ingot. Therefore, the Si content is 5.0 to 8.0%.
And

【0012】Mnは脱酸作用を有する成分であり、オー
ステナイト生成元素でもある。しかし、その含有量が
2.0%を超えると耐食性が劣化する。したがって、M
n含有量の上限値は2.0%とする。
Mn is a component having a deoxidizing action and is also an austenite forming element. However, if the content exceeds 2.0%, the corrosion resistance deteriorates. Therefore, M
The upper limit of the n content is 2.0%.

【0013】Niはオーステナイト組織を得るのに必須
の成分であり、含有量が10%未満ではδフェライトや
金属間化合物等の脆化相が多くなり、熱間加工性、及び
鋼管の延靭性を劣化させる。また、Cr,Mo及びSi
含有量の増加にともないNi含有量も多くする必要があ
る(詳細は後述する)。ただし、その含有量を多くする
とコスト高になるばかりでなく、後述する部分溶融温度
が低下し、熱間加工が可能な温度範囲が狭くなり鋼管の
製造が不可能となるため、上限値は35%とする。
Ni is an essential component for obtaining an austenite structure, and if the content is less than 10%, the brittle phases such as δ ferrite and intermetallic compounds increase, and the hot workability and the ductility of the steel pipe are increased. Deteriorate. Also, Cr, Mo and Si
It is necessary to increase the Ni content as the content increases (details will be described later). However, if the content thereof is increased, not only the cost becomes high, but also the partial melting temperature described later is lowered, the temperature range in which hot working is possible is narrowed, and it becomes impossible to manufacture a steel pipe. %.

【0014】Crはステンレス鋼の一般的な耐食性に対
して最も重要な元素であり、高Si含有ステンレス鋼に
おいては、その含有量を10%以上とする必要がある。
一方、高温高濃度硫酸中での耐食性もCr含有量の増加
にともない向上するが、25%を超えると耐食性に及ぼ
す効果は飽和する。また、Cr含有量が多くなると熱間
加工時の変形抵抗が増すとともに、脆化相の析出も促進
される。したがって、Cr含有量は10〜25%とす
る。
[0014] Cr is the most important element for the general corrosion resistance of stainless steel, and in high Si content stainless steel, its content must be 10% or more.
On the other hand, the corrosion resistance in high-temperature high-concentration sulfuric acid also improves as the Cr content increases, but if it exceeds 25%, the effect on the corrosion resistance becomes saturated. Further, as the Cr content increases, the deformation resistance during hot working increases and the precipitation of the embrittlement phase is promoted. Therefore, the Cr content is 10 to 25%.

【0015】Cuは95%硫酸中での耐食性向上に有効
な成分であることを発明者らは見出した。特にその効果
は、温度が高くなるほど顕著となるが、含有量が0.5
%未満では発揮されない。また、3.0%を超えて添加
しても耐食性に及ぼす効果は飽和するので、Cu含有量
は0.5〜3.0%とする。
The inventors have found that Cu is an effective component for improving corrosion resistance in 95% sulfuric acid. Especially, the effect becomes remarkable as the temperature rises, but the content is 0.5
If it is less than%, it will not be exhibited. Further, even if added over 3.0%, the effect on the corrosion resistance is saturated, so the Cu content is made 0.5 to 3.0%.

【0016】Moは95%硫酸中での耐食性向上に有効
な成分であることを発明者らは見出したが、含有量が
0.2%未満ではその効果が発揮されない。また、2.
0%を超えて添加しても耐食性に及ぼす効果は飽和し、
かつ含有量の増加にともない変形の抵抗の増加や脆化相
の形成が促進されるので、上限値は2.0%とする。
The inventors have found that Mo is an effective component for improving the corrosion resistance in 95% sulfuric acid, but if the content is less than 0.2%, the effect is not exhibited. Also, 2.
Even if added over 0%, the effect on corrosion resistance is saturated,
In addition, since the increase in deformation resistance and the formation of the embrittlement phase are promoted with the increase in the content, the upper limit value is made 2.0%.

