JPH04165019A - Manufacture of high corrosion-resistant seamless two-phase stainless steel tube - Google Patents

Manufacture of high corrosion-resistant seamless two-phase stainless steel tube

Info

Publication number
JPH04165019A
JPH04165019A JP29018390A JP29018390A JPH04165019A JP H04165019 A JPH04165019 A JP H04165019A JP 29018390 A JP29018390 A JP 29018390A JP 29018390 A JP29018390 A JP 29018390A JP H04165019 A JPH04165019 A JP H04165019A
Authority
JP
Japan
Prior art keywords
stainless steel
seamless
corrosion resistance
heat treatment
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29018390A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
弘 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29018390A priority Critical patent/JPH04165019A/en
Publication of JPH04165019A publication Critical patent/JPH04165019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To stably mass-produce high strength two-phase stainless steel seamless tubes having excellent corrosion resistance and good toughness by hot-rolling a two-phase stainless steel ingot of specified compsn. in specified conditions to obtain a raw tube material, forming this raw tube material into a seamless steel tube by a conventional method, and then applying the tube to a solution heat treatment. CONSTITUTION:A two-phase stainless steel ingot incorporating, by wt.%, <=0.03% C, <=0.7% Si, <=2.0% Mn, <=0.030% P, <=0.003% S, 5-8% Ni, 22-26% Cr, 2.5-4.5% Mo, 0.14-0.30% N, and 0.010-0.040% Al is prepared. This ingot is formed into a raw tube material by hot working process in which soaking treatment at 1220-1270 deg.C held for 24 hours or longer is applied before the finish stage. Then the raw tube material is formed into a seamless steel tube by a conventional method. This tube is heated and maintained at the temp. for usual solution heat treatment, and then rapidly cooled at >=5X10<4> deg.C/hr cooling rate from 950 deg.C to 750 deg.C to obtain the objective seamless steel tube.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、海水等と接触する熱交換器用チューブやそ
れに付帯する配管、H,SやCO2のような腐食性のガ
スを含む石油・天然ガスを採掘するための油井管、或い
は上記石油や天然ガスを輸送するための輸送管等として
好適な、耐食性、靭性に優れた高強度継目無二相ステン
レス鋼管の製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to heat exchanger tubes and associated piping that come into contact with seawater, oil and natural gases containing corrosive gases such as H, S, and CO2. The present invention relates to a method for manufacturing a high-strength seamless duplex stainless steel pipe with excellent corrosion resistance and toughness, which is suitable for use as oil country tubular goods for extracting gas, transportation pipes for transporting the above-mentioned oil and natural gas, and the like.

(従来技術とその課題〉 近年、海水を使用する熱交換器等の如き海洋機器類には
、このような厳しい腐食環境においても比較的良好な耐
食性を示すJISSUS329J1綱(Pe −3〜6
wtXNi −23〜28wtχCr−1〜3wtχM
o系鋼)等に代表される二相ステンレス鋼が適用される
ようになった。また、上記規格鋼では高温海水に対する
耐食性が十分でないとの指摘もあったことから、これを
受けて、Cr、 Ni、 Mo及びNの基本成分に加え
w、  v、 Ti、Zr、 Nb+ Ta等の1種以
上を添加し上記特性を改善した二相ステンレス鋼も提案
された(特公昭51−43807号)。そして、この鋼
種は高温海水に対して優れた耐食性を示す上に加工性も
比較的良好であったため、各種化学プラント装置ばかり
か、最近では腐食環境がより厳しいH,S。
(Prior art and its problems) In recent years, marine equipment such as heat exchangers that use seawater have been manufactured using JISSUS329J1 class (Pe-3 to 6), which has relatively good corrosion resistance even in such severe corrosive environments.
wtXNi -23~28wtχCr-1~3wtχM
Duplex stainless steels such as O-series steels have come to be used. In addition, it has been pointed out that the above standard steel does not have sufficient corrosion resistance against high-temperature seawater, so in addition to the basic components of Cr, Ni, Mo, and N, w, v, Ti, Zr, Nb+Ta, etc. A duplex stainless steel was also proposed in which the above characteristics were improved by adding one or more of the following (Japanese Patent Publication No. 43807/1983). This steel type has excellent corrosion resistance against high-temperature seawater and has relatively good workability, so it is used not only in various chemical plant equipment, but also in H and S steels, which have more severe corrosive environments.

CO□等を含む石油や天然ガスの掘削、輸送用の管にも
用途が拡大している。
Applications are also expanding to pipes for drilling and transporting oil and natural gas, including CO□.

なお、このような用途に供される継目無二相ステンレス
鋼管の製造には、通常、第4図で示される工程が採用さ
れる。ただ、二相ステンレス鋼は他の鋼種に比べて熱間
加工性が劣る嫌いがあり、そのため製管加工中に割れが
発生しやすい面があった。そこで、継目無二相ステンレ
ス鋼管の製造安定性を目指した「プラグミル方式での製
管時にビレットの加熱温度や加工時の付加歪を特定範囲
に調整する」等の提案(特公昭61−2743号)もな
され、継目無二相ステンレス鋼管の需要増に対する期待
は益々強まっている。
Note that the process shown in FIG. 4 is normally employed to manufacture seamless duplex stainless steel pipes for such uses. However, duplex stainless steel has poor hot workability compared to other steel types, and as a result, cracks are more likely to occur during tube manufacturing. Therefore, a proposal was made to improve the manufacturing stability of seamless duplex stainless steel pipes, such as ``adjusting the billet heating temperature and added strain during processing to a specific range during pipe manufacturing using the plug mill method'' (Special Publication No. 61-2743). ), and expectations for increased demand for seamless duplex stainless steel pipes are growing stronger.

ところが、最近、海洋設備・機器類の使用環境や石油・
天然ガスの掘削環境は益々苛酷化の度合いを増しており
、これに伴い使用する鋼管の耐食性・強度要求も一段と
厳しくなって、従来の二相ステンレス鋼ではこれらの要
求に応じ切れなくなる懸念も出てきた。
However, recently, the environment in which marine equipment and equipment are used, oil and
The natural gas drilling environment is becoming increasingly harsh, and as a result, the requirements for corrosion resistance and strength for the steel pipes used are becoming even more stringent, and there are concerns that conventional duplex stainless steel will no longer be able to meet these requirements. It's here.

