JPH075068A - Light frequency region reflection measuring device - Google Patents

Light frequency region reflection measuring device

Info

Publication number
JPH075068A
JPH075068A JP5146499A JP14649993A JPH075068A JP H075068 A JPH075068 A JP H075068A JP 5146499 A JP5146499 A JP 5146499A JP 14649993 A JP14649993 A JP 14649993A JP H075068 A JPH075068 A JP H075068A
Authority
JP
Japan
Prior art keywords
light
optical
frequency
delay
reference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146499A
Other languages
Japanese (ja)
Other versions
JP3282135B2 (en
Inventor
Kaoru Shimizu
薫 清水
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14649993A priority Critical patent/JP3282135B2/en
Publication of JPH075068A publication Critical patent/JPH075068A/en
Application granted granted Critical
Publication of JP3282135B2 publication Critical patent/JP3282135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To measure a relatively wide distance range with a high distance resolution by dividing a reference light into two light waves and then giving frequency shift and delay to one of them and then performing multiple wave- synthesis again. CONSTITUTION:Reference light which is branched by a light directional coupler 3 is divided in 50:50 by light directional couplers 6, 9, and 12 and then frequency shift and delay light path differences L, 2L, and 4L are given by light frequency shifters 7, 10, and 13 and light delay lines 8, 11, and 14, respectively, at each stage. Two light waves through different light paths are synthesized and divided again by the light directional couplers 9 and 12 at each time, finally are synthesized by a light directional coupler 15, and then are synthesized 5 with the reflection signal light from optical parts 20 to be measured. Therefore, by performing superposition while shifting the light frequency and the delay light path difference L of reference light, the light path time difference between the measurement points of the parts 20 is reduced to obtain an interference signal with a sufficient intensity and hence a measurement region can be distinguished since frequency differs. Therefore, a wide distance range can be measured while maintaining a high distance resolution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光部品の検査に利用す
る。特に、光ファイバその他の光部品による反射光ある
いは後方散乱光の強度分布を高い距離分解能で比較的広
い範囲にわたって測定することのできる光周波数領域反
射測定装置に関する。
The present invention is used in the inspection of optical parts. In particular, the present invention relates to an optical frequency domain reflectometer capable of measuring the intensity distribution of reflected light or backscattered light from an optical fiber or other optical component with a high distance resolution over a relatively wide range.

【0002】[0002]

【従来の技術】高い距離分解能で光ファイバその他の光
部品からの反射光および後方散乱光の強度分布を測定す
ることが可能な分布型光センサとして、コヒーレント光
周波数領域反射測定(C−OFDR:Coherent-Optical
Frequency Domain Reflectometry )装置が知られてい
る。C−OFDRでは、周波数が時間に対して直線的に
繰り返し掃引されたコヒーレントなレーザ光を用いるこ
とにより、周波数領域における反射光あるいは後方散乱
光の強度分布を測定することができる。
2. Description of the Related Art As a distributed optical sensor capable of measuring the intensity distribution of reflected light and backscattered light from an optical fiber and other optical components with high distance resolution, coherent optical frequency domain reflectometry (C-OFDR: Coherent-Optical
Frequency Domain Reflectometry) devices are known. In C-OFDR, the intensity distribution of reflected light or backscattered light in the frequency domain can be measured by using coherent laser light whose frequency is repeatedly swept linearly with respect to time.

