JP3177555B2 - Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility - Google Patents

Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Info

Publication number
JP3177555B2
JP3177555B2 JP20391893A JP20391893A JP3177555B2 JP 3177555 B2 JP3177555 B2 JP 3177555B2 JP 20391893 A JP20391893 A JP 20391893A JP 20391893 A JP20391893 A JP 20391893A JP 3177555 B2 JP3177555 B2 JP 3177555B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
content
steel pipe
sulfuric acid
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20391893A
Other languages
Japanese (ja)
Other versions
JPH0754047A (en
Inventor
龍至 平井
典巳 和田
泰男 小林
隆一郎 江原
英雄 中本
義和 山田
長野  肇
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, JFE Engineering Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20391893A priority Critical patent/JP3177555B2/en
Publication of JPH0754047A publication Critical patent/JPH0754047A/en
Application granted granted Critical
Publication of JP3177555B2 publication Critical patent/JP3177555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、硫酸製造プラントの
乾燥塔、吸収塔等の装置材料として有用な、延靭性なら
びに高温、高濃度硫酸中での耐食性に優れた高Si含有
ステンレス継目無鋼管及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Si-containing stainless steel seamless pipe having excellent ductility and corrosion resistance in high-temperature, high-concentration sulfuric acid, which is useful as a device material for a drying tower and an absorption tower of a sulfuric acid production plant. And its manufacturing method.

【0002】[0002]

【従来の技術】接触式硫酸製造法で重要となる吸収、乾
燥、冷却工程において、装置材料は一般的に、濃度95
〜99%、温度65〜120℃の硫酸環境に曝される。
中でも配管類には、従来、Cr鋳鉄、高Si鋳鉄、ステ
ンレス鋼、高Ni合金等が使用されている。しかし、鋳
鉄では装置の設計上、制限を受けるばかりでなく、内部
欠陥が多いためメインテナンスにも難がある。一方、ス
テンレス鋼及び高Ni合金は構造用材料として適してい
るが、SUS316L等の汎用ステンレスでは上記環境
に耐えず、また、UNS N10276等の高Ni合金
でも100℃以上の温度では使用できない。
2. Description of the Related Art In the absorption, drying and cooling steps which are important in the contact type sulfuric acid production method, the equipment material generally has a concentration of 95%.
~ 99%, exposed to a sulfuric acid environment at a temperature of 65-120 ° C.
Above all, for pipes, conventionally, Cr cast iron, high Si cast iron, stainless steel, high Ni alloy and the like have been used. However, cast iron is not only restricted in the design of the apparatus, but also has difficulties in maintenance due to many internal defects. On the other hand, stainless steel and high Ni alloy are suitable as structural materials, but general-purpose stainless steel such as SUS316L does not withstand the above-mentioned environment, and even high Ni alloy such as UNS N10276 cannot be used at a temperature of 100 ° C. or higher.

【0003】一般に乾燥塔での操業環境は、濃度95
%、温度65℃程度の硫酸中であるが、配管類の一部に
おいては100℃程度まで温度が上昇することもある。
さらに、98%硫酸環境である吸収塔は、現状100〜
120℃で操業されているが、温度を上げることにより
操業効率の向上を図ることが可能となるため、150℃
以上での使用に耐える配管が必要とされている。
[0003] Generally, the operating environment in a drying tower has a concentration of 95%.
% In sulfuric acid at a temperature of about 65 ° C., but the temperature may rise to about 100 ° C. in some of the piping.
Furthermore, absorption towers with 98% sulfuric acid environment are currently 100-
Although the operation is performed at 120 ° C., it is possible to improve the operation efficiency by increasing the temperature.
There is a need for a pipe that can withstand the above use.

【0004】上記環境での使用を目的としたステンレス
鋼として、特開昭52−4418号公報及び特開平2−
290949号公報には、ステンレス鋼のSi含有量を
高めることにより、95%及び98%のいずれの硫酸濃
度においても高温まで良好な耐食性が得られると開示さ
れている。
As stainless steels intended for use in the above environment, Japanese Patent Application Laid-Open Nos.
No. 290949 discloses that by increasing the Si content of stainless steel, good corrosion resistance up to high temperatures can be obtained at both 95% and 98% sulfuric acid concentrations.

【0005】[0005]

【発明が解決しようとする課題】高Si含有ステンレス
鋼ではSi含有量の増加に伴い、硬い(HV:500〜
1000)金属間化合物やδフェライト等の脆化相が生
成する。冷間圧延、引抜き等による高Si含有ステンレ
ス継目無鋼管の製造時に、この脆化相が形成していると
変形抵抗が上昇するばかりでなく、割れ発生の原因とな
る。しかし、上記の特開昭52−4418号公報及び特
開平2−290949号公報によるものでは、この点が
十分に考慮されていない。
The high Si content stainless steel becomes harder (HV: 500 to 500) as the Si content increases.
1000) An embrittlement phase such as an intermetallic compound or δ ferrite is formed. The formation of this embrittlement phase during the production of a high Si content stainless steel seamless steel pipe by cold rolling, drawing or the like not only increases the deformation resistance but also causes cracking. However, in the above-mentioned JP-A-52-4418 and JP-A-2-290949, this point is not sufficiently considered.