一般に、コスト的なバランスが採れるのであれば、二相
ステンレス鋼の耐食性や強度を向上させる手法として「
主要成分たるCr+ Ni、 Mo及びNの含有量を増
すこと」が有効であることは知られている。しかし、C
r、 Mo、 Ni量を増加させると、管の製造中(ビ
レット圧延・鍛造時、熱間製管中及び管の熱処理後の冷
却時等)にシグマ相を主とした金属間化合物が生成しや
すくなり、熱間や冷間での加工性を更に悪くすると言う
問題が出てくる。
In general, if a cost balance can be achieved, "
It is known that increasing the content of the main components Cr+Ni, Mo and N is effective. However, C
When the amounts of r, Mo, and Ni are increased, intermetallic compounds mainly consisting of sigma phase are generated during tube manufacturing (during billet rolling and forging, during hot tube manufacturing, and during cooling after tube heat treatment, etc.). This causes the problem of further worsening hot and cold workability.

特に、管の製造中に素材が室温付近にまで冷却された場
合の靭性劣化は著しく、シグマ相の析出量や加工歪速度
にもよるが、加工性が極端に低下してその後の冷間加工
等が不可能となる恐れもあった。しかも、シグマ相が存
在していると、最終製品であっても耐食性(主としてJ
−が含まれる水溶液中での耐孔食性、耐すきま腐食性)
や靭性が劣化し、所望性能の確保は困難であった。
In particular, when the material is cooled to around room temperature during pipe manufacturing, the toughness deteriorates significantly, and depending on the amount of sigma phase precipitation and processing strain rate, the workability is extremely reduced and subsequent cold processing is difficult. There was also a fear that it would become impossible. Moreover, the presence of the sigma phase improves corrosion resistance (mainly J
- resistance to pitting corrosion and crevice corrosion in aqueous solutions containing
It was difficult to secure desired performance due to deterioration in toughness and toughness.

なお、シグマ相の析出温度は950〜750℃であるが
、その析出はCr、 Mo元素の拡散によって起きるこ
とが分っている。そして、通常の継目無管製造工程では
ビレット圧延・鍛造後の冷却時。
The precipitation temperature of the sigma phase is 950 to 750°C, and it is known that the precipitation occurs due to the diffusion of Cr and Mo elements. In the normal seamless pipe manufacturing process, it is during cooling after billet rolling and forging.

熱間製管後の冷却時及び熱処理後の冷却時に悪影響を及
ぼすシグマ相の析出が起きやすいが、特に熱間加工後の
冷却中は加工歪が残存しているために前記元素の拡散が
容易となり、歪のない熱処理後の冷却に比較してシグマ
相の析出は加速される。
Precipitation of the sigma phase, which has an adverse effect, is likely to occur during cooling after hot pipe forming and during cooling after heat treatment, but especially during cooling after hot working, the above elements are easily diffused due to residual processing strain. Therefore, the precipitation of the sigma phase is accelerated compared to cooling after heat treatment without strain.

加えて、Nの添加は前述したように耐食性及び強度の向
上に有効であるが、一方で熱間加工時の変形抵抗を増大
させると言う弊害をも招き、また高温に加熱される場合
にはNの固溶度の関係で窒化物が生成し、その近傍にC
r欠乏層を生じさせて耐食性、靭性を劣化させる挙動に
もつながった。
In addition, although the addition of N is effective in improving corrosion resistance and strength as described above, it also has the disadvantage of increasing deformation resistance during hot working, and when heated to high temperatures. Nitride is formed due to the solid solubility of N, and C
This also led to behavior that caused an r-deficient layer and deteriorated corrosion resistance and toughness.

このようなことから、本発明の目的は、十分に優れた耐
食性、靭性を有した高強度二相ステンレス鋼継目無管を
工業的に安定して量産し得る手段を確立することに置か
れた。
Therefore, the purpose of the present invention was to establish a means for industrially stably mass-producing high-strength duplex stainless steel seamless pipes with sufficiently excellent corrosion resistance and toughness. .

〈課題を解決するための手段〉 そこで、本発明者は上記目的を達成すべく鋭意研究を重
ねた結果、[耐食性及び強度を向上させるためにCr、
 Ni、 Mo及びN含有量を高めた二相ステンレス鋼
では、前述したようにシグマ相を主とした金属間化合物
が容易に生成し加工性を阻害すると言う問題が起きるが
、この場合、St含有量を低減すると共にビレットメー
キング時にソーキング熱処理を実施して成分偏析の低減
すると、継目無鋼管の熱間製管時におけるシグマ相及び
窒化物の析出が顕著に抑制されて加工性が著しく改善さ
れる上、これに加えて製管後の固溶化熱処理時における
冷却速度の調整を実施すると、シグマ相や窒化物の極力
少ない極めて優れた耐食性、靭性を示す高強度継目無二
相ステンレス鋼管が能率の良い作業性の下で安定して得
られるようになる」との知見を得ることができた。
<Means for Solving the Problems> Therefore, as a result of intensive research to achieve the above object, the present inventors found that [Cr,
Duplex stainless steel with increased Ni, Mo, and N contents has the problem that intermetallic compounds, mainly sigma phase, are easily formed and impede workability, as described above. If the component segregation is reduced by reducing the amount and performing soaking heat treatment during billet making, the precipitation of sigma phase and nitrides during hot forming of seamless steel pipes will be significantly suppressed, and the workability will be significantly improved. In addition to this, by adjusting the cooling rate during solution heat treatment after pipe manufacturing, high-strength seamless duplex stainless steel pipes that exhibit extremely excellent corrosion resistance and toughness with minimal sigma phase and nitrides can be produced with high efficiency. We were able to obtain the knowledge that "it will be possible to obtain stable results under good workability."

本発明は、上記知見事項等に基づいてなされたもので、 rc:0.03%以下(以降、成分割合を表わす%は重
量%とする)。
The present invention was made based on the above-mentioned findings, etc. rc: 0.03% or less (hereinafter, % representing the component ratio is expressed as weight %).