【0003】図6は従来のC−OFDR装置の構成を示
す。光源61は発光周波数が可変であり、時間の経過に
対して周波数が直線的に変化するように制御し、繰り返
し周波数掃引されたコヒーレント光を得る。このコヒー
レント光を光分波器62により信号光と参照光とに分波
し、信号光については光合分波器63を介して被測定光
部品64に入射する。また、被測定光部品64からの反
射信号光を光合分波器63により取り出す。この反射信
号光には被測定光部品64の端面反射光や内部で発生し
た後方散乱光が含まれている。この反射信号光を反射鏡
65および光合波器66を用いて光分波器62からの参
照光に合波する。この合波された光波をヘテロダイン受
信器67でヘテロダイン検波し、被測定光部品64から
の反射信号光と参照光との周波数差をスペクトラムアナ
ライザ68および信号処理装置69により解析する。こ
のときの周波数差は戻り光と参照光との間の遅延時間に
比例するため、反射信号光の光強度分布を周波数領域で
測定することができる。また、受信帯域幅を狭く設定す
れば高い距離分解能を得ることができ、低雑音で測定を
行うことができる。
FIG. 6 shows the configuration of a conventional C-OFDR device. The light source 61 has a variable emission frequency, and is controlled so that the frequency changes linearly with the passage of time to obtain coherent light whose frequency is swept repeatedly. The coherent light is demultiplexed into the signal light and the reference light by the optical demultiplexer 62, and the signal light is incident on the measured optical component 64 via the optical multiplexer / demultiplexer 63. The reflected signal light from the measured optical component 64 is extracted by the optical multiplexer / demultiplexer 63. The reflected signal light includes the end surface reflected light of the measured optical component 64 and the backscattered light generated inside. This reflected signal light is combined with the reference light from the optical demultiplexer 62 using the reflecting mirror 65 and the optical multiplexer 66. The combined light wave is heterodyne detected by the heterodyne receiver 67, and the frequency difference between the reflected signal light from the measured optical component 64 and the reference light is analyzed by the spectrum analyzer 68 and the signal processing device 69. Since the frequency difference at this time is proportional to the delay time between the return light and the reference light, the light intensity distribution of the reflected signal light can be measured in the frequency domain. Further, if the reception bandwidth is set narrow, a high range resolution can be obtained, and measurement can be performed with low noise.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のC−O
FDR装置では、二つの光波の可干渉範囲内の光路時間
差に対してしか十分な強度の干渉信号が得られず、一度
に測定できる範囲が制限されてしまうという問題があっ
た。これは特に光源として高速周波数掃引性に優れた分
布帰還型レーザダイオード(以下「DFBレーザ」とい
う)を使用した場合に問題となり、その測定可能範囲は
10m程度に制限されていた。
However, the conventional C-O
The FDR device has a problem that an interference signal having a sufficient intensity can be obtained only with respect to the optical path time difference within the coherence range of two light waves, and the measurable range at one time is limited. This is a problem particularly when a distributed feedback laser diode (hereinafter referred to as "DFB laser") having excellent high-speed frequency sweeping property is used as a light source, and its measurable range is limited to about 10 m.

【0005】本発明は、このような課題を解決し、比較
的広い範囲で高い距離分解能をもつ光周波数領域反射測
定装置を提供することを目的とする。
An object of the present invention is to solve such problems and to provide an optical frequency domain reflectometry apparatus having a high distance resolution in a relatively wide range.

【0006】[0006]

【課題を解決するための手段】本発明の光周波数領域反
射測定装置は、参照光の光路上に、参照光を二つの光波
に分波する第三の光学手段と、この二つの光波の一方に
周波数シフトおよび遅延を与えて再び合波する第四の光
学手段とを備えたことを特徴とする。
The optical frequency domain reflectometry device of the present invention comprises a third optical means for demultiplexing the reference light into two light waves on the optical path of the reference light, and one of the two light waves. And a fourth optical means for frequency-shifting and delaying and re-multiplexing.

【0007】第三の光学手段と第四の光学手段とからな
る光回路を多段に備え、第n段(n=1、2、…)の光
回路による周波数シフト量が2n-1 f、遅延光路差が2
n-1Lに設定されることが望ましい。
An optical circuit comprising third optical means and fourth optical means is provided in multiple stages, and the frequency shift amount by the optical circuit of the nth stage (n = 1, 2, ...) Is 2 n-1 f, Delay optical path difference is 2
It is desirable to set it to n-1 L.

【0008】[0008]

【作用】参照光を二つの光波に分波し、その一方に周波
数シフトおよび遅延を与えて再び合波する。周波数シフ
トを与える前の参照光の光周波数をf0 、周波数シフト
をf、遅延を与える遅延光路差をLとすると、光周波数
0 の参照光から遅延光路長差L分の遅延時間の後に、
光周波数f0 +fの参照光が得られる。この参照光を用
いて、光周波数f0 の参照光により測定した範囲から光
路長Lだけ離れた領域の測定を行う。光周波数が異なる
ので互いの領域を区別して測定でき、参照光を遅延させ
るので被測定光部品の測定点との間の光路時間差を小さ
くして十分な強度の干渉信号を得ることができる。した
がって、高い距離分解能を保ちながら、比較的広い距離
範囲にわたる測定が可能となる。
The reference light is demultiplexed into two light waves, one of which is frequency-shifted and delayed to be recombined. If the optical frequency of the reference light before the frequency shift is f 0 , the frequency shift is f, and the delayed optical path difference that gives the delay is L, then after the delay time of the delayed optical path length difference L from the reference light of the optical frequency f 0 , ,
Reference light of optical frequency f 0 + f is obtained. Using this reference light, measurement is performed in a region separated by the optical path length L from the range measured by the reference light having the optical frequency f 0 . Since the optical frequencies are different, the regions can be distinguished from each other for measurement, and the reference light is delayed, so that the optical path time difference between the reference light and the measurement point of the optical component to be measured can be reduced and an interference signal of sufficient intensity can be obtained. Therefore, it is possible to perform measurement over a relatively wide distance range while maintaining high distance resolution.