【0006】この発明は上記のような従来技術における
問題を解決するためになされたもので、冷間圧延、引抜
き等による継目無鋼管の製造が容易である高Si含有ス
テンレス鋼の成分範囲及び製造条件を規定することによ
り、95%硫酸中においては65℃以上、98%硫酸中
では150℃以上の環境で良好な耐食性を有し、かつ構
造用材料としての延靭性に優れたステンレス鋼管を得る
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the prior art as described above, and the range and composition of a high Si-containing stainless steel in which a seamless steel pipe can be easily manufactured by cold rolling, drawing or the like. By defining the conditions, a stainless steel pipe having good corrosion resistance in an environment of 65 ° C. or more in 95% sulfuric acid and 150 ° C. or more in 98% sulfuric acid and having excellent ductility as a structural material is obtained. The purpose is to:

【0007】[0007]

【課題を解決するための手段】上記課題は、以下に述べ
る成分限定、製造条件により解決される。第1発明は、
重量%で、C:0.08%以下と、Si:5.0〜8.
0%と、Mn:2.0%以下と、Ni:10〜35%
と、Cr:10〜25%と、Mo:0.2〜2.0%及
びPd:0.005〜1.0%からなる群から選択され
た1種以上と、残部Fe及び不可避的不純物からなり、
かつ、Cr,Mo,Si及びNi含有量が(1)式を満
たす冷間仕上継ぎ目無鋼管を製造するに際し、歪み取り
焼鈍を1050〜1150℃の温度域で行うことを特徴
とする耐食性、延靭性に優れた高Si含有ステンレス継
目無鋼管の製造方法である。
The above objects can be attained by the following component limitation and production conditions. The first invention is
In terms of% by weight, C: 0.08% or less and Si: 5.0-8.
0%, Mn: 2.0% or less, Ni: 10 to 35%
And Cr: 10 to 25% Mo: 0.2 to 2.0%
And Pd: selected from the group consisting of 0.005 to 1.0%
Consisting of at least one of the above, and the balance Fe and unavoidable impurities,
And the contents of Cr, Mo, Si and Ni satisfy the expression (1).
Upon manufacturing a cold-finishing seamless steel pipe plus, corrosion resistance and stress relief annealing and performing in a temperature range of 1,050-1,150 ° C., it is the manufacturing method of the high Si-containing stainless seamless steel pipe having excellent ductility properties .

【0008】第2発明は、重量%で、C:0.08%以
下と、Si:5.0〜8.0%と、Mn:2.0%以下
と、Ni:10〜35%と、Cr:10〜25%と、
u:0.5〜3.0%と、Mo:0.2〜2.0%及び
Pd:0.005〜1.0%からなる群から選択された
1種以上と、残部Fe及び不可避的不純物からなり、か
つ、Cr,Mo,Si及びNi含有量が(1)式を満た
す冷間仕上継ぎ目無鋼管を製造するに際し、歪み取り焼
鈍を1050〜1150℃の温度域で行うことを特徴と
する耐食性、延靭性に優れた高Si含有ステンレス継目
無鋼管の製造方法である。 Cr(%)+Mo(%)+3×Si(%)−Ni(%)
−14<5 ...(1)
According to a second invention, C: 0.08% or less, Si: 5.0 to 8.0%, Mn: 2.0% or less, Ni: 10 to 35% by weight. Cr: 10 to 25%, C
u: 0.5 to 3.0%, Mo: 0.2 to 2.0%, and
Pd: selected from the group consisting of 0.005 to 1.0%
In producing a cold-finished seamless steel pipe composed of at least one kind and the balance of Fe and unavoidable impurities and having Cr, Mo, Si, and Ni contents satisfying the expression (1), strain relief annealing is performed at 1050 to 1150. This is a method for producing a high Si-containing stainless steel seamless steel pipe having excellent corrosion resistance and ductility, which is performed in a temperature range of ° C. Cr (%) + Mo (%) + 3 × Si (%)-Ni (%)
-14 <5. . . (1)

【0009】[0009]

【作用】以下に、この発明に係る高Si含有ステンレス
鋼管の成分添加理由及び成分限定理由を述べる。Cは含
有量が多くなると炭化物を形成し、耐食性を劣化させる
ため、その上限値は0.08%とする。
The reasons for adding and limiting the components of the high Si content stainless steel pipe according to the present invention will be described below. If the content of C increases, carbides are formed and the corrosion resistance is degraded, so the upper limit is made 0.08%.