【0017】Pdは硫酸中での耐食性向上に有効な成分
であることを発明者らは見出した。しかし、その含有量
が0.005%未満ではその効果が発揮されず、また、
1.0%を超えて添加しても耐食性に及ぼす効果は飽和
し、コスト高となる。したがって、Pd含有量は0.0
05〜1.0%とする。
The inventors have found that Pd is a component effective in improving corrosion resistance in sulfuric acid. However, if the content is less than 0.005%, the effect is not exhibited, and
Even if added over 1.0%, the effect on the corrosion resistance is saturated and the cost becomes high. Therefore, the Pd content is 0.0
05 to 1.0%.

【0018】また、本発明者らは、熱間押出時の割れ発
生及び鋼管の延靭性と脆化相の体積率との関係を調べた
結果、脆化相の体積率は(4)式の値Fp(%)で表す
ことができ、この値が5以上になると、熱間押出時に割
れが発生するばかりでなく、鋼管の延靭性が著しく劣化
することを見出した。したがって、Cr,Mo,Si及
びNi含有量は上記の限定に加えて、(3)式を満たす
範囲とする。
Further, as a result of investigating the relationship between the occurrence of cracks during hot extrusion and the ductility of the steel pipe and the volume fraction of the embrittlement phase, the present inventors have found that the volume fraction of the embrittlement phase is expressed by equation (4). It can be expressed by the value Fp (%), and it has been found that when this value is 5 or more, not only cracks occur during hot extrusion, but also the ductility of the steel pipe is significantly deteriorated. Therefore, the Cr, Mo, Si, and Ni contents are in the range that satisfies the formula (3) in addition to the above-mentioned limitations.

【0019】 Fp=Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14 …(4) Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14<5 …(3) なお、上記成分範囲の鋼は、常法に従って、溶鋼内に所
定の添加成分を母合金または単体の形で添加することに
より調整される。
Fp = Cr (%) + Mo (%) + 3 × Si (%) − Ni (%) − 14 (4) Cr (%) + Mo (%) + 3 × Si (%) − Ni (%) − 14 <5 (3) The steel having the above composition range is prepared by adding a predetermined additive component in molten steel in the form of a master alloy or a simple substance according to a conventional method.

【0020】次に、製造条件の限定理由を述べると、こ
の鋼において鋳造ままの鋼塊では、上記した脆化相の体
積率が(4)式の値Fpよりも多くなる。特に、偏析が
著しい鋼塊中心ほど脆化相は増加し、内面疵等の原因と
なるため、より多くのNi添加が必要となる。しかし、
Ni含有量を増加することは、後述する部分溶融温度の
低下につながり、熱間加工が可能な温度域を逆に狭める
結果となる。
Next, the reason for limiting the manufacturing conditions will be described. In the as-cast steel ingot of this steel, the volume ratio of the embrittlement phase becomes larger than the value Fp of the equation (4). In particular, the more the center of the ingot where the segregation is remarkable, the more the embrittlement phase increases, which causes defects on the inner surface, so that a larger amount of Ni must be added. But,
Increasing the Ni content leads to a lowering of the partial melting temperature, which will be described later, resulting in a narrower temperature range in which hot working is possible.