【0009】参照光の分岐、周波数シフト、遅延および
合波を多段に行うと、測定可能な距離範囲をさらに拡大
できる。
By branching, frequency shifting, delaying, and combining the reference light in multiple stages, the measurable distance range can be further expanded.

【0010】[0010]

【実施例】図1は本発明第一実施例の光周波数領域反射
測定装置の構成を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of an optical frequency domain reflectometer according to a first embodiment of the present invention.

【0011】この光周波数領域反射測定装置は、光周波
数が時間に対して変化するコヒーレント光を発生する発
光手段としてレーザ光源1および外部制御回路2を備
え、このレーザ光源1の出力光を信号光と参照光とに分
波する第一の光学手段として光方向性結合器3を備え、
この信号光を被測定光部品20に入射するとともにその
被測定光部品20からの反射信号光を参照光に合波する
第二の光学手段として光方向性結合器4、5を備え、合
波された光波を電気信号に変換して解析する検波解析手
段としてヘテロダイン受信器16、スペクトラムアナラ
イザ17および信号処理装置18を備える。
This optical frequency domain reflectometer comprises a laser light source 1 and an external control circuit 2 as light emitting means for generating coherent light whose optical frequency changes with time, and outputs the output light of this laser light source 1 as signal light. And an optical directional coupler 3 as a first optical means for demultiplexing into the reference light,
The optical directional couplers 4 and 5 are provided as second optical means for entering the signal light into the measured optical component 20 and combining the reflected signal light from the measured optical component 20 with the reference light. A heterodyne receiver 16, a spectrum analyzer 17, and a signal processing device 18 are provided as detection analysis means for converting the converted light wave into an electric signal for analysis.

【0012】ここで本実施例の特徴とするところは、参
照光の光路上に、参照光を二つの光波に分波する第三の
光学手段として光方向性結合器6を備え、二つの光波の
一方に周波数シフトおよび遅延を与えて再び合波する第
四の光学手段として光周波数シフタ7、光遅延線8およ
び光方向性結合器9を備えたことにある。さらに本実施
例は、光方向性結合器、光周波数シフタ、光遅延線およ
び光方向性結合器からなる光回路を3段備える。すなわ
ち、光方向性結合器9を第1段の光回路と共通とする光
方向性結合器9、光周波数シフタ10、光遅延線11お
よび光方向性結合器12からなる光回路と、光方向性結
合器12を第2段の光回路と共通とする光方向性結合器
12、光周波数シフタ13、光遅延線14および光方向
性結合器15からなる光回路とを備える。光周波数シフ
タ7、10、13は周波数シフト量がそれぞれf、2
f、4fに設定され、光遅延線8、11、14はそれぞ
れ分波された二つの光波の遅延光路差がL、2L、4L
となるように設定されている。
The feature of this embodiment is that an optical directional coupler 6 is provided on the optical path of the reference light as a third optical means for demultiplexing the reference light into two light waves. The optical frequency shifter 7, the optical delay line 8 and the optical directional coupler 9 are provided as the fourth optical means for giving a frequency shift and a delay to one of them and multiplexing them again. Further, this embodiment includes three stages of optical circuits each including an optical directional coupler, an optical frequency shifter, an optical delay line and an optical directional coupler. That is, an optical circuit including the optical directional coupler 9, the optical frequency shifter 10, the optical delay line 11, and the optical directional coupler 12, which share the optical directional coupler 9 with the first-stage optical circuit, and the optical direction. The optical circuit includes the optical directional coupler 12, the optical frequency shifter 13, the optical delay line 14, and the optical directional coupler 15 that share the directional coupler 12 with the second-stage optical circuit. The optical frequency shifters 7, 10 and 13 have frequency shift amounts of f and 2, respectively.
f, 4f, and the optical delay lines 8, 11, and 14 have delay optical path differences L, 2L, and 4L of the two demultiplexed light waves, respectively.
Is set to be