【0010】Siは高温、高濃度硫酸中での耐食性を著
しく向上させる成分であるが、上記環境で良好な耐食性
を得るには、5.0%以上含有する必要がある。また、
8.0%を超えて添加すると多量の金属間化合物の生成
により、鋳造時に凝固割れが発生し、鋼塊の製造が不可
能となる。したがって、Si含有量は5.0〜8.0%
とする。
[0010] Si is a component that significantly improves the corrosion resistance in high-temperature, high-concentration sulfuric acid. However, in order to obtain good corrosion resistance in the above environment, it is necessary to contain Si in an amount of 5.0% or more. Also,
If it is added in excess of 8.0%, solidification cracking occurs during casting due to generation of a large amount of intermetallic compounds, making it impossible to produce a steel ingot. Therefore, the content of Si is 5.0 to 8.0%.
And

【0011】Mnは脱酸作用を有する成分であり、オー
ステナイト生成元素でもある。しかし、その含有量が
2.0%を超えると耐食性が劣化する。したがって、M
n含有量の上限値は2.0%とする。
Mn is a component having a deoxidizing effect, and is also an austenite-forming element. However, if the content exceeds 2.0%, the corrosion resistance deteriorates. Therefore, M
The upper limit of the n content is 2.0%.

【0012】Niはオーステナイト組織を得るのに必須
の成分であり、含有量が10%未満ではδフェライトや
金属間化合物等の脆化相が多くなり、冷間加工時に割れ
が発生するとともに、鋼管の延靭性を劣化させる。ま
た、Cr,Mo及びSi含有量の増加にともないNi含
有量も多くする必要があり、詳細は後述する。ただし、
その含有量を多くするとコスト高になるばかりでなく、
低融点化合物の形成により熱間加工が可能な温度範囲が
制限され、素管の製造が不可能となるため、上限値は3
5%とする。
Ni is an essential component for obtaining an austenite structure. If the content is less than 10%, the embrittlement phase such as δ ferrite and intermetallic compound increases, cracks are generated at the time of cold working, and steel pipes are formed. Deteriorates the ductility of steel. Further, it is necessary to increase the Ni content as the Cr, Mo and Si contents increase, and the details will be described later. However,
Increasing its content not only increases costs, but also
Since the temperature range in which hot working is possible is restricted by the formation of the low melting point compound, and the production of a raw tube becomes impossible, the upper limit value is 3
5%.

【0013】Crはステンレス鋼の一般的な耐食性に対
して最も重要な元素であり、高Si含有ステンレス鋼に
おいては、その含有量を10%以上とする必要がある。
一方、高温高濃度硫酸中での耐食性もCr含有量の増加
にともない向上するが、25%を超えると耐食性に及ぼ
す効果は飽和する。また、Cr含有量が多くなると脆化
相の析出が促進される。したがって、Cr含有量は10
〜25%とする。
[0013] Cr is the most important element for the general corrosion resistance of stainless steel, and the content of high Si stainless steel must be 10% or more.
On the other hand, the corrosion resistance in high-temperature, high-concentration sulfuric acid also increases with an increase in the Cr content, but if it exceeds 25%, the effect on corrosion resistance is saturated. Further, when the Cr content increases, precipitation of the embrittlement phase is promoted. Therefore, the Cr content is 10
To 25%.

【0014】Cuは95%硫酸中での耐食性向上に有効
な成分であることを発明者らは見出した。特にその効果
は、温度が高くなるほど顕著となるが、含有量が0.5
%未満では発揮されない。また、3.0%を超えて添加
しても耐食性に及ぼす効果は飽和するので、Cu含有量
は0.5〜3.0%とする。
The inventors have found that Cu is a component effective for improving corrosion resistance in 95% sulfuric acid. In particular, the effect becomes more remarkable as the temperature becomes higher.
% Is not exhibited. Further, the effect on corrosion resistance is saturated even if it is added in excess of 3.0%, so the Cu content is set to 0.5 to 3.0%.

【0015】Moは95%硫酸中での耐食性向上に有効
な成分であることを発明者らは見出したが、含有量が
0.2%未満ではその効果が発揮されない。また、2.
0%を超えて添加しても耐食性に及ぼす効果は飽和し、
かつ含有量の増加にともない脆化相の形成が促進される
ので、上限値は2.0%とする。
The inventors have found that Mo is an effective component for improving corrosion resistance in 95% sulfuric acid, but its effect is not exhibited if the content is less than 0.2%. Also, 2.
Even if it is added in excess of 0%, the effect on corrosion resistance is saturated,
In addition, since the formation of the embrittlement phase is promoted as the content increases, the upper limit is set to 2.0%.

【0016】Pdは硫酸中での耐食性向上に有効な成分
であることを発明者らは見出した。しかし、その含有量
が0.005%未満ではその効果が発揮されず、また、
1.0%を超えて添加しても耐食性に及ぼす効果は飽和
し、コスト高となる。したがって、Pd含有量は0.0
05〜1.0%とする。
The present inventors have found that Pd is a component effective for improving corrosion resistance in sulfuric acid. However, if the content is less than 0.005%, the effect is not exhibited, and
Even if it is added in excess of 1.0%, the effect on corrosion resistance saturates and costs increase. Therefore, the Pd content is 0.0
05 to 1.0%.