Si : 0.7%以下、    Mn : 2.0%
以下。
Si: 0.7% or less, Mn: 2.0%
below.

P : 0.030%以下、   S : 0.003
%以下。
P: 0.030% or less, S: 0.003
%below.

Ni:5〜8%、    Cr : 22〜26%。Ni: 5-8%, Cr: 22-26%.

Mo : 2.5〜4.5%、   N : 0.14
〜0.30%。
Mo: 2.5-4.5%, N: 0.14
~0.30%.

A170.010〜0.040% を含む二相ステンレス鋼の鋳片から、1200〜127
0℃の温度範囲内に24時間以上保持するソーキング処
理を最終工程前に施す熱間加工によって製管用素材を得
た後、該素材を用いて常法により所定寸法の継目無鋼管
を成形し、次いでこれに加熱保持後における950〜7
50℃間の冷却速度を5×104℃/hr以上に調整し
た固溶化熱処理を施すことにより、耐食性及び靭性に優
れた継目無二相ステンレス鋼管を安定して製造し得るよ
うにした点」 に大きな特徴を有している。
1200-127 from duplex stainless steel slab containing A170.010-0.040%
After obtaining a pipe-making material by hot working, which involves applying a soaking treatment in a temperature range of 0°C for 24 hours or more before the final process, the material is used to form a seamless steel pipe of a predetermined size by a conventional method, Next, 950-7 after heating and holding
By performing solution heat treatment with a cooling rate of 50°C adjusted to 5 x 104°C/hr or more, seamless duplex stainless steel pipes with excellent corrosion resistance and toughness can be stably manufactured. It has great characteristics.

つまり、本発明は、耐食性を更に改善する目的で高Cr
、 Ni、 Mo、 N化を図り、かつシグマ相の析出
抑制のためにSi含有量を低減した二相ステンレス鋼を
素材とすると共に、 イ)その鋳片から熱間加工により製管用素材を製造する
に当って、鋳片を1回の熱間加工でビレットにする場合
は該鋳片に直接的に、また鋳片を複数回の熱間加工によ
りビレットにする場合は少なくとも最終の熱間加工より
も前に特定条件のソーキング処理を施してから最終熱間
加工を行って製管用素材を得、 O)次いで得られた製管用素材を用いて常法(所謂マン
ネスマンプラグミル、マンネスマン−マンドレルミル方
式等の圧延製管法、或いはユジーンセジュルネ法に代表
される押出製管法等での“熱間加工”のまま、或いはこ
の“熱間加工”に続いてドローベンチによる所謂抽伸法
又はコールドピルガ−ミルによる圧延法等の“冷間加工
”により継目無管とする方法)により所定寸法の継目無
鋼管を成形し、 ハ)更に、この成形継目無鋼管に、固溶化温度に加熱保
持した後950〜750℃間の温度範囲を5×104℃
/hr以上の冷却速度で冷却する条件の固溶化熱処理を
施す、 と言う一連の工程にて、成分偏析に基づくシグマ相や窒
化物の析出を効果的に防止しつつ継目無鋼管製品を製造
することにより、割れ等の不都合を生じることなく高耐
食性と高靭性を兼備した高強度継目無二相ステンレス鋼
管を提供し得るようにしたことを骨子としているが、以
下、本発明において素材鋼の成分組成及び処理条件を前
記の如くに限定した理由を、その作用と共に説明する。
In other words, the present invention aims to further improve corrosion resistance by using high Cr.
, Ni, Mo, and N, and a duplex stainless steel with reduced Si content to suppress precipitation of sigma phase is used as a material, and a) a material for pipe making is manufactured from the slab by hot working. In this process, if the slab is made into a billet by one hot working, it is directly applied to the slab, or if the slab is made into a billet by multiple hot workings, at least the final hot working is performed. Before that, a soaking treatment under specific conditions is carried out, followed by final hot working to obtain a material for pipe making. The "hot working" method is used in the rolling pipe manufacturing method, such as the Eugene-Séjournet method, or the extrusion pipe manufacturing method, such as the Eugene-Séjournet method. - Forming a seamless steel pipe of predetermined dimensions by "cold working" such as rolling with a mill), and c) Further, after heating and holding the formed seamless steel pipe at a solution temperature. Temperature range between 950-750℃ 5 x 104℃
Through a series of processes in which solution heat treatment is performed under conditions of cooling at a cooling rate of /hr or more, seamless steel pipe products are manufactured while effectively preventing precipitation of sigma phase and nitrides due to component segregation. The main point of this invention is to provide a high-strength seamless duplex stainless steel pipe that has both high corrosion resistance and high toughness without causing problems such as cracking. The reason why the composition and processing conditions are limited as described above will be explained together with their effects.

〈作用〉 A)素材鋼の成分組成 旦 Cには鋼管の強度を確保する作用があるが、その含有量
が0.030%を超えると鋼中に炭化物の生成が目立つ
ようになって耐食性が劣化することから、C含有量は0
.030%以下と定めた。
<Function> A) Component composition of steel material DanC has the effect of ensuring the strength of steel pipes, but if its content exceeds 0.030%, the formation of carbides in the steel becomes noticeable and corrosion resistance deteriorates. Due to deterioration, the C content is 0.
.. It was set as 0.30% or less.

旦 Siは溶解時の脱酸目的で添加されるが、Si含有量が
0.7%を超えると シグマ相の析出が容易となって耐
食性、靭性及び加工性の低下を招く。しかし、Si含有
量を0.7%以下に低減すると シグマ相及び窒化物の
析出が遅くなり、熱間加工後の冷却時におけるシグマ相
及び窒化物の生成が抑制されて所望の耐食性、靭性、加
工性の確保が可能となることから、Si含有量は0.7
%以下と定めた。
Si is added for the purpose of deoxidizing during melting, but if the Si content exceeds 0.7%, precipitation of sigma phase becomes easy, leading to a decrease in corrosion resistance, toughness, and workability. However, when the Si content is reduced to 0.7% or less, the precipitation of sigma phases and nitrides is delayed, and the formation of sigma phases and nitrides during cooling after hot working is suppressed, resulting in desired corrosion resistance, toughness, and Since it is possible to ensure workability, the Si content is 0.7.
% or less.