【0013】レーザ光源1は繰り返し周波数掃引が可能
であり、外部制御回路2の制御により、周波数が時間に
対して直線的に掃引されたコヒーレントなレーザ光を発
生する。このレーザ光を光方向性結合器3により信号光
と参照光とに分波する。信号光は光方向性結合器4を経
て被測定光部品20に入射し、反射または後方レーリー
散乱される。この反射信号光を光方向性結合器4により
取り出し、光方向性結合器5により、あらかじめ分波さ
れた参照光と合波する。この合波光をヘテロダイン受信
器16で受光し、反射信号光と参照光との周波数差をヘ
テロダインビート信号の周波数として測定する。このと
き周波数差は反射信号光と参照光との光路長差(遅延時
間差)に比例するため、スペクトラムアナライザ17お
よび信号処理装置18により出力電気信号を周波数解析
することにより、反射信号光強度分布を周波数領域で測
定することができる。
The laser light source 1 is capable of repeating frequency sweeping, and under the control of the external control circuit 2, generates a coherent laser light whose frequency is swept linearly with respect to time. This laser light is demultiplexed into a signal light and a reference light by the optical directional coupler 3. The signal light enters the optical component 20 to be measured through the optical directional coupler 4, and is reflected or backward Rayleigh scattered. The reflected signal light is taken out by the optical directional coupler 4 and is combined by the optical directional coupler 5 with the reference light demultiplexed in advance. The combined light is received by the heterodyne receiver 16, and the frequency difference between the reflected signal light and the reference light is measured as the frequency of the heterodyne beat signal. At this time, the frequency difference is proportional to the optical path length difference (delay time difference) between the reflected signal light and the reference light. Therefore, by analyzing the frequency of the output electric signal by the spectrum analyzer 17 and the signal processing device 18, the reflected signal light intensity distribution can be obtained. It can be measured in the frequency domain.

【0014】しかし、ヘテロダインビート信号は反射信
号光と参照光との光路長差が可干渉距離により短い場合
しか得られないために、従来の光周波数領域反射測定装
置では、測定可能な範囲が可干渉距離より短い範囲に制
限されていた。たとえば線幅1MHzのDFBレーザを
使用した場合、光路長差が大きくなると干渉性の低下に
よってヘテロダインビート信号の強度が低下し、光路長
差20mの場合には光路長差零の場合に比較して約3d
B低下する。
However, since the heterodyne beat signal can be obtained only when the difference in optical path length between the reflected signal light and the reference light is short due to the coherence length, the conventional optical frequency domain reflectometry device can measure the measurable range. It was limited to a range shorter than the interference distance. For example, when a DFB laser with a line width of 1 MHz is used, the strength of the heterodyne beat signal decreases due to a decrease in coherence when the optical path length difference increases, and when the optical path length difference is 20 m, the optical path length difference is zero compared to the case where the optical path length difference is zero. About 3d
B decreases.

【0015】そこで本実施例では、参照光を周波数およ
び遅延時間差について同時に多重合成することにより、
ヘテロダインビート信号の低下を補い、測定範囲を大幅
に拡大している。具体的には、光方向性結合器、光周波
数シフタおよび光遅延線からなる光回路を多段接続して
参照光を通すことにより、周波数多重および遅延時間多
重を実現している。
Therefore, in the present embodiment, the reference light is simultaneously multiplexed with respect to the frequency and the delay time difference,
It compensates for the decrease in the heterodyne beat signal and greatly expands the measurement range. Specifically, frequency multiplexing and delay time multiplexing are realized by connecting an optical circuit including an optical directional coupler, an optical frequency shifter, and an optical delay line in multiple stages to pass the reference light.

【0016】光方向性結合器3により分波された参照光
は、1段目の光方向性結合器6により50対50に分波
される。その一方の光路中には、周波数シフトfを与え
る一段目の光周波数シフタ7と、遅延光路差Lを与える
光遅延線8が挿入される。この周波数シフト量f、遅延
光路差Lを以下「単位周波数シフト量」、「単位光路
差」という。異なる光路を通った二つの光波は、分岐比
50対50をもつ二段目の光方向性結合器9により合波
および再分波される。再分波された一方の光路中には、
周波数シフト2fを与える二段目の光周波数シフタ10
と、遅延光路差2Lを与える二段目の光遅延線11とが
挿入される。さらに、異なる光路を通った二つの光波
は、分波比50対50をもつ三段目の光方向性結合器1
2により合波および再分波される。ここで再分波された
一方の光路中には、周波数シフト4fを与える三段目の
光周波数シフタ13と、遅延光路長差4Lを与える三段
目の光遅延線14とが挿入される。異なる光路を通った
二つの光波は、光方向性結合器15により合波され、光
方向性結合器5で被測定光部品20からの反射信号光と
合波される。
The reference light demultiplexed by the optical directional coupler 3 is demultiplexed into 50:50 by the first stage optical directional coupler 6. In one of the optical paths, an optical frequency shifter 7 in the first stage which gives a frequency shift f and an optical delay line 8 which gives a delay optical path difference L are inserted. The frequency shift amount f and the delay optical path difference L are hereinafter referred to as "unit frequency shift amount" and "unit optical path difference". Two light waves that have passed through different optical paths are combined and re-demultiplexed by the second-stage optical directional coupler 9 having a branching ratio of 50:50. In the one optical path that was re-demultiplexed,
Second-stage optical frequency shifter 10 that gives a frequency shift 2f
And the optical delay line 11 of the second stage which gives the delay optical path difference 2L is inserted. Furthermore, two light waves that have passed through different optical paths are combined into a third-stage optical directional coupler 1 having a demultiplexing ratio of 50:50.
It is multiplexed and re-demultiplexed by 2. The third optical frequency shifter 13 for providing the frequency shift 4f and the third optical delay line 14 for providing the delay optical path length difference 4L are inserted in the one optical path re-demultiplexed here. The two light waves that have passed through different optical paths are combined by the optical directional coupler 15 and are combined by the optical directional coupler 5 with the reflected signal light from the measured optical component 20.