【0017】また、本発明者らは、冷間加工時の割れ発
生と脆化相の体積率との関係を詳細に検討した結果、こ
の鋼においては、脆化相の体積率が(3)式の値Fp
(%)で表わすことができ、この値が5以上になると、
冷間加工時に著しい割れが発生するばかりでなく、製品
の延靭性が著しく劣化することを見出した。したがっ
て、Cr,Mo,Si及びNi含有量は上記の限定に加
えて、(2)式を満たす範囲とする。
The present inventors have examined in detail the relationship between the occurrence of cracks during cold working and the volume fraction of the embrittlement phase. As a result, in this steel, the volume fraction of the embrittlement phase was (3) Expression value Fp
(%), And when this value is 5 or more,
It has been found that not only remarkable cracks occur during cold working, but also the ductility of the product is significantly deteriorated. Therefore, the contents of Cr, Mo, Si and Ni are set in a range satisfying the expression (2) in addition to the above-mentioned limits.

【0018】 Fp=Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14 …(3) Cr(%) +Mo(%) +3×Si(%) −Ni(%) −14<5 …(2) なお、上記成分範囲の鋼は、常法に従って溶鋼内に所定
の添加成分を母合金または単体の形で添加することによ
り成分調整される。
Fp = Cr (%) + Mo (%) + 3 × Si (%) − Ni (%) − 14 (3) Cr (%) + Mo (%) + 3 × Si (%) − Ni (%) − 14 <5 (2) The steel having the above component range is adjusted by adding a predetermined additive component to the molten steel in the form of a master alloy or a simple substance in a conventional manner.

【0019】次に、製造条件の限定理由を述べると、冷
間加工による継目無鋼管の製造工程では、加工歪を除去
する目的で軟化焼鈍が数回行われる。発明者らは、この
鋼の脆化相の体積率と焼鈍時の均熱温度との関係を検討
した結果、均熱温度が1050℃未満では金属間化合物
が、また、1150℃を超えるとδフェライトが再析出
し、脆化相の体積率が(3)式で表せる値Fp(%)よ
り増加することを見出した。従って、歪取り焼鈍の均熱
温度は1050〜1150℃の温度域とする。
Next, the reasons for limiting the manufacturing conditions will be described. In the process of manufacturing a seamless steel pipe by cold working, softening annealing is performed several times in order to remove working strain. The present inventors have examined the relationship between the volume fraction of the embrittlement phase of the steel and the soaking temperature during annealing. As a result, when the soaking temperature is less than 1050 ° C., the intermetallic compound is formed. It has been found that the ferrite is re-precipitated, and the volume fraction of the embrittlement phase increases from the value Fp (%) expressed by the equation (3). Therefore, the soaking temperature of the strain relief annealing is set to a temperature range of 1050 to 1150 ° C.

【0020】[0020]

【実施例】本発明の実験例及び実施例について説明す
る。 実験例1 表1に示す化学成分の50kgインゴットを用意した。
試料番号7,8,12,13,14,17のインゴット
が本発明の範囲内の成分を有し、試料番号2,4,5,
11が本発明の範囲から外れている参考成分を有し、
りの試料番号のインゴットが本発明の範囲外の比較成分
を有する。これらインゴットを1050℃で10時間の
均熱後、12mmに熱間圧延して鋼板を得た。この鋼
板に1100℃の固溶化熱処理を施し、10×10
×200Lの冷間圧延用素材を採取した。この素材を6
mmまで冷間圧延し、割れの有無を目視観察するとと
もに、1100℃の歪取り焼鈍後、ミクロ組織観察用サ
ンプル、腐食試料サンプル(3×40×40L)、
引張試験片(4φ、GL=16mm)及び2mmVノッ
チ付きシャルピー衝撃試験片(ハーフサイズ)を採取し
た。また、試料番号16〜20の鋼では孔食電位測定
(JIS G0577)用サンプルも採取した。さら
に、試料番号11及び12の鋼では冷間圧延後の歪み取
り焼鈍を1000〜1200℃の温度域で実施し、ミク
ロ観察用サンプルを採取した。なお、冷間圧延で割れが
発生した鋼板では、割れの無い健全部から上記サンプル
を採取した。また、8%を越えるSi含有量の試料番号
21の鋼では、鋳込みままのインゴット全体に割れが発
生していたため、熱間圧延はできなかった。
EXAMPLES Experimental examples and examples of the present invention will be described. Experimental Example 1 A 50 kg ingot having the chemical components shown in Table 1 was prepared.
Ingots of sample numbers 7, 8, 12, 13, 14, 17
Have components within the scope of the present invention and have sample numbers 2, 4, 5,
11 has reference components that are outside the scope of the invention, and the remaining ingots of sample numbers have comparison components that are outside the scope of the invention. These ingots were soaked at 1050 ° C. for 10 hours, and then hot-rolled to 12 mm t to obtain steel sheets. This steel sheet was subjected to a solution heat treatment at 1100 ° C., and 10 t × 10 w
× 200 L of material for cold rolling was collected. This material 6
cold rolling to mm t, while visually observing the presence or absence of cracks after stress relief annealing of 1100 ° C., the microstructure observation sample, corrosion specimen sample (3 t × 40 w × 40 L),
Tensile test pieces (4φ, GL = 16 mm) and 2 mm V-notched Charpy impact test pieces (half size) were collected. In addition, samples of pitting potential measurement (JIS G0577) were also collected from steels of sample numbers 16 to 20. Further, for the steels of Sample Nos. 11 and 12, strain relief annealing after cold rolling was performed in a temperature range of 1000 to 1200 ° C., and a sample for micro observation was collected. In addition, in the case of a steel sheet in which cracks occurred during cold rolling, the above sample was collected from a sound part having no cracks. Further, in the case of the steel of Sample No. 21 having a Si content exceeding 8%, hot rolling was not possible because cracks occurred in the entire ingot as cast.