なお、第1図はFe−0,02χC−0,5χMn  
6XNi −25χCr−4χMo−0.28χN−0
.02χAf−0,02χP −0,001XSを基本
成分とし、Siを0.1〜1.0%の間で変化させた二
相ステンレス鋼の20kg鋳塊にソーキング(1200
℃X 24hr)→鍛造→固溶化処理(1080℃X3
m1n後lXl0’℃/hrで冷却)→シグマ相が析出
しやすい条件(820℃X 1m1n後空冷)の熱処理
In addition, Fig. 1 shows Fe-0,02χC-0,5χMn
6XNi -25χCr-4χMo-0.28χN-0
.. Soaking (1200
℃×24hr) → Forging → Solution treatment (1080℃×3
Cooling at lXl0'°C/hr after m1n) → Heat treatment under conditions where sigma phase is likely to precipitate (820°C x air cooling after 1 m1n).

なる処理を施して得た試験片についての、“Si含有量
とシグマ相析出状況の関係”の調査結果を示したグラフ
である。ここで、シグマ相の析出状況は衝撃値と密接に
対応することから、第1図においては「シグマ相の析出
状況」を「衝撃値」で代替して示した。
2 is a graph showing the results of an investigation on the "relationship between Si content and sigma phase precipitation state" for test pieces obtained by subjecting them to the following treatments. Here, since the state of precipitation of the sigma phase closely corresponds to the impact value, in FIG. 1, the "state of precipitation of the sigma phase" is shown in place of the "impact value."

この第1図からも、Si含有量を0.7%以下に抑える
ことによってシグマ相の析出が十分に抑制でき、実用上
満足できる「衝撃値:5kg−m/c+J以上」が確保
されることが分かる。
This figure 1 also shows that by suppressing the Si content to 0.7% or less, the precipitation of the sigma phase can be sufficiently suppressed, and a practically satisfactory "impact value: 5 kg-m/c+J or more" can be secured. I understand.

厘 Mnは、二相ステンレス鋼溶解時の脱硫及び熱間加工性
改善のために添加されるが、2.0%を超えて含有させ
ると耐食性(耐孔食性、耐隙間腐食性。
Mn is added to improve desulfurization and hot workability during melting of duplex stainless steel, but when it is added in an amount exceeding 2.0%, it improves corrosion resistance (pitting corrosion resistance, crevice corrosion resistance).

耐一般腐食性)が劣化することから、Mn含有量は2.
0%以下と定めた。
Since the Mn content (general corrosion resistance) deteriorates, the Mn content should be set to 2.
It was set as 0% or less.

ヱ Pは鋼中へ不可避的に混入する不純物元素であるが、そ
の含有量が0.030%を超えると靭性劣化が著しくな
ることから、P含有量は0.030%以下と定めた。
Although P is an impurity element that inevitably mixes into steel, if its content exceeds 0.030%, the toughness deteriorates significantly, so the P content was set at 0.030% or less.

旦 Sも鋼中へ不可避的に混入する不純物元素であるが、そ
の含有量が0.003%を超えると熱間加工性を劣化さ
セることから、S含有量は0.003%以下と定めた。
S is also an impurity element that inevitably mixes into steel, but if its content exceeds 0.003%, hot workability will deteriorate, so the S content should be 0.003% or less. Established.

Niはオーステナイトを安定化するために必須の成分で
あるが、8%を超えて含有させるとシグマ相の析出が極
端に容易化し、一方、その含有量が5%未満ではフェラ
イト相が増大して窒化物の生成が容易となり、何れも耐
食性劣化につながることから、Ni含有量は5〜8%と
定めた。
Ni is an essential component for stabilizing austenite, but if it is contained in an amount exceeding 8%, the precipitation of the sigma phase becomes extremely easy, while if its content is less than 5%, the ferrite phase increases. The Ni content was determined to be 5 to 8% because nitrides are easily formed and both lead to deterioration of corrosion resistance.

Crには強度及び耐食性を向上させる作用があるが、そ
の含有量が22%未満であると前記作用による所望の効
果が得られず、一方、26%を超えて含有させるとシグ
マ相の析出がしやすくなることから、Cr含有量は22
〜26%と定めた。
Cr has the effect of improving strength and corrosion resistance, but if the content is less than 22%, the desired effect cannot be obtained, while if the content exceeds 26%, the precipitation of sigma phase may occur. The Cr content is 22.
It was set at ~26%.

勲 Moも耐食性1強度を向上させる作用を有しているが、
その含有量が2.5%未満では前記作用による所望の効
果が得られず、一方、4.5%を超えて含有させるとシ
グマ相の析出がしやすくなることから、Mo含有量は2
.5〜4.5%と定めた。
Isao Mo also has the effect of improving corrosion resistance and strength, but
If the Mo content is less than 2.5%, the desired effect due to the above action cannot be obtained, while if the Mo content exceeds 4.5%, precipitation of the sigma phase is likely to occur.
.. It was set at 5 to 4.5%.

Nも耐食性1強度を向上させる作用を発揮するが、その
含有量が0.14%未満であると前記作用による所望の
効果が得られず、一方、0.30%を超えて含有させる
と窒化物が析出して耐食性、靭性に悪影響を及ぼすこと
から、N含有量は0.14〜0.30%と定めた。
N also exhibits the effect of improving corrosion resistance and strength, but if its content is less than 0.14%, the desired effect of the above effect cannot be obtained, while on the other hand, if the content exceeds 0.30%, nitridation occurs. The N content was determined to be 0.14 to 0.30% since the precipitation of substances would have an adverse effect on corrosion resistance and toughness.

Mは低酸素ステンレス鋼の脱酸のために必須であり、低
Stの場合には0.010%以上の含有量を確保するこ
とが必要である。一方、0.040%を超えて含有させ
るとAfNを生成して品質を低下することから、M含有
量は0.010〜0.040%と定めた。
M is essential for deoxidizing low-oxygen stainless steel, and in the case of low St, it is necessary to ensure a content of 0.010% or more. On the other hand, if the M content exceeds 0.040%, AfN will be generated and the quality will deteriorate, so the M content is set at 0.010 to 0.040%.