【0017】図2は光方向性結合器、光周波数シフタ、
光遅延線および光方向性結合器からなる光回路をさらに
多段接続した構成例を示す。光方向性結合器としては分
岐比が50対50のものを用い、個々の光回路の入力側
の光方向性結合器を前段の光方向性結合器と共有する。
また、第n段(n=1、2、…)の光回路における周波
数シフタの周波数シフト量を2n-1 f、光遅延線による
遅延光路差を2n-1 Lに設定する。このようにすると、
n 重の参照光周波数多重、遅延光路差多重が可能にな
る。参照光の周波数差と遅延光路長差との関係を図3に
示す。
FIG. 2 shows an optical directional coupler, an optical frequency shifter,
An example of a configuration in which an optical circuit including an optical delay line and an optical directional coupler is further connected in multiple stages is shown. An optical directional coupler having a branching ratio of 50:50 is used, and the optical directional coupler on the input side of each optical circuit is shared with the preceding optical directional coupler.
Further, the frequency shift amount of the frequency shifter in the optical circuit of the nth stage (n = 1, 2, ...) Is set to 2 n-1 f and the delay optical path difference due to the optical delay line is set to 2 n-1 L. This way,
2 n- fold reference light frequency multiplexing and delay optical path difference multiplexing are possible. FIG. 3 shows the relationship between the frequency difference of the reference light and the delay optical path length difference.

【0018】図4は後方散乱光の強度分布測定波形例を
示す。レーザ光源1の周波数掃引レートを調整し、単位
遅延光路差Lがレーザ光の可干渉距離の二倍程度、そし
て単位周波数シフト量fが遅延光路差Lに対応するビー
ト周波数差に相当するように設定する。このようにする
と、個々の干渉信号は遅延光路長差の増加により劣化す
るが、約半分に低下した地点で、遅延光路長差が相互に
Lまたは−Lだけずれた参照光による干渉信号と重ね合
わせられるため、全体の干渉信号強度の低下を避けるこ
とが可能となる。そのため、可干渉距離Lが比較的短い
光源を用いても、n段の複合光回路に参照光を通すこと
により2n Lの範囲まで測定可能範囲を拡大することが
できる。
FIG. 4 shows an example of the intensity distribution measurement waveform of the backscattered light. The frequency sweep rate of the laser light source 1 is adjusted so that the unit delay optical path difference L corresponds to about twice the coherence length of the laser light, and the unit frequency shift amount f corresponds to the beat frequency difference corresponding to the delay optical path difference L. Set. In this way, each interference signal deteriorates due to an increase in the delay optical path length difference, but at the point where the delay optical path length difference is reduced to about half, it overlaps with the interference signal due to the reference light in which the delay optical path length difference deviates from each other by L or −L. Since they are matched, it is possible to avoid a decrease in the strength of the entire interference signal. Therefore, even if a light source having a relatively short coherence length L is used, the measurable range can be expanded to the range of 2 n L by passing the reference light through the n-stage composite optical circuit.

【0019】図1に示した実施例をさらに具体的に説明
すると、レーザ光源1として、たとえば線幅が1MHz
の線幅(可干渉距離25m)のDFBレーザを用いる。
DFBレーザの光周波数は注入電流の変化によって制御
できる。光周波数シフタ7、10、13としては、たと
えば周波数シフト量がそれぞれ50MHz、100MH
z、200MHzの音響光学周波数シフタを用いる。光
遅延線8、11、14の長さはそれぞれ50、100、
200mとする。このようにすると、光方向性結合器1
5の出力端では、周波数シフト量が0、50、100、
150、200、250、300、350MHzの8個
の光周波数が得られる。また、各々の参照光成分の遅延
光路差は、それぞれ0、50、100、150、20
0、250、300mとなる。各々の参照光成分は、そ
れぞれ被測定光部品20内の異なる部分で反射、後方散
乱された反射信号光と干渉し、ヘテロダイン信号を作り
出す。
The embodiment shown in FIG. 1 will be described more specifically. The laser light source 1 has a line width of 1 MHz, for example.
A DFB laser with a line width of (coherence length 25 m) is used.
The optical frequency of the DFB laser can be controlled by changing the injection current. The optical frequency shifters 7, 10, and 13 have, for example, frequency shift amounts of 50 MHz and 100 MH, respectively.
An acousto-optic frequency shifter of z, 200 MHz is used. The lengths of the optical delay lines 8, 11, 14 are 50, 100, respectively.
It will be 200 m. In this way, the optical directional coupler 1
At the output end of 5, the frequency shift amount is 0, 50, 100,
Eight optical frequencies of 150, 200, 250, 300 and 350 MHz are obtained. The delay optical path differences of the respective reference light components are 0, 50, 100, 150, 20 respectively.
It becomes 0, 250, 300m. Each of the reference light components interferes with the reflected signal light that is reflected and backscattered at different portions in the measured optical component 20, and produces a heterodyne signal.