【0021】図1及び図2に、95%,65℃及び98
%,150℃硫酸中での耐食性とSi含有量との関係を
示す。図1及び図2によれば本環境では5%以上のSi
含有により、腐食速度が著しく低下することがわかる。
FIGS. 1 and 2 show 95%, 65 ° C. and 98 ° C.
% Shows the relationship between corrosion resistance in 150 ° C. sulfuric acid and Si content. According to FIG. 1 and FIG.
It can be seen that the corrosion rate is significantly reduced by the inclusion.

【0022】図3に、95%,100℃硫酸中での耐食
性及び3.5%NaCl中での孔食電位とCr含有量と
の関係を示す。図3によればCr含有量が10%未満に
なると、Si含有量が8%程度であっても孔食電位は著
しく低下することがわかる。また、硫酸中での耐食性は
Cr含有量の増加に伴い向上するが、25%を超えると
腐食速度は一定になることが理解される。
FIG. 3 shows the relationship between the corrosion resistance in 95% and 100 ° C. sulfuric acid and the pitting potential in 3.5% NaCl and the Cr content. FIG. 3 shows that when the Cr content is less than 10%, the pitting potential is significantly reduced even when the Si content is about 8%. Further, it is understood that the corrosion resistance in sulfuric acid increases with an increase in the Cr content, but the corrosion rate becomes constant when the content exceeds 25%.

【0023】図4及び図5に、95%,100℃硫酸中
での耐食性とCu含有量及びMo含有量との関係を各々
示す。図4及び図5によればCuを0.5%以上、ある
いはMoを0.2%以上添加すると、95%,100℃
硫酸中での腐食速度は著しく低下する。しかし、その含
有量がCuでは3%、Moでは2%を超えると腐食速度
は一定になることがわかる。
FIGS. 4 and 5 show the relationship between the corrosion resistance in 95% sulfuric acid at 100 ° C. and the Cu content and the Mo content, respectively. According to FIGS. 4 and 5, when Cu is added at 0.5% or more or Mo is added at 0.2% or more, 95%, 100 ° C.
Corrosion rates in sulfuric acid are significantly reduced. However, when the content exceeds 3% for Cu and 2% for Mo, the corrosion rate becomes constant.

【0024】図6に、95%,100℃及び98%,2
20℃硫酸中での耐食性とPd含有量との関係を示す。
図6によれば95%,100℃及び98%,220℃硫
酸中での耐食性は、0.005%以上のPd添加により
向上することがわかる。しかし、その含有量が1.0%
を超えると腐食速度は一定になる。
FIG. 6 shows that 95%, 100 ° C. and 98%, 2%
4 shows the relationship between the corrosion resistance in sulfuric acid at 20 ° C. and the Pd content.
FIG. 6 shows that the corrosion resistance in 95%, 100 ° C. and 98%, 220 ° C. sulfuric acid is improved by adding 0.005% or more of Pd. However, its content is 1.0%
If it exceeds, the corrosion rate becomes constant.

【0025】図7に、脆化相の体積率、冷間圧延時の割
れの有無、引張試験での伸び及びシャルピー衝撃試験に
おける0℃の吸収エネルギと成分との関係を示す。図7
によれば脆化相の体積率は上記(3)式の値Fp(%)
と良く対応していることがわかる。また、この値が5以
上になると冷間圧延時に割れが発生するとともに、鋼板
の伸び及び吸収エネルギが著しく低下し、構造用材料と
しては不適格であることが理解される。
FIG. 7 shows the relationship between the volume fraction of the embrittlement phase, the presence or absence of cracks during cold rolling, the elongation in the tensile test, and the absorbed energy at 0 ° C. in the Charpy impact test. FIG.
According to the formula, the volume fraction of the embrittlement phase is the value Fp (%) of the above equation (3).
It turns out that it corresponds well. Further, when this value is 5 or more, cracks are generated during cold rolling, and the elongation and absorbed energy of the steel sheet are significantly reduced, so that it is understood that the steel sheet is not suitable as a structural material.