【0021】本発明者らは脆化相の体積率に及ぼす長時
間均熱の影響の詳細に検討した結果、特定の温度域で均
熱処理を施すことにより、鋼塊中心部においても表層部
とほぼ同程度の体積率となり、その値が(4)式で表せ
るFp(%)に低減することを見出した。ただし、均熱
温度が1050℃未満では100時間以上の均熱を施し
ても、上記効果が得られず、また、1150℃を超える
と逆に体積率は増加する。さらに、この鋼はSi含有量
の増加に伴い低融点化合物を形成する。このため、均熱
温度が高すぎると部分溶融を起こし、熱間加工中に割れ
を生じる。本発明者らは、この鋼の部分溶融する最低温
度が(5)式の値Tm(℃)となることを見出した。し
たがって、鋼塊に対する熱間プレス穿孔、押出前の均熱
条件は、1050〜1150℃、且つ前記(2)式を満
足する温度域T(℃)とする。
As a result of a detailed study of the effect of long-time soaking on the volume fraction of the embrittlement phase, the inventors of the present invention performed soaking treatment in a specific temperature range to obtain a surface layer portion even in the central portion of the steel ingot. It has been found that the volume ratios are almost the same and the value is reduced to Fp (%) that can be expressed by the equation (4). However, if the soaking temperature is less than 1050 ° C, the above effect cannot be obtained even if soaking is performed for 100 hours or more, and if it exceeds 1150 ° C, the volume ratio increases conversely. In addition, this steel forms low melting point compounds with increasing Si content. Therefore, if the soaking temperature is too high, partial melting occurs and cracks occur during hot working. The present inventors have found that the minimum temperature at which this steel partially melts is the value Tm (° C) of the equation (5). Therefore, the hot press perforation for the steel ingot and the soaking condition before extrusion are set to a temperature range T (° C) that satisfies 1050 to 1150 ° C and the above expression (2).

【0022】 Tm=1470−35×Si(%)−5+Ni(%) …(5) T<1470−35×Si(%)−5×Ni(%) …(2) また、この鋼においては950℃未満の温度域で熱間延
性が低下し、表面割れが発生する。したがって、熱間プ
レス穿孔及び押出の終了温度は950℃以上とする。
Tm = 1470-35 × Si (%)-5 + Ni (%) (5) T <1470-35 × Si (%)-5 × Ni (%) (2) Further, in this steel, 950 In the temperature range below ℃, hot ductility decreases and surface cracking occurs. Therefore, the end temperature of hot press punching and extrusion is 950 ° C or higher.

【0023】[0023]

【実施例】本発明に係る実験例及び実施例について説明
する。 実施例1 表1に示す化学成分の150kgインゴットを用意した
(試料番号2〜5,7,8,11〜13,15,17が
本発明組成のインゴット、他が本発明組成外のインゴッ
トである)。これらインゴットに、1050℃で10時
間の均熱処理を行い、熱間引張サンプルを採取した。ま
た、表1の試料番号11及び15の鋼のインゴットにお
ける脆化相の体積率と均熱処理条件との関係を調べるた
め、1000〜1200℃の温度域で均熱処理を行いミ
クロ観察用サンプルを採取した。さらに、均熱処理後の
インゴットから内径29mm、外径80mmの熱間押出
用鋼塊を削り出し、均熱処理と同様の1050℃加熱
後、終了温度950℃の熱間押出を行い、10t ×44
φの継目無鋼管を製造した。なお、試料11及び15の
鋼では仕上温度を900〜1000℃に変化させた鋼管
も作成した。鋼管の割れの有無を目視観察するととも
に、1100℃の固溶化熱処理を施した後、腐食試験サ
ンプル(3t ×15w ×50l )、引張試験片(6φ、
GL=24mm)及び2mmVノッチ付きシャルピー衝
撃試験片(ハーフサイズ)を採取した。また、試料番号
16〜20の鋼では孔食電位測定(JIS G057
7)用サンプルを採取した。ただし、割れが発生した鋼
管では、割れの無い健全部から上記サンプルを採取し
た。また、8%を超えるSi含有量の試料番号21の鋼
では、鋳込みままのインゴット全体に割れが発生してい
たため、熱間押出はできなかった。
EXAMPLES Experimental examples and examples according to the present invention will be described. Example 1 A 150 kg ingot of the chemical composition shown in Table 1 was prepared (Sample Nos. 2 to 5, 7, 8, 11 to 13, 15, and 17 are ingots of the composition of the present invention, and others are ingots other than the composition of the present invention. ). These ingots were subjected to soaking at 1050 ° C. for 10 hours, and hot tensile samples were collected. Further, in order to investigate the relationship between the volume ratio of the embrittlement phase in the steel ingots of sample numbers 11 and 15 in Table 1 and the soaking conditions, soaking is performed in the temperature range of 1000 to 1200 ° C. and micro observation samples are collected. did. Further, a hot extrusion steel ingot having an inner diameter of 29 mm and an outer diameter of 80 mm was carved out from the ingot after the soaking treatment, heated at 1050 ° C. as in the soaking treatment, and then hot extruded at an end temperature of 950 ° C. to obtain 10 t × 44.
A φ seamless steel pipe was manufactured. For the steels of Samples 11 and 15, steel pipes having different finishing temperatures from 900 to 1000 ° C were also prepared. After visually observing the presence or absence of cracks in the steel pipe and subjecting it to solution heat treatment at 1100 ° C., a corrosion test sample (3 t × 15 w × 50 l ) and a tensile test piece (6φ,
GL = 24 mm) and 2 mm V notched Charpy impact test pieces (half size) were taken. Further, with the steels of sample numbers 16 to 20, pitting corrosion potential measurement (JIS G057
The sample for 7) was collected. However, in the case of a cracked steel pipe, the above sample was taken from a sound part without cracks. Further, in the steel of Sample No. 21 having a Si content of more than 8%, cracking occurred in the entire ingot as cast, and thus hot extrusion could not be performed.