なお上記各成分の他、素材鋼にはW、 V、 Cu。In addition to the above components, the material steel also contains W, V, and Cu.

Zr、 Ti+ Nb、 Ta及びCaの1種及び2種
以上を含有させても良い。ここで、Cuは耐食性を向上
させるが、1.0%を超えて含有させると熱間加工性が
劣化する。また、W、■は耐食性を向上させるが、何れ
も1%まで含有させれば十分な効果を確保でき、1%を
超えて含有させるとコスト高を招くばかりで効果の顕著
な向上は認められない。更に、Zr、 Ti+ Nb、
 Taは鋼中の酸素と結合することによって綱の熱間及
び冷間加工性を向上する上、耐食性をも改善するが、何
れも0.001〜0.05%程度の含有量が適当である
。そして、Caは熱間加工性の改善のために添加するこ
とが望ましいが、過剰に含有させるとCa−Al−0系
の介在物が多くなり、耐食性を劣化させることから、上
限を0.05%程度に止めるのが良い。
One or more of Zr, Ti+Nb, Ta, and Ca may be contained. Here, although Cu improves corrosion resistance, if it is contained in an amount exceeding 1.0%, hot workability deteriorates. In addition, W and ■ improve corrosion resistance, but if they are contained up to 1%, a sufficient effect can be ensured, but if they are contained in excess of 1%, the cost will only increase and no significant improvement in the effect will be observed. do not have. Furthermore, Zr, Ti+Nb,
Ta improves the hot and cold workability of the steel by combining with oxygen in the steel, and also improves the corrosion resistance, but a content of about 0.001 to 0.05% is appropriate for both. . It is desirable to add Ca to improve hot workability, but if it is added in excess, Ca-Al-0 type inclusions will increase and corrosion resistance will deteriorate, so the upper limit is set at 0.05. It is best to keep it at around %.

B)処理条件 本発明では、上記成分組成の鋳片を特定条件の熱間加工
により製管用素材とした後、これを使用して常法に従い
継目無鋼管を成形し、その後更に特定条件の固溶化熱処
理を施すことを特徴としているが、第2図は、この本発
明に係る継目無鋼管製造工程の1例を図面で示したもの
である。そして、各工程での処理条件を特定のものに限
定した理由は次の通りである。
B) Processing conditions In the present invention, a slab having the above-mentioned composition is hot-worked under specific conditions to produce a pipe-making material, and then used to form a seamless steel pipe according to a conventional method, and then further hardened under specific conditions. Fig. 2 is a drawing showing an example of the seamless steel pipe manufacturing process according to the present invention, which is characterized by performing a solution heat treatment. The reason why the processing conditions in each step were limited to specific conditions is as follows.

Jわ11程 第2図で示したように、鋳片(インゴット、連続鋳造材
)を1回の熱間加工(圧延、鍛造、押出し、引抜き)に
よりビレット素材とする場合はその鋳片に直接、一方、
複数回の熱間加工によりビレット素材とする場合には最
終の熱間加工よりも前にソーキング熱処理が施される。
As shown in Figure 2, when a slab (ingot, continuous casting material) is made into a billet material by one-time hot processing (rolling, forging, extrusion, drawing), ,on the other hand,
When a billet material is obtained by hot working multiple times, soaking heat treatment is performed before the final hot working.

このように、ソーキング熱処理後に少なくとも1回の熱
間加工を実施するのは、ソーキング熱処理により生じた
粒成長組織をこの熱間加工により細粒とするためである
。結晶粒を細粒とすれば熱間製管時の熱間加工性が向上
する。
The reason why hot working is performed at least once after the soaking heat treatment is to make the grain growth structure produced by the soaking heat treatment into fine grains by this hot working. If the crystal grains are made fine, hot workability during hot tube manufacturing will be improved.

また、ビレットメーキング時にソーキング熱処理を実施
すると、Cr、 Moの成分偏析部に生成しがちなシグ
マ相、窒化物の析出が遅くなり、その分シグマ相及び窒
化物の生成が抑制される訳である。
In addition, when soaking heat treatment is performed during billet making, the precipitation of sigma phase and nitrides, which tend to be generated in areas where Cr and Mo components are segregated, is delayed, and the formation of sigma phases and nitrides is suppressed accordingly. .

なお、ビレットメーキング後(最終の熱間加工後)にソ
ーキング熱処理を行っても効果はあるが、この場合には
粒成長が生じて熱間製管時の加工性が劣化するので、や
はり最終の熱間加工前である鋳片状態の時に或いは及び
鍛造・圧延途中でソーキング熱処理を施すことが重要と
なる。
Note that soaking heat treatment after billet making (after the final hot working) is also effective, but in this case, grain growth occurs and the workability during hot pipe forming deteriorates, so the final It is important to perform soaking heat treatment when the slab is in the form of a slab before hot working or during forging and rolling.

この場合、ソーキング熱処理温度が1200℃未満であ
ると処理に長時間が必要となる上、それでも十分なソー
キング効果が得られないため現実的ではない。一方、ソ
ーキング熱処理での温度が1270℃を超えるとフェラ
イト単相となって著しい粒成長が生じ、ビレットメーキ
ング時に熱間加工底が多発するようになる。また、ソー
キング時間が24時間未満では偏析が十分に解消されず
、その効果が不十分である。
In this case, if the soaking heat treatment temperature is less than 1200° C., the treatment will require a long time and even then, a sufficient soaking effect will not be obtained, which is not practical. On the other hand, if the temperature in the soaking heat treatment exceeds 1270° C., a single ferrite phase will be formed and significant grain growth will occur, resulting in frequent occurrence of hot worked bottoms during billet making. In addition, if the soaking time is less than 24 hours, segregation will not be sufficiently eliminated and the effect will be insufficient.