【0020】また、光周波数領域における周波数割り当
て量を50MHz/50m(=1MHz/1m=0.1
MHz/0.1m)に設定し、干渉信号を作り出す参照
光成分は異なっていても同一地点からの反射信号光に対
応する周波数差はひとつに定まるようにする。このよう
にすると、位置x〔m〕に対する周波数差F(x) 〔H
z〕は、 F(x) =Cx+D で表される。ここで、Cは比例係数であり、この例では
C=1MHz/1mである。Dは定数である。また、後
方散乱光分布に対応する周波数領域信号の強度I(x)
は、 I(x) =aPrefsig(x) Σ exp[-4π(Δf/2Vg)|x
−jL|] で表される。ここで、a光電変換における比例係数、P
ref 、Psig (x) はそれぞれ参照光、反射信号光の強
度、Δfは光源の線幅、Vg は光の群速度、Lは単位遅
延光路差である。Σはj=0〜22 −1の総和を表す。
このままでは、指数関数的な強度の変化が測定波形に重
なってしまう。これを補正すると、波数領域の信号の強
度I′(x) は、 I′(x) =aPrefsig(x) Σ exp[-4π(Δf/2Vg)|
x−jL|]÷Σ exp[-4π(Δf/2Vg)|x−jL|] で表される。この式のΣもまた、j=0〜22 −1の総
和を表す。
The frequency allocation amount in the optical frequency domain is 50 MHz / 50 m (= 1 MHz / 1 m = 0.1).
(MHz / 0.1 m) so that the frequency difference corresponding to the reflected signal light from the same point is set to one even if the reference light components that generate the interference signal are different. In this way, the frequency difference F (x) [H
z] is represented by F (x) = Cx + D. Here, C is a proportional coefficient, and in this example, C = 1 MHz / 1 m. D is a constant. Also, the intensity I (x) of the frequency domain signal corresponding to the backscattered light distribution
Is I (x) = aP ref P sig (x) Σ exp [-4π (Δf / 2V g ) | x
-JL |]. Where, a proportional coefficient in photoelectric conversion, P
ref and P sig (x) are the intensities of the reference light and the reflected signal light, Δf is the line width of the light source, V g is the group velocity of the light, and L is the unit delay optical path difference. Σ represents the total sum of j = 0 to 2 2 −1.
If this is left as it is, the exponential change in intensity will overlap the measured waveform. When this is corrected, the signal intensity I ′ (x) in the wave number domain is I ′ (x) = aP ref P sig (x) Σ exp [−4π (Δf / 2V g ) |
x−jL |] ÷ Σ exp [−4π (Δf / 2V g ) | x−jL |]. Σ in this equation also represents the sum of j = 0 to 2 2 −1.

【0021】図5は本発明第二実施例の光周波数領域反
射測定装置の構成を示す。図1に示した第一実施例で
は、光周波数シフタ7、10、13および光遅延線8、
11、14による損失が無視できるものとして説明し
た。この損失が無視できない場合には、他方の光路にそ
れぞれ光減衰器51、52、53を挿入し、二つの光路
を通った光が等しい強度をもつように調整する。光方向
性結合器9、12のそれぞれの二つの出力ポートには、
二つの経路を通った光波が1対1の強度比で出力され
る。
FIG. 5 shows the construction of the optical frequency domain reflectometry apparatus of the second embodiment of the present invention. In the first embodiment shown in FIG. 1, the optical frequency shifters 7, 10, 13 and the optical delay line 8,
It has been described that the losses due to 11 and 14 can be ignored. If this loss cannot be ignored, the optical attenuators 51, 52, and 53 are inserted in the other optical path, and the light passing through the two optical paths is adjusted so as to have equal intensities. The two output ports of each of the optical directional couplers 9 and 12 are
The light waves that have passed through the two paths are output at an intensity ratio of 1: 1.

【0022】以上の説明では光を合分波するために光方
向性結合器を用いた例を示したが、他の光学素子を用い
ても本発明を同様に実施できる。
In the above description, an example in which an optical directional coupler is used for multiplexing and demultiplexing light has been shown, but the present invention can be similarly implemented by using other optical elements.