【0024】図1及び図2に、95%,65℃及び98
%,150℃硫酸中での耐食性とSi含有量との関係を
示す。図1及び図2によれば本環境では5%以上のSi
含有により、腐食速度が著しく低下することがわかる。
1 and 2, 95%, 65 ° C. and 98
%, Shows the relationship between the corrosion resistance in 150 ° C. sulfuric acid and the Si content. According to FIGS. 1 and 2, in this environment, 5% or more of Si
It can be seen that the corrosion rate remarkably decreases due to the inclusion.

【0025】図3に、95%,100℃硫酸中での耐食
性及び3.5%NaCl中での孔食電位とCr含有量と
の関係を示す。図3によればCr含有量が10%未満に
なると、Si含有量が8%程度であっても孔食電位は著
しく低下することがわかる。また、硫酸中での耐食性は
Cr含有量の増加にともない向上するが、25%を超え
ると腐食速度は一定になることが理解される。
FIG. 3 shows the relationship between the corrosion resistance in 95% sulfuric acid at 100 ° C., the pitting potential in 3.5% NaCl, and the Cr content. From FIG. 3, it can be seen that when the Cr content is less than 10%, the pitting potential is significantly lowered even when the Si content is about 8%. Further, it is understood that the corrosion resistance in sulfuric acid improves as the Cr content increases, but the corrosion rate becomes constant when it exceeds 25%.

【0026】図4及び図5に、95%,100℃硫酸中
での耐食性とCu含有量及びMo含有量との関係を各々
示す。図4及び図5によればCuを0.5%以上、ある
いはMoを0.2%以上添加すると、95%,100℃
硫酸中での腐食速度は著しく低下する。しかし、その含
有量がCuでは3%、Moでは2%を超えると腐食速度
は一定になることがわかる。
4 and 5 show the relationship between the corrosion resistance in 95% and 100 ° C. sulfuric acid and the Cu content and Mo content, respectively. According to FIG. 4 and FIG. 5, when Cu is added by 0.5% or more or Mo is added by 0.2% or more, 95%, 100 ° C.
The corrosion rate in sulfuric acid is significantly reduced. However, it can be seen that the corrosion rate becomes constant when the content of Cu exceeds 3% and the content of Mo exceeds 2%.

【0027】図6に、95%,100℃及び98%,2
20℃硫酸中での耐食性とPd含有量との関係を示す。
図6によれば95%,100℃及び98%,220℃硫
酸中での耐食性は、0.005%以上のPd添加により
向上することがわかる。しかし、その含有量が1.0%
を超えると腐食速度は一定になる。
In FIG. 6, 95%, 100 ° C. and 98%, 2
The relationship between the corrosion resistance in 20 ° C. sulfuric acid and the Pd content is shown.
From FIG. 6, it can be seen that the corrosion resistance in 95%, 100 ° C. and 98%, 220 ° C. sulfuric acid is improved by adding 0.005% or more of Pd. However, its content is 1.0%
Above, the corrosion rate becomes constant.