なお、Fe−0,023χC−0,05χ5i−1,5
0χMn−6.3χNi−22.7χCr−3,4χM
o−0.170χN−0,025χAf−0,026χ
P −0,001χS鋼の20kg鋳塊をそのまま又は
ソーキング(1200℃X 24hr) L、て鍛造−
圧延−固溶化処理(1080℃X3m1nの後1、×1
04℃/hrで冷却) なる処理を施して得た試験片について孔食発生率を調査
したところ、ソーキング熱処理なしのものでは孔食発生
率が13%であったのに対して、ソーキング熱処理を施
したものでは孔食発生率が0%になることが確認された
。ここで、「孔食発生率」は、試験片を35度の10χ
Fe(J3・6HzO水溶液に24時間浸漬した後、試
験片の全面における孔食発生の有無を調査して〔孔食発
生試験片数/全試験片数〕の比率で表わした。
In addition, Fe-0,023χC-0,05χ5i-1,5
0χMn-6.3χNi-22.7χCr-3,4χM
o-0.170χN-0,025χAf-0,026χ
P - Forging a 20kg ingot of 0,001χS steel as it is or by soaking (1200℃ x 24hr) L.
Rolling-solution treatment (1080°C x 3ml after 1 x 1
When we investigated the incidence of pitting corrosion on specimens obtained by cooling at 04°C/hr), we found that the incidence of pitting corrosion was 13% in the specimens without soaking heat treatment, while the pitting corrosion incidence in specimens without soaking heat treatment was 13%. It was confirmed that the pitting corrosion occurrence rate was 0% in the case where the coating was applied. Here, the "pitting corrosion occurrence rate" is defined as the 10x
After being immersed in a Fe (J3.6HzO aqueous solution for 24 hours), the presence or absence of pitting corrosion on the entire surface of the test piece was investigated and expressed as the ratio [number of test pieces with pitting corrosion/total number of test pieces].

製i工■ 熱間加工によって製造された製管用素材(ビレット)は
、続いて熱間押出し方式(例えばユジーン法)、マンネ
スマン方式等の如き周知の熱間製管法により継目無鋼管
とされる。
I-manufacturing ■ The pipe-making material (billet) produced by hot processing is then made into seamless steel pipes by a well-known hot pipe-making method such as hot extrusion method (e.g. Eugene method), Mannesmann method, etc. .

そして、熱間仕上げ管の場合は得られた継目無鋼管にそ
のまま固溶化処理が施され、冷間仕上げ管の場合は、前
記熱間製管により得られた管を素管として冷間加工(冷
間抽伸、冷間圧延)を1回又は複数回行った後に固溶化
処理が施される。なお、冷間加工を複数回行う場合は、
冷間加工と次の冷間加工との間で途中熱処理(軟化熱処
理)が行われる。
In the case of hot-finished pipes, the obtained seamless steel pipe is subjected to solid solution treatment as it is, and in the case of cold-finished pipes, the pipe obtained by the above-mentioned hot pipe-making is used as a raw pipe and cold-processed ( After cold drawing, cold rolling) is performed once or multiple times, solution treatment is performed. In addition, if cold working is performed multiple times,
Intermediate heat treatment (softening heat treatment) is performed between cold working and the next cold working.

rヒ執   (0執   ) 固溶化処理における温度1時間は格別に限定されること
はなく、従来通りの、例えば1050〜1100℃で2
〜30分程度の処理が行われる。
The temperature in the solution treatment for 1 hour is not particularly limited, and the temperature for 1 hour in the solution treatment is as usual, for example, at 1050 to 1100°C for 2 hours.
The process takes about 30 minutes.

ただ、その冷却の際には950〜750℃間を冷却速度
:5×104℃/hr以上で急冷する必要がある。
However, during cooling, it is necessary to rapidly cool the temperature between 950 and 750°C at a cooling rate of 5 x 104°C/hr or more.

固溶化処理時の冷却時に950〜750℃間を急冷する
理由は、シグマ相の析出が顕著であるこの温度領域での
シグマ相析出を防ぎ、シグマ相析出による耐食性や靭性
の劣化を防止するためである。
The reason for rapidly cooling between 950 and 750°C during cooling during solution treatment is to prevent sigma phase precipitation in this temperature range where sigma phase precipitation is significant, and to prevent deterioration of corrosion resistance and toughness due to sigma phase precipitation. It is.

この場合、前記温度領域での冷却速度が5×104”C
/hrを下回ると、材質が高Cr高Mo高N二相ステン
レス鋼であるため、偏析の無い素材においても電子顕微
鏡レベルのシグマ相が生成して耐食性・靭性に悪影響を
及ぼす。なお、5×104℃/hr以上の冷却速度を確
保する具体的手段としては“管の内外を水冷する方法”
等を挙げることができる。
In this case, the cooling rate in the temperature range is 5×104”C.
If it is less than /hr, since the material is high Cr, high Mo, high N duplex stainless steel, a sigma phase on an electron microscope level will be generated even in a non-segregating material, which will have a negative effect on corrosion resistance and toughness. A specific method for ensuring a cooling rate of 5 x 104°C/hr or higher is "method of cooling the inside and outside of the pipe with water."
etc. can be mentioned.

第3図は、二相ステンレス鋼の耐食性に及ぼす固溶化熱
処理時の冷却速度の影響を示したグラフで、Fe−0,
023χC−0,05χ5i−1,50χMn −6,
32:Ni −22,7χCr−3,4χMo−0.1
70χN−0,025χAf−0,026χP−0,0
01χslの20kg鋳塊に ソーキング(1200℃X 24hr) して鍛造→圧
延→−冷間加工−固溶化処理(1080℃X3min)
なる処理を施し、この固溶化処理における冷却時に板厚
変化やどぶ漬は水冷、シャワー冷却の選択により冷却速
度を種々に変化させて得た試験片について孔食個数を調
査した結果が示されている。
Figure 3 is a graph showing the influence of cooling rate during solution heat treatment on the corrosion resistance of duplex stainless steel.
023χC-0, 05χ5i-1, 50χMn-6,
32:Ni-22,7χCr-3,4χMo-0.1
70χN-0,025χAf-0,026χP-0,0
20kg ingot of 01χsl was soaked (1200℃ x 24hr) and forged → rolled → - cold worked - solution treatment (1080℃ x 3min)
The results of investigating the number of pitting corrosion on specimens obtained by applying various treatments and changing the cooling rate by changing the plate thickness during cooling in this solution treatment, water cooling for soaking, and shower cooling are shown. There is.