【0026】図8に、試料番号11及び12の鋼の脆化
相の体積率及び硬さと焼鈍温度との関係を示す。図8に
よれば鋼11及び12ともに、冷間圧延後の焼鈍温度が
1050℃未満あるいは1150℃を超えると、脆化相
の体積率が圧延ままに比べ増加し、十分に軟化しないこ
とがわかる。 実施例1 表2に示す化学成分の13×140φの熱間押出し鋼
管(試料番号1,2が参考鋼成分、試料番号3,4が
発明鋼成分、試料番号5〜8が比較鋼成分)を素材とし
て、冷間引抜き2回、冷間圧延1回により7×65φ
の継目無鋼管を製造した。なお、冷間加工後は毎回、表
3に示す温度で歪み取り焼鈍を実施した(試料番号イ、
ロは参考鋼成分による本発明方法、試料番号ハ、ニは本
発明鋼成分による本発明方法、試料番号ホ〜チは比較鋼
成分で歪み取り焼鈍温度が本発明方法のもの、試料番号
リ〜ヲは本発明鋼成分で歪み取り焼鈍温度が本発明方法
から外れるもの)。さらに、継目無鋼管の割れの有無を
目視観察し、腐食試験サンプル(3t×15×5
)、引張試験片(4φ、GL=16mm)及び2m
mVノッチ付きシャルピー衝撃試験片(ハーフサイズ)
を採取した。
FIG. 8 shows the relationship between the volume percentage and hardness of the embrittlement phase of the steels of Sample Nos. 11 and 12, and the annealing temperature. According to FIG. 8, when the annealing temperature after cold rolling of both steels 11 and 12 is less than 1050 ° C. or more than 1150 ° C., the volume fraction of the embrittlement phase increases as compared to the as-rolled state, and the steels are not sufficiently softened. . Example 1 A hot-extruded 13 t × 140 φ steel tube having the chemical components shown in Table 2 ( sample numbers 1 and 2 are reference steel components, sample numbers 3 and 4 are invention steel components, and sample numbers 5 to 8 are comparative steel components. ) As a material, 7 t × 65 φ by cold drawing twice and cold rolling once
Manufactured a seamless steel pipe. In addition, after the cold working, the strain relief annealing was performed each time at the temperature shown in Table 3 ( Sample Nos.
B is the method of the present invention based on reference steel components, sample number c and d are
The method of the present invention using the inventive steel component , Sample No. H is a comparative steel component and has a strain relief annealing temperature of the method of the present invention. thing). Further, the seamless steel pipe was visually observed for cracks, and a corrosion test sample (3 t × 15 w × 5
0 L ), tensile test piece (4φ, GL = 16 mm) and 2 m
Charpy impact test specimen with mV notch (half size)
Was collected.

【0027】この鋼管の冷間加工時の割れの有無、引張
試験での伸び、シャルピー衝撃試験における0℃の吸収
エネルギ及び高温高濃度硫酸中での腐食速度を表3に併
せて示す。表3によれば、本発明法で製造した高Si含
有ステンレス継目無鋼管は割れの発生もなく、95%,
65℃以上の硫酸、98%,150℃以上の硫酸中で良
好な耐食性を有し、延靭性にも優れていることがわか
る。特に、Cu,Mo,Pdのいずれか1種以上を含有
した鋼種では95%,100℃硫酸中でも耐食性に優れ
ることが理解される。
Table 3 also shows the presence or absence of cracks during cold working of this steel pipe, elongation in a tensile test, absorbed energy at 0 ° C. in a Charpy impact test, and corrosion rate in high-temperature, high-concentration sulfuric acid. According to Table 3, the seamless stainless steel pipe containing high Si content manufactured by the method of the present invention had no cracks,
It can be seen that it has good corrosion resistance in sulfuric acid at 65 ° C. or more, 98%, sulfuric acid at 150 ° C. or more, and also has excellent ductility. In particular, it is understood that a steel type containing at least one of Cu, Mo, and Pd has excellent corrosion resistance even at 95% and 100 ° C. sulfuric acid.