【0028】図7に、インゴットの熱間引張試験によ
り、部分溶解して絞りが0%になる最低温度とNi及び
Si含有量との関係を示す。図7によれば部分溶融する
最低温度は(5)式の値Tm(℃)で表せることがわか
る。
FIG. 7 shows the relationship between the minimum temperature at which the ingot is partially melted and the drawing becomes 0% and the Ni and Si contents by the hot tensile test of the ingot. It can be seen from FIG. 7 that the minimum temperature at which partial melting occurs can be represented by the value Tm (° C.) of the equation (5).

【0029】 Tm=1470−35×Si(%)−5×Ni(%) …(5) 図8に、試料番号11及び15の鋼のインゴットにおけ
る脆化相の体積率Fpと均熱処理条件との関係を示す。
図8によれば試料番号11及び15の鋼とともに、熱間
温度が1050℃未満では、100時間均熱を施しても
脆化相の体積率は鋳造ままと変わらなく、特に、インゴ
ット表層部に比べ中心部では著しく多い。これに対し、
1050〜1150℃の温度域で均熱した場合、中心
部、表層部ともに体積率は低下し、ほぼ同じ値となる。
さらに、1150℃を超える温度では体積率が増加する
ことがわかる。
Tm = 1470−35 × Si (%) − 5 × Ni (%) (5) FIG. 8 shows the volume fraction Fp of the embrittlement phase in the steel ingots of sample numbers 11 and 15 and the soaking condition. Shows the relationship.
According to FIG. 8, with the steels of sample numbers 11 and 15, when the hot temperature was less than 1050 ° C., the volume fraction of the embrittlement phase did not change as it was even after soaking for 100 hours, and especially in the surface layer portion of the ingot. Compared with this, the number is much higher in the center. In contrast,
When soaking in the temperature range of 1050 to 1150 ° C., the volume ratios of both the central portion and the surface layer portion decrease and become almost the same value.
Further, it can be seen that the volume ratio increases at a temperature higher than 1150 ° C.

【0030】図9に、試料番号11及び15の鋼の熱間
押出時の割れの有無と仕上温度との関係を示す。図9に
よれば仕上温度が950℃未満になると、試料11及び
15ともの熱間押出時に割れが発生することがわかる。
FIG. 9 shows the relationship between the presence or absence of cracks and the finishing temperature during hot extrusion of the steels of sample numbers 11 and 15. According to FIG. 9, it can be seen that when the finishing temperature is lower than 950 ° C., cracks occur in both samples 11 and 15 during hot extrusion.

【0031】図10に、脆化相の体積率、熱間押出時の
割れの有無、引張試験での伸び及びシャルピー衝撃試験
における0℃の吸収エネルギと成分との関係を示す。図
10によれば脆化相の体積率は(4)式の値Fp(%)
と良く対応していることがわかる。また、この値が5以
上になると熱間押出時に割れが発生するとともに、鋼管
の伸び及び吸収エネルギが著しく低下し、構造用材料と
してては不適格であることが理解される。
FIG. 10 shows the relationship between the volume fraction of the embrittlement phase, the presence or absence of cracks during hot extrusion, the elongation in the tensile test, and the absorbed energy at 0 ° C. in the Charpy impact test and the components. According to FIG. 10, the volume ratio of the embrittlement phase is the value Fp (%) of the equation (4).
You can see that it corresponds well. Further, it is understood that when this value is 5 or more, cracking occurs during hot extrusion and the elongation and absorbed energy of the steel pipe remarkably decrease, which makes it unsuitable as a structural material.