この第3図からも、冷却速度を5×104℃/hr以上
とすることによって優れた耐食性が確保できることが分
かる。
It can also be seen from FIG. 3 that excellent corrosion resistance can be ensured by setting the cooling rate to 5×10 4 C/hr or more.

次に、本発明の効果を実施例によって更に具体的に説明
する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、真空溶解によって第1表に示す化学成分組成の二
相ステンレス鋼鋳片(上端径:250m、下端端径:2
10m、長さ:520+n)を得た後、これらに第2表
に示す条件のソーキング熱処理を施し、続いて1回の熱
間鍛造処理(1200℃)により185mφの中実ビレ
ットを製造した。
<Example> First, a duplex stainless steel slab (upper end diameter: 250 m, lower end diameter: 2
10 m, length: 520+n), they were subjected to soaking heat treatment under the conditions shown in Table 2, followed by one hot forging treatment (1200° C.) to produce a solid billet of 185 mφ.

次いで、機械加工により外径177fiφ、内径40w
φ、長さ450鶴の中空ビレットとしてからユジーン法
による熱間押出しく押出温度:1150’C)に供し、
外径:89nφ、肉厚:8+nの継目無綱管を得た。
Next, by machining, the outer diameter was 177fiφ and the inner diameter was 40w.
After forming a hollow billet with a diameter of 450 mm and a length of 450 mm, it was subjected to hot extrusion using the Eugene method (extrusion temperature: 1150'C),
A seamless steel pipe with an outer diameter of 89 nφ and a wall thickness of 8+n was obtained.

続いて、得られた各継目無鋼管の曲がり取りと潤滑剤た
るガラス落としを行った後、固溶化熱処理を施して製品
継目無鋼管とした。なお、固溶化熱処理では、1060
℃に3分間加熱保持してから直ちに第2表に示した冷却
速度で冷却する条件が採用された。
Subsequently, each of the obtained seamless steel pipes was bent and removed with glass as a lubricant, and then subjected to solution heat treatment to obtain a product seamless steel pipe. In addition, in solution heat treatment, 1060
Conditions were adopted in which the sample was heated and maintained at 0.degree. C. for 3 minutes and then immediately cooled at the cooling rate shown in Table 2.

そして、このように製造された各製品継目無鋼管から試
験片を採取して耐食性と靭性(衝撃値)を測定したが、
この結果を第2表に併せて示す。
Then, test pieces were taken from each product seamless steel pipe manufactured in this way and the corrosion resistance and toughness (impact value) were measured.
The results are also shown in Table 2.

なお、耐食性試験は6mt×20m″M×40鶴1の試
験片を削り出して35℃の10χFeCl3−H20水
溶液に24時間浸漬し、この時の孔食発生数を調査する
方法で実施した。また、衝撃試験は820”cxI分の
熱処理を施した継目無鋼管からJIS−22202の4
号試験片(幅5m)を切り出し、20℃でのシャルピー
衝撃値を測定する方法によった・ 第2表に示される結果からも明らかなように、本発明法
に従うと、苛酷な使用条件下でも十分な性能を発揮し得
る“優れた耐食性と靭性を兼備する継目無二相ステンレ
ス鋼管”を安定製造できることが分かる。
The corrosion resistance test was carried out by cutting out a test piece of 6 mt x 20 m'' M x 40 cranes and immersing it in a 10χFeCl3-H20 aqueous solution at 35°C for 24 hours, and investigating the number of occurrences of pitting corrosion at this time. The impact test was conducted using JIS-22202 4 from seamless steel pipes heat-treated for 820"cxI.
As is clear from the results shown in Table 2, if the method of the present invention is followed, the Charpy impact value at 20°C is measured by cutting out a No. 1 test piece (width 5 m). However, it is clear that it is possible to stably manufacture ``seamless duplex stainless steel pipes that have both excellent corrosion resistance and toughness'' that can exhibit sufficient performance.

く効果の総括〉 以上に説明した如く、この発明によれば、非常に優れた
耐食性と良好な靭性を有する高強度二相ステンレス鋼継
目無管を安定して量産することが可能となり、海洋設備
・機器類や石油・天然ガスの採掘・輸送設備・機器類等
の更なる性能向上に大きく寄与し得るなど、産業上極め
て有用な効果がもたらされる。
Summary of the Effects> As explained above, according to the present invention, it is possible to stably mass-produce high-strength duplex stainless steel seamless pipes with extremely excellent corrosion resistance and good toughness, and it is suitable for marine equipment.・Very useful industrial effects can be brought about, such as greatly contributing to the further performance improvement of equipment, oil and natural gas extraction and transportation equipment, equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、二相ステンレス鋼における“S+含有量とシ
グマ相析出状況の関係”の調査結果を示したグラフであ
る。 第2図は、本発明に従った継目無二相ステンレス鋼管の
製造工程例を説明した図面である。 第3図は、二相ステンレス鋼の耐食性に及ぼす固溶化熱
処理時の冷却速度の影響を示したグラフである。 第4図は、従来の継目無二相ステンレス鋼管の製造工程
例を説明した図面である。
FIG. 1 is a graph showing the results of an investigation into the "relationship between S+ content and sigma phase precipitation" in duplex stainless steel. FIG. 2 is a diagram illustrating an example of the manufacturing process of a seamless duplex stainless steel pipe according to the present invention. FIG. 3 is a graph showing the influence of the cooling rate during solution heat treatment on the corrosion resistance of duplex stainless steel. FIG. 4 is a diagram illustrating an example of the manufacturing process of a conventional seamless duplex stainless steel pipe.