【0028】[0028]

【発明の効果】以上のように、この発明によれば、95
%硫酸中においては65〜100℃、98%硫酸中では
150〜220℃の環境で良好な耐食性を有し、かつ構
造用材料としての延靭性に優れた高Si含有ステンレス
継目無鋼管を冷間圧延または引抜きによって容易に得ら
れる効果がある。したがって、硫酸製造プラントの乾燥
塔、吸収塔等の配管類に利用できるステンレス鋼管の提
供が可能となる。
As described above, according to the present invention, 95
A high-Si content stainless steel seamless steel tube having good corrosion resistance in an environment of 65 to 100 ° C. in 100% sulfuric acid and 150 to 220 ° C. in 98% sulfuric acid and having excellent ductility as a structural material is used. There is an effect easily obtained by rolling or drawing. Therefore, it is possible to provide a stainless steel pipe that can be used for piping such as a drying tower and an absorption tower of a sulfuric acid production plant.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実験例1による鋼の95%,65℃硫
酸中での耐食性とSi含有量との関係を示す図。
FIG. 1 is a graph showing the relationship between corrosion resistance of 95% steel at 65 ° C. in sulfuric acid and Si content according to Experimental Example 1 of the present invention.

【図2】実験例1による鋼の98%,150℃硫酸中で
の耐食性とSi含有量との関係を示す図。
FIG. 2 is a diagram showing the relationship between corrosion resistance of 98% steel in 150 ° C. sulfuric acid and Si content according to Experimental Example 1.

【図3】同じく実験例1による鋼の95%,100℃硫
酸中での耐食性及び3.5%NaCl中での孔食電位と
Cr含有量との関係を示す図。
FIG. 3 is a graph showing the relationship between the corrosion resistance of 95% steel in 100 ° C. sulfuric acid, the pitting potential in 3.5% NaCl, and the Cr content in Experimental Example 1;

【図4】実験例1による鋼の95%,100℃硫酸中で
の耐食性とCu含有量との関係を示す図。
FIG. 4 is a graph showing the relationship between corrosion resistance of 95% steel in 100 ° C. sulfuric acid and Cu content in Experimental Example 1.

【図5】同じく実験例1による鋼の95%,100℃硫
酸中での耐食性とMo含有量との関係を示す図。
FIG. 5 is a graph showing a relationship between corrosion resistance of 95% steel in sulfuric acid at 100 ° C. and Mo content according to Experimental Example 1;

【図6】実験例1による鋼の95%,100℃及び98
%,220℃硫酸中での耐食性とPd含有量との関係を
示す図。
FIG. 6 shows 95% of steel according to Example 1 at 100 ° C. and 98%.
%, A diagram showing the relationship between corrosion resistance in 220 ° C. sulfuric acid and Pd content.

【図7】同じく実験例1による鋼の脆化相の体積率、冷
間圧延時の割れの有無、引張試験での伸び及びシャルビ
ー衝撃試験における0℃の吸収エネルギと成分との関係
を示す図。
FIG. 7 is a graph showing the relationship between the volume fraction of the embrittlement phase, the presence or absence of cracks during cold rolling, the elongation in a tensile test, and the absorbed energy at 0 ° C. in the Charby impact test according to Experimental Example 1. .