【0032】 Fp=Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14 …(4) 実施例2 表2に示す化学成分の内径50mm、外径210mmの
鋼塊を素材として表3に示す条件の熱間プレス穿孔及び
熱間押出により、13t ×140φの継目無鋼管を製造
した。なお、プレス穿孔前の均熱時間はいずれも3hr
とした。鋼管は実施例1と同様、割れの有無を目視観察
し、1100℃の固溶化熱処理後、腐食試験サンプル、
引張試験片及び2mmVノッチ付きシャルピー衝撃試験
片(フルサイズ)を採取した。
Fp = Cr (%) + Mo (%) + 3 × Si (%)-Ni (%)-14 (4) Example 2 A steel ingot having a chemical composition shown in Table 2 having an inner diameter of 50 mm and an outer diameter of 210 mm was prepared. As a raw material, a 13 t × 140φ seamless steel pipe was manufactured by hot press punching and hot extrusion under the conditions shown in Table 3. The soaking time before punching the press was 3 hours in all cases.
And Similar to Example 1, the steel pipe was visually observed for cracks, subjected to solution heat treatment at 1100 ° C., and then subjected to a corrosion test sample,
A tensile test piece and a Charpy impact test piece with a 2 mm V notch (full size) were collected.

【0033】この鋼管の熱間加工時の割れの有無、引張
試験での伸び、シャルピー衝撃試験における0℃の吸収
エネルギ及び高温高濃度硫酸中での腐食速度を表4に併
せて示す。表4によれば、本発明法で製造した高Si含
有ステンレス継目無鋼管は割れの発生もなく、95%,
65℃以上の硫酸、98%,150℃以上の硫酸中で良
好な耐食性を有し、延靭性にも優れていることがわか
る。特に、Cu,Mo,Pdのいずれか1種以上を含有
した鋼種では95%,100℃硫酸中でも耐食性に優れ
ることが理解される。
Table 4 also shows the presence or absence of cracks during hot working, the elongation in the tensile test, the absorbed energy at 0 ° C. in the Charpy impact test and the corrosion rate in high temperature concentrated sulfuric acid. According to Table 4, the high Si content stainless seamless steel pipe produced by the method of the present invention has 95%
It can be seen that it has good corrosion resistance in sulfuric acid of 65 ° C. or higher, 98%, and sulfuric acid of 150 ° C. or higher, and has excellent ductility and toughness. In particular, it is understood that the steel type containing any one or more of Cu, Mo and Pd has excellent corrosion resistance even in 95% and 100 ° C. sulfuric acid.

【0034】[0034]

【発明の効果】以上のように、この発明によれば、95
%硫酸中においては65〜100℃、98%硫酸中では
150〜220℃の環境で良好な耐食性を有し、かつ構
造用材料としての延靭性に優れた高Si含有ステンレス
継目無鋼管を熱間プレス穿孔、押出によって容易に得ら
れる効果がある。したがって、硫酸製造プラントの乾燥
塔、吸収塔等の配管類に利用できるステンレス鋼管の提
供が可能となる。
As described above, according to the present invention, 95
% High-Si stainless steel seamless steel pipe that has good corrosion resistance in an environment of 65 to 100 ° C in 98% sulfuric acid and 150 to 220 ° C in 98% sulfuric acid and has excellent ductility as a structural material There is an effect that can be easily obtained by press punching and extrusion. Therefore, it is possible to provide a stainless steel pipe that can be used for piping such as a drying tower and an absorption tower of a sulfuric acid manufacturing plant.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による鋼の95%,65℃硫
酸中での耐食性とSi含有量との関係を示す図。
FIG. 1 is a graph showing the relationship between the corrosion resistance of steel according to Example 1 of the present invention in 95%, 65 ° C. sulfuric acid and the Si content.

【図2】実施例1による鋼の98%,150℃硫酸中で
の耐食性とSi含有量との関係を示す図。
FIG. 2 is a graph showing the relationship between the corrosion resistance of steel according to Example 1 in 98% sulfuric acid at 150 ° C. and the Si content.

【図3】同じく実施例1による鋼の95%,100℃硫
酸中での耐食性及び3.5%NaCl中での孔食電位と
Cr含有量との関係を示す図。
FIG. 3 is a graph showing the relationship between the corrosion resistance of 95% steel at 100 ° C. in sulfuric acid and the pitting potential in 3.5% NaCl and the Cr content of the steel according to Example 1.

【図4】実施例1による鋼の95%,100℃硫酸中で
の耐食性とCu含有量との関係を示す図。
FIG. 4 is a graph showing the relationship between the corrosion resistance of 95% steel in Example 1 in 100 ° C. sulfuric acid and the Cu content.