Claims (1)

【特許請求の範囲】 重量割合にて C:0.03%以下、Si:0.7%以下、Mn:2.
0%以下、P:0.030%以下、S:0.003%以
下、Ni:5〜8%、 Cr:22〜26%、Mo:2.5〜4.5%、N:0
.14〜0.30%、Al:0.010〜0.040%
を含む二相ステンレス鋼の鋳片から、1200〜127
0℃の温度範囲内に24時間以上保持するソーキング処
理を最終工程前に施す熱間加工によって製管用素材を得
た後、該素材を用いて常法により所定寸法の継目無鋼管
を成形し、次いでこれに加熱保持後における950〜7
50℃間の冷却速度を5×10^4℃/hr以上に調整
した固溶化熱処理を施すことを特徴とする、耐食性及び
靭性に優れた継目無二相ステンレス鋼管の製造方法。
[Claims] C: 0.03% or less, Si: 0.7% or less, Mn: 2.
0% or less, P: 0.030% or less, S: 0.003% or less, Ni: 5-8%, Cr: 22-26%, Mo: 2.5-4.5%, N: 0
.. 14-0.30%, Al: 0.010-0.040%
1200-127 from duplex stainless steel slab containing
After obtaining a pipe-making material by hot working, which involves applying a soaking treatment in a temperature range of 0°C for 24 hours or more before the final process, the material is used to form a seamless steel pipe of a predetermined size by a conventional method, Next, 950-7 after heating and holding
A method for manufacturing a seamless duplex stainless steel pipe with excellent corrosion resistance and toughness, characterized by performing solution heat treatment with a cooling rate of 50°C adjusted to 5 x 10^4°C/hr or more.
JP29018390A 1990-10-26 1990-10-26 Manufacture of high corrosion-resistant seamless two-phase stainless steel tube Pending JPH04165019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29018390A JPH04165019A (en) 1990-10-26 1990-10-26 Manufacture of high corrosion-resistant seamless two-phase stainless steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29018390A JPH04165019A (en) 1990-10-26 1990-10-26 Manufacture of high corrosion-resistant seamless two-phase stainless steel tube

Publications (1)

Publication Number Publication Date
JPH04165019A true JPH04165019A (en) 1992-06-10

Family

ID=17752826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29018390A Pending JPH04165019A (en) 1990-10-26 1990-10-26 Manufacture of high corrosion-resistant seamless two-phase stainless steel tube

Country Status (1)

Country Link
JP (1) JPH04165019A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
WO2007114077A1 (en) * 2006-03-31 2007-10-11 Sumitomo Metal Industries, Ltd. Process for producing seamless two-phase stainless-steel pipe
JP2007301601A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Ind Ltd METHOD FOR CASTING Cr-CONTAINING STEEL
JP2008214713A (en) * 2007-03-06 2008-09-18 Sumitomo Metal Ind Ltd Billet for seamless steel tube, and seamless steel tube
JPWO2008117680A1 (en) * 2007-03-26 2010-07-15 住友金属工業株式会社 Duplex stainless steel used for expanding oil well pipes and expanding oil well pipes expanded in wells
JP2012229860A (en) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd Coupled liquefied natural gas carburetor
JP2013234344A (en) * 2012-05-07 2013-11-21 Kobe Steel Ltd Duplex phase stainless steel material and duplex phase stainless steel pipe
WO2017086169A1 (en) * 2015-11-17 2017-05-26 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278755A (en) * 1994-04-05 1995-10-24 Sumitomo Metal Ind Ltd Dual phase stainless steel
WO2007114077A1 (en) * 2006-03-31 2007-10-11 Sumitomo Metal Industries, Ltd. Process for producing seamless two-phase stainless-steel pipe
JP2007270265A (en) * 2006-03-31 2007-10-18 Sumitomo Metal Ind Ltd Method for manufacturing duplex stainless steel seamless pipe
US8613817B2 (en) 2006-03-31 2013-12-24 Nippon Steel & Sumitomo Metal Corporation Method for producing duplex stainless steel seamless pipe
JP2007301601A (en) * 2006-05-11 2007-11-22 Sumitomo Metal Ind Ltd METHOD FOR CASTING Cr-CONTAINING STEEL
JP2008214713A (en) * 2007-03-06 2008-09-18 Sumitomo Metal Ind Ltd Billet for seamless steel tube, and seamless steel tube
JPWO2008117680A1 (en) * 2007-03-26 2010-07-15 住友金属工業株式会社 Duplex stainless steel used for expanding oil well pipes and expanding oil well pipes expanded in wells
JP2012229860A (en) * 2011-04-26 2012-11-22 Tokyo Gas Chemicals Co Ltd Coupled liquefied natural gas carburetor
JP2013234344A (en) * 2012-05-07 2013-11-21 Kobe Steel Ltd Duplex phase stainless steel material and duplex phase stainless steel pipe
WO2017086169A1 (en) * 2015-11-17 2017-05-26 株式会社神戸製鋼所 Duplex stainless steel material and duplex stainless steel tube

Similar Documents

Publication Publication Date Title
US11268161B2 (en) High strength seamless stainless steel pipe and method for producing same
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
EP2177634B1 (en) Process for production of duplex stainless steel tubes
JP5861786B2 (en) Stainless steel seamless steel pipe for oil well and manufacturing method thereof
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
EP3859031A1 (en) Martensitic stainless steel material
AU2003200351B2 (en) Duplex stainless steel for urea manufacturing plants
JP2002241838A (en) Method for producing duplex stainless steel pipe
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
US6692592B2 (en) Method for manufacturing high chromium system seamless steel pipe
RU2468112C1 (en) Oil and gas field seamless pipe from martensite stainless steel and method of its manufacturing
US11193179B2 (en) Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JPH04165019A (en) Manufacture of high corrosion-resistant seamless two-phase stainless steel tube
JPH10121202A (en) High strength steel used in environment requiring sulfides stress creaking resistance and its production
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JPS60228616A (en) Manufacture of hot rolled steel strip of ferrite stainless steel
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
JPH01228603A (en) Manufacture of two-phase stainless steel seamless tube
US5030297A (en) Process for the manufacture of seamless pressure vessels and its named product
JP3077567B2 (en) Method of manufacturing steel for low-temperature rebar
JP3077568B2 (en) Method of manufacturing steel for low-temperature rebar
JP2000160247A (en) Manufacture of duplex stainless steel tube
JP7323784B2 (en) Manufacturing method of stainless steel pipe