【0023】[0023]

【発明の効果】以上説明したように、本発明の光周波数
領域反射測定装置は、参照光の光周波数および遅延光路
差をずらして重ね合わせることにより、被測定光部品の
測定点との間の光路時間差を小さくして十分な強度の干
渉信号を得ることができ、しかも異なる光周波数を利用
してその測定領域を区別することができる。したがっ
て、高い距離分解能を保ちながら、比較的広い距離範囲
にわたる測定が可能となる。
As described above, the optical frequency domain reflectometry apparatus of the present invention shifts and superimposes the optical frequency of the reference light and the delay optical path difference so that the optical frequency domain reflection measurement apparatus and the measurement point of the measured optical component are overlapped. The optical path time difference can be reduced to obtain an interference signal of sufficient intensity, and the measurement areas can be distinguished by using different optical frequencies. Therefore, it is possible to perform measurement over a relatively wide distance range while maintaining high distance resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の光周波数領域反射測定装置
の構成を示す図。
FIG. 1 is a diagram showing a configuration of an optical frequency domain reflectometer according to a first embodiment of the present invention.

【図2】光方向性結合器、光周波数シフタ、光遅延線お
よび光方向性結合器からなる光回路を多段接続した構成
例を示す図。
FIG. 2 is a diagram showing a configuration example in which an optical circuit including an optical directional coupler, an optical frequency shifter, an optical delay line, and an optical directional coupler is connected in multiple stages.

【図3】参照光の周波数差と遅延光路長差との関係を示
す図。
FIG. 3 is a diagram showing a relationship between a frequency difference of reference light and a delay optical path length difference.

【図4】後方散乱光の強度分布測定波形例を示す図。FIG. 4 is a diagram showing an example of an intensity distribution measurement waveform of backscattered light.

【図5】本発明第二実施例の光周波数領域反射測定装置
の構成を示す図。
FIG. 5 is a diagram showing a configuration of an optical frequency domain reflectometer according to a second embodiment of the present invention.

【図6】従来例の構成を示す図。FIG. 6 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 外部制御回路 3、4、5、6、9、12、15 光方向性結合器 7、10、13 光周波数シフタ 8、11、14 光遅延線 16、67 ヘテロダイン受信器 17、68 スペクトラムアナライザ 18、69 信号処理装置 20、64 被測定光部品 51、52、53 光減衰器 61 光源 62 光分波器 63 光合分波器 65 反射鏡 66 光合波器 1 laser light source 2 external control circuit 3, 4, 5, 6, 9, 12, 15 optical directional coupler 7, 10, 13 optical frequency shifter 8, 11, 14 optical delay line 16, 67 heterodyne receiver 17, 68 Spectrum analyzer 18, 69 Signal processing device 20, 64 Optical component under test 51, 52, 53 Optical attenuator 61 Light source 62 Optical demultiplexer 63 Optical multiplexer / demultiplexer 65 Reflector 66 Optical multiplexer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光周波数が時間に対して変化するコヒー
レント光を発生する発光手段と、 この発光手段の出力光を信号光と参照光とに分波する第
一の光学手段と、 この信号光を被測定光部品に入射するとともにその被測
定光部品からの反射信号光を上記参照光に合波する第二
の光学手段と、 合波された光波を電気信号に変換して解析する検波解析
手段とを備えた光周波数領域反射測定装置において、 上記参照光の光路上に、 参照光を二つの光波に分波する第三の光学手段と、 この二つの光波の一方に周波数シフトおよび遅延を与え
て再び合波する第四の光学手段とを備えたことを特徴と
する光周波数領域反射測定装置。
1. A light emitting means for generating coherent light whose optical frequency changes with time; a first optical means for demultiplexing the output light of the light emitting means into a signal light and a reference light; and the signal light. And a second optical means for coupling the reflected signal light from the measured optical component with the reference light and for converting the combined light wave into an electric signal for analysis. In the optical frequency domain reflectometry device including means, a third optical means for demultiplexing the reference light into two light waves on the optical path of the reference light, and a frequency shift and a delay for one of the two light waves. An optical frequency domain reflectometry apparatus comprising: a fourth optical means for giving and multiplexing again.
【請求項2】 上記第三の光学手段と上記第四の光学手
段とからなる光回路を多段に備え、 第n段(n=1、2、…)の光回路による周波数シフト
量が2n-1 f、遅延光路差が2n-1 Lに設定された請求
項1記載の光周波数領域反射測定装置。
2. An optical circuit comprising the third optical means and the fourth optical means is provided in multiple stages, and the frequency shift amount by the optical circuit of the nth stage (n = 1, 2, ...) Is 2 n. The optical frequency domain reflectometry device according to claim 1, wherein the optical path difference is set to -1 f and the delay optical path difference is set to 2 n-1 L.
JP14649993A 1993-06-17 1993-06-17 Optical frequency domain reflectometer Expired - Fee Related JP3282135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14649993A JP3282135B2 (en) 1993-06-17 1993-06-17 Optical frequency domain reflectometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14649993A JP3282135B2 (en) 1993-06-17 1993-06-17 Optical frequency domain reflectometer