【図5】同じく実施例1による鋼の95%,100℃硫
酸中での耐食性とMo含有量との関係を示す図。
FIG. 5 is a graph showing the relationship between the corrosion resistance of 95% steel in Example 1 in 100 ° C. sulfuric acid and the Mo content.

【図6】実施例1による鋼の95%,100℃及び98
%,220℃硫酸中での耐食性とPd含有量との関係を
示す図。
FIG. 6 95% of steel according to example 1, 100 ° C. and 98
%, A diagram showing the relationship between the corrosion resistance in 220 ° C. sulfuric acid and the Pd content.

【図7】同じく実施例1による鋼の部分溶融する最低温
度とNi及びSi含有量との関係を示す図。
FIG. 7 is a diagram showing the relationship between the minimum temperature at which the steel partially melts and the Ni and Si contents according to the first embodiment.

【図8】実施例1による試料11及び12の脆化相の体
積率と均熱処理条件との関係を示す図。
FIG. 8 is a diagram showing the relationship between the volume ratio of the embrittlement phase of Samples 11 and 12 according to Example 1 and the soaking condition.

【図9】同じく実施例1による試料11及び15の熱間
押出時の割れの有無と仕上温度との関係を示す図。
9 is a graph showing the relationship between the presence or absence of cracks and the finishing temperature during hot extrusion of Samples 11 and 15 according to Example 1. FIG.

【図10】実施例1による鋼の脆化相の体積率、熱間押
出時の割れの有無、引張試験での伸び及びシャルピー衝
撃試験における0℃の吸収エネルギと成分との関係を示
す図。
10 is a diagram showing the relationship between the volume fraction of the embrittlement phase of steel according to Example 1, the presence or absence of cracks during hot extrusion, the elongation in the tensile test, and the absorbed energy at 0 ° C. in the Charpy impact test and the components.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 泰男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 江原 隆一郎 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 中本 英雄 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 山田 義和 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 長野 肇 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 中村 誠 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuo Kobayashi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Ryuichiro Ehara 4-22, Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima No. Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute (72) Inventor Hideo Nakamoto 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Yoshikazu Yamada Kannon Shinmachi, Nishi-ku, Hiroshima Prefecture 4-6-22 Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Hajime Nagano 2-5-1-5 Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Makoto Nakamura 2 Marunouchi, Chiyoda-ku, Tokyo 5th-1th Sanryo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.08%以下と、S
i:5.0〜8.0%と、Mn:2.0%以下と、N
i:10〜35%と、Cr:10〜25%と、残部Fe
及び不可避的不純物からなり、Cr,Si及びNi含有
量が(1)式を満たしてなる鋼塊を、1050〜115
0℃、且つ(2)式を満足する温度域T(℃)に均熱
後、熱間プレス穿孔及び押出を950℃以上の温度域で
終了することを特徴とする耐食性、延靭性に優れた高S
i含有ステンレス継目無鋼管の製造方法。 Cr(%) +3×Si(%) −Ni(%) −14<5 …(1) T<1470−35×Si(%) −5×Ni(%) …(2)
1. C: 0.08% or less by weight% and S
i: 5.0 to 8.0%, Mn: 2.0% or less, N
i: 10 to 35%, Cr: 10 to 25%, balance Fe
And an inevitable impurity, and a Cr, Si, and Ni content satisfying the formula (1),
After soaking at 0 ° C. and a temperature range T (° C.) satisfying the formula (2), hot press punching and extrusion are finished at a temperature range of 950 ° C. or higher, which is excellent in corrosion resistance and ductility. High S
Method for producing i-containing stainless seamless steel pipe. Cr (%) + 3 * Si (%)-Ni (%)-14 <5 ... (1) T <1470-35 * Si (%)-5 * Ni (%) ... (2)
【請求項2】 重量%で、C:0.08%以下と、S
i:5.0〜8.0%と、Mn:2.0%以下と、N
i:10〜35%と、Cr:10〜25%と、Cu:
0.5〜3.0%、Mo:0.2〜2.0%及びPd:
0.005〜1.0%からなる群から選択された1種以
上と、残部Fe及び不可避的不純物からなり、Cr,M
o,Si及びNi含有量が(3)式を満たしてなる鋼塊
を、1050〜1150℃、且つ(2)式を満足する温
度域T(℃)に均熱後、熱間プレス穿孔及び押出を95
0℃以上の温度域で終了することを特徴とする耐食性、
延靭性に優れた高Si含有ステンレス継目無鋼管の製造
方法。 Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14<5 …(3) T<1470−35×Si(%) −5×Ni(%) …(2)
2. C: 0.08% or less by weight% and S
i: 5.0 to 8.0%, Mn: 2.0% or less, N
i: 10-35%, Cr: 10-25%, Cu:
0.5-3.0%, Mo: 0.2-2.0% and Pd:
One or more selected from the group consisting of 0.005 to 1.0% and the balance Fe and inevitable impurities, and Cr, M
After soaking the steel ingot having the contents of o, Si and Ni satisfying the expression (3) to a temperature range T (° C) satisfying the expression (2) at 1050 to 1150 ° C, hot press punching and extrusion To 95
Corrosion resistance, characterized by finishing in a temperature range of 0 ° C or higher,
A method for producing a high Si-containing stainless seamless steel pipe having excellent ductility. Cr (%) + Mo (%) + 3 * Si (%)-Ni (%)-14 <5 ... (3) T <1470-35 * Si (%)-5 * Ni (%) ... (2)
JP20391993A 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility Expired - Fee Related JP2949013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391993A JP2949013B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391993A JP2949013B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Publications (2)

Publication Number Publication Date
JPH0751737A true JPH0751737A (en) 1995-02-28
JP2949013B2 JP2949013B2 (en) 1999-09-13

Family

ID=16481869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391993A Expired - Fee Related JP2949013B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Country Status (1)

Country Link
JP (1) JP2949013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141432A1 (en) * 1998-12-17 2001-10-10 Ati Properties, Inc. Corrosion resistant austenitic stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1141432A1 (en) * 1998-12-17 2001-10-10 Ati Properties, Inc. Corrosion resistant austenitic stainless steel
EP1141432A4 (en) * 1998-12-17 2002-06-05 Ati Properties Inc Corrosion resistant austenitic stainless steel

Also Published As

Publication number Publication date
JP2949013B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
JP6904359B2 (en) Austenitic stainless steel
EP2415883B1 (en) Method for producing high-strength seamless cr-ni alloy pipe
JP5297145B2 (en) Steel for machine structure and cold forged parts with excellent cold forgeability
JPH0693389A (en) High si stainless steel excellent in corrosion resistance and ductility-toughness and its production
JP3463617B2 (en) Austenitic heat-resistant steel for seamless steel pipes with excellent hot workability
EP2656931B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
JP2949013B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JP3177555B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JPS6144135B2 (en)
JP2639798B2 (en) Manufacturing method of austenitic stainless steel
US5030297A (en) Process for the manufacture of seamless pressure vessels and its named product
JP3067477B2 (en) Method for manufacturing high Si content stainless steel welded steel pipe excellent in corrosion resistance and ductility
JPH04165019A (en) Manufacture of high corrosion-resistant seamless two-phase stainless steel tube
JPH06306553A (en) Stainless steel excellent in pitting corrosion resistance
JPH0450366B2 (en)
JPS6363610B2 (en)
JPH1096038A (en) High cr austenitic heat resistant alloy
RU2180691C1 (en) Pipe for gas and oil product lines and method of its manufacture
JPH057457B2 (en)
JPS6363609B2 (en)
JP4975448B2 (en) 655 MPa grade martensitic stainless steel excellent in toughness and method for producing the same
JP7513867B2 (en) Austenitic stainless steel and method for producing same
JP4193227B2 (en) Fe-Cr-Si steel sheet and method for producing the same
JPH09195005A (en) Austenitic heat resistant steel excellent in high temperature strength
JPH0693388A (en) High si stainless steel excellent in corrosion resistance and ductilility-toughness and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990622

LAPS Cancellation because of no payment of annual fees