【図8】実験例1による鋼11及び12の脆化相の体積
率及び硬さと焼鈍温度との関係を示す図。
FIG. 8 is a view showing the relationship between the volume ratio and hardness of the embrittlement phase of steels 11 and 12 according to Experimental Example 1 and the annealing temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 泰男 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 江原 隆一郎 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 中本 英雄 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 山田 義和 広島県広島市西区観音新町四丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 長野 肇 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (72)発明者 中村 誠 東京都千代田区丸の内二丁目5番1号 三菱重工業株式会社内 (56)参考文献 特開 平5−51633(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/00 - 9/44 C21D 9/50 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Yasuo Kobayashi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Ryuichiro Ehara 4-2-2 Kanon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside Mitsubishi Heavy Industries, Ltd.Hiroshima Research Center (72) Inventor Hideo Nakamoto 4-22, Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Inside Mitsubishi Heavy Industries, Ltd.Hiroshima Research Center No. 6-22, Mitsubishi Heavy Industries, Ltd., Hiroshima Research Laboratory (72) Inventor Hajime Nagano 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Heavy Industries, Ltd. (72) Inventor Makoto Nakamura 2-5-2, Marunouchi, Chiyoda-ku, Tokyo No. 1 Inside Mitsubishi Heavy Industries, Ltd. (56) References JP-A-5-51633 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/00-9/44 C21D 9/50 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.08%以下と、S
i:5.0〜8.0%と、Mn:2.0%以下と、N
i:10〜35%と、Cr:10〜25%と、Mo:
0.2〜2.0%及びPd:0.005〜1.0%から
なる群から選択された1種以上と、残部Fe及び不可避
的不純物からなり、かつ、Cr,Mo,Si及びNi含
有量が(1)式を満たす冷間仕上継ぎ目無鋼管を製造す
るに際し、歪み取り焼鈍を1050〜1150℃の温度
域で行うことを特徴とする耐食性、延靭性に優れた高S
i含有ステンレス継目無鋼管の製造方法。Cr(%)+Mo(%)+3×Si(%)−Ni(%)
−14<5 ...(1)
(1) C: 0.08% or less by weight, and
i: 5.0 to 8.0%; Mn: 2.0% or less;
i: 10 to 35%, Cr: 10 to 25%, Mo:
0.2-2.0% and Pd: 0.005-1.0%
And at least one selected from the group consisting of Fe and unavoidable impurities and containing Cr, Mo, Si and Ni.
In producing a cold-finished seamless steel pipe having a weight satisfying the formula (1) , the strain relief annealing is performed in a temperature range of 1050 to 1150 ° C., characterized by high corrosion resistance and high ductility.
A method for producing an i-containing stainless steel seamless steel pipe. Cr (%) + Mo (%) + 3 × Si (%)-Ni (%)
-14 <5. . . (1)
【請求項2】 重量%で、C:0.08%以下と、S
i:5.0〜8.0%と、Mn:2.0%以下と、N
i:10〜35%と、Cr:10〜25%と、Cu:
0.5〜3.0%と、Mo:0.2〜2.0%及びP
d:0.005〜1.0%からなる群から選択された1
種以上と、残部Fe及び不可避的不純物からなり、か
つ、Cr,Mo,Si及びNi含有量が(1)式を満た
す冷間仕上継ぎ目無鋼管を製造するに際し、歪み取り焼
鈍を1050〜1150℃の温度域で行うことを特徴と
する耐食性、延靭性に優れた高Si含有ステンレス継目
無鋼管の製造方法。 Cr(%)+Mo(%)+3×Si(%)−Ni(%)
−14<5 ...(1)
2. C: 0.08% or less in terms of% by weight;
i: 5.0 to 8.0%; Mn: 2.0% or less;
i: 10 to 35%, Cr: 10 to 25%, Cu:
0.5 to 3.0%, Mo: 0.2 to 2.0% and P
d: 1 selected from the group consisting of 0.005 to 1.0%
In producing a cold-finished seamless steel pipe consisting of at least the seed and the balance of Fe and unavoidable impurities and having Cr, Mo, Si and Ni contents satisfying the expression (1) , the strain relief annealing is performed at 1050 to 1150 ° C. A method for producing a high Si-containing stainless steel seamless steel pipe having excellent corrosion resistance and ductility, which is performed in a temperature range of Cr (%) + Mo (%) + 3 × Si (%)-Ni (%)
-14 <5. . . (1)
JP20391893A 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility Expired - Fee Related JP3177555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391893A JP3177555B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391893A JP3177555B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Publications (2)

Publication Number Publication Date
JPH0754047A JPH0754047A (en) 1995-02-28
JP3177555B2 true JP3177555B2 (en) 2001-06-18

Family

ID=16481853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391893A Expired - Fee Related JP3177555B2 (en) 1993-08-18 1993-08-18 Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility

Country Status (1)

Country Link
JP (1) JP3177555B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405214B1 (en) * 1998-12-17 2002-06-11 Hewlett-Packard Company Method of gathering usage information and transmitting to a primary server and a third party server by a client program
DE502005004415D1 (en) * 2005-09-15 2008-07-24 Siemens Ag Method for producing an austenitic steel housing.
CN103846304A (en) * 2012-11-28 2014-06-11 常州盛德无缝钢管有限公司 ND steel seamless steel pipe production process

Also Published As

Publication number Publication date
JPH0754047A (en) 1995-02-28

Similar Documents

Publication Publication Date Title
JP4609491B2 (en) Ferritic heat resistant steel
JP5924256B2 (en) High strength stainless steel seamless pipe for oil well with excellent corrosion resistance and manufacturing method thereof
EP1645649B1 (en) Austenitic stainless steel for hydrogen gas and method for production thereof
JP5109222B2 (en) High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same
JP4893196B2 (en) High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
WO2017208946A1 (en) Duplex stainless steel and duplex stainless steel manufacturing method
KR100985354B1 (en) Low alloy steel
MX2007006789A (en) Martensitic stainless steel pipe for oil well.
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP3463617B2 (en) Austenitic heat-resistant steel for seamless steel pipes with excellent hot workability
JPH0693389A (en) High si stainless steel excellent in corrosion resistance and ductility-toughness and its production
JP3177555B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JP2949013B2 (en) Method for producing stainless steel seamless steel pipe containing high Si with excellent corrosion resistance and ductility
JP3744403B2 (en) Soft Cr-containing steel
JPH0371506B2 (en)
CN111601913B (en) Austenitic heat-resistant alloy and method for producing same
JP3067477B2 (en) Method for manufacturing high Si content stainless steel welded steel pipe excellent in corrosion resistance and ductility
JPH1096038A (en) High cr austenitic heat resistant alloy
JP6747628B1 (en) Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel
JP7425299B2 (en) Austenitic stainless steel material
JPH09195005A (en) Austenitic heat resistant steel excellent in high temperature strength
JPS6144127B2 (en)
JPH0693388A (en) High si stainless steel excellent in corrosion resistance and ductilility-toughness and its production
JP2021113354A (en) Austenitic stainless steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

LAPS Cancellation because of no payment of annual fees