Publications (2)

Publication Number Publication Date
JPH075068A true JPH075068A (en) 1995-01-10
JP3282135B2 JP3282135B2 (en) 2002-05-13

Family

ID=15409012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14649993A Expired - Fee Related JP3282135B2 (en) 1993-06-17 1993-06-17 Optical frequency domain reflectometer

Country Status (1)

Country Link
JP (1) JP3282135B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber
JP2015514306A (en) * 2012-03-14 2015-05-18 アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc Integrated light reflectometer
WO2016075672A1 (en) * 2014-11-16 2016-05-19 DSIT Solutions Ltd. Spectrally efficient optical frequency-domain reflectometry using i/q detection
US9557243B2 (en) 2012-03-14 2017-01-31 Axonoptics Llc Integrated optics reflectometer
JP2017516093A (en) * 2014-04-28 2017-06-15 オプトプラン・アー・エス Interferometric fiber optic sensor system and interrogation method
JP2019020146A (en) * 2017-07-11 2019-02-07 学校法人明治大学 Measuring device and measuring method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148420B2 (en) * 2008-09-05 2013-02-20 アンリツ株式会社 Optical fiber testing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248434A (en) * 1991-02-04 1992-09-03 Nippon Telegr & Teleph Corp <Ntt> Remote tester of optical line
JPH05118954A (en) * 1991-10-25 1993-05-14 Nippon Telegr & Teleph Corp <Ntt> Device for measuring reflection in optical frequency area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04248434A (en) * 1991-02-04 1992-09-03 Nippon Telegr & Teleph Corp <Ntt> Remote tester of optical line
JPH05118954A (en) * 1991-10-25 1993-05-14 Nippon Telegr & Teleph Corp <Ntt> Device for measuring reflection in optical frequency area

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber
JP2015514306A (en) * 2012-03-14 2015-05-18 アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc Integrated light reflectometer
US9557243B2 (en) 2012-03-14 2017-01-31 Axonoptics Llc Integrated optics reflectometer
JP2017516093A (en) * 2014-04-28 2017-06-15 オプトプラン・アー・エス Interferometric fiber optic sensor system and interrogation method
US10247581B2 (en) 2014-04-28 2019-04-02 Optoplan As Interferometric optical fibre sensor system and method of interrogation
WO2016075672A1 (en) * 2014-11-16 2016-05-19 DSIT Solutions Ltd. Spectrally efficient optical frequency-domain reflectometry using i/q detection
US10190940B2 (en) 2014-11-16 2019-01-29 DSIT Solutions Ltd. Spectrally efficient optical frequency-domain reflectometry using I/Q detection
JP2019020146A (en) * 2017-07-11 2019-02-07 学校法人明治大学 Measuring device and measuring method

Also Published As

Publication number Publication date
JP3282135B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
US4443801A (en) Direction finding and frequency identification method and apparatus
GB2305795A (en) Optical fiber characteristic measuring device
JPH0666517A (en) Optical interferometer
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
US7079231B2 (en) Optical network analyzer
JP7120400B2 (en) Optical coherence tomography
US6335788B1 (en) Optical-fiber characteristics measuring apparatus
JP5148420B2 (en) Optical fiber testing equipment
JPH1114833A (en) Optical fiber cable having specific path averaged dispersion
JPH075068A (en) Light frequency region reflection measuring device
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
WO2023131624A1 (en) Optical measurement system
JPH05240699A (en) Instrument for measuring backward scattered light
JP3237745B2 (en) Strain / temperature distribution measuring method and its measuring device
JPH0926376A (en) Otdr measuring device
JP2007057251A (en) Optical interferometer type phase detection apparatus
JPH067071B2 (en) Optical spectrum measuring device
JP3905780B2 (en) Brillouin spectral distribution measuring method and apparatus
GB2190262A (en) Optical fibre sensor
JP2907350B2 (en) Optical line remote testing equipment
JPH05322699A (en) High distance-resolution optical transmission line measuring device
JP4916347B2 (en) Optical heterodyne OFDR device
US20060215169A1 (en) Delaying interferometer
WO2023170821A1 (en) Device and method for measuring loss of plurality of optical fibers at once
JP5264659B2 (en) Optical line characteristic measuring method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees