JPH04248434A - Remote tester of optical line - Google Patents

Remote tester of optical line

Info

Publication number
JPH04248434A
JPH04248434A JP1358491A JP1358491A JPH04248434A JP H04248434 A JPH04248434 A JP H04248434A JP 1358491 A JP1358491 A JP 1358491A JP 1358491 A JP1358491 A JP 1358491A JP H04248434 A JPH04248434 A JP H04248434A
Authority
JP
Japan
Prior art keywords
light
frequency
optical path
reference light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1358491A
Other languages
Japanese (ja)
Other versions
JP2907350B2 (en
Inventor
Kaoru Shimizu
薫 清水
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1358491A priority Critical patent/JP2907350B2/en
Publication of JPH04248434A publication Critical patent/JPH04248434A/en
Application granted granted Critical
Publication of JP2907350B2 publication Critical patent/JP2907350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To provide a wide measuring distance range and high distance resolving power in a remote tester of an optical line using a light frequency region reflecting method. CONSTITUTION:Reference light is preliminarily divided to pass through a newly inserted delay line optical fiber 4 for reference light having proper length to make the light path difference between the reference light and measuring light as short as possible and even the reflected light (measuring light) from a remote place is set so that the light path length difference with the reference light becomes sufficiently shorter than the coherence length of a light source and, by inserting a frequency shifter 3 in the light path of measuring light or reference light, the reflected lights from two different places same in the absolute value of the light path length difference can be separated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光周波数領域反射法を
応用した光線路の遠隔試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote testing device for optical lines that applies an optical frequency domain reflection method.

【0002】0002

【従来の技術】光周波数領域反射法とは光のキャリア周
波数に位置の情報を、その強度に物理量を反映させる、
高い距離分解能を持つ分布センシング技術の一つである
[Prior Art] Optical frequency domain reflection method is a method in which position information is reflected in the carrier frequency of light, and physical quantities are reflected in its intensity.
It is a distributed sensing technology with high distance resolution.

【0003】具体的には、時間に対して直線的に周波数
を掃引した狭線幅レ−ザ光を被測定物体に入射し、該物
体内で反射された光を予め分波しておいた参照光を局発
光としてヘテロダイン検波することにより測定する。こ
のとき測定光と参照光との光光路長差と、その周波数差
とが一意に対応することになるため、測定光と参照光と
のビ−ト周波数を測定することにより、物体内の反射位
置を知ることができる。
Specifically, a narrow linewidth laser beam whose frequency is swept linearly with respect to time is incident on an object to be measured, and the light reflected within the object is demultiplexed in advance. Measurement is performed by heterodyne detection using the reference light as local light. At this time, the difference in optical path length between the measurement light and the reference light will uniquely correspond to the difference in frequency, so by measuring the beat frequency of the measurement light and the reference light, it is possible to You can know the location.

【0004】従来、光周波数領域反射法は高い距離分解
能を有する反面、一般には広い測定距離レンジをとるこ
とができないため、主として微小光学部品の評価技術と
して開発されてきた。
Conventionally, although the optical frequency domain reflection method has a high distance resolution, it generally cannot cover a wide measurement distance range, so it has been developed mainly as an evaluation technique for microscopic optical components.

【0005】一方で光周波数領域反射法を、光ファイバ
の損失分布測定法として利用する場合には図2に示すよ
うな構成で測定系を組んでいた。
On the other hand, when the optical frequency domain reflection method is used as a method for measuring the loss distribution of an optical fiber, a measurement system has been constructed as shown in FIG.

【0006】ここで11は狭線幅レ−ザ光源、12は入
射光と反射光とを分けるためのビ−ムスプリッタ、13
は被測定光ファイバ、14はヘテロダインレシ−バであ
る。狭線幅レ−ザ光源11の狭線幅レ−ザ光の周波数を
図3に示すように時間に対して直線的に変化するように
操作する。被測定光ファイバ13のB点(光ファイバ末
端)からフレネル反射によって戻ってきた光と、A点(
光ファイバの途中)からレ−リ散乱によって戻ってきた
光とを合波した後、ヘテロダイン検波を行う。
Here, 11 is a narrow linewidth laser light source, 12 is a beam splitter for separating incident light and reflected light, and 13 is a beam splitter for separating incident light and reflected light.
1 is an optical fiber to be measured, and 14 is a heterodyne receiver. The frequency of the narrow linewidth laser light from the narrow linewidth laser light source 11 is operated so as to vary linearly with time as shown in FIG. The light that returns from point B (optical fiber end) of the optical fiber to be measured 13 by Fresnel reflection and the light that returns from point A (
After combining the light returned by Rayleigh scattering from the middle of the optical fiber, heterodyne detection is performed.

【0007】このときB点からの反射光と、A点からの
反射光との間には一定の光路長差があり、常に一定の時
間差が保たれる。この時間差に相当する分だけ二つの光
の周波数は異なるが、その周波数差は一定である。この
ようにして光路長差と周波数差とを対応させることがで
き、ビ−ト信号の周波数に位置の情報をのせることがで
きる。この方法では、参照光として、予め分波された光
源光ではなく、光ファイバ一端面からフレネル反射によ
って戻ってくる光を使用している。
At this time, there is a constant optical path length difference between the reflected light from point B and the reflected light from point A, and a constant time difference is always maintained. The frequencies of the two lights differ by an amount corresponding to this time difference, but the frequency difference is constant. In this way, the optical path length difference and the frequency difference can be made to correspond, and position information can be added to the frequency of the beat signal. This method uses, as the reference light, not light source light that has been demultiplexed in advance, but light that returns from one end face of an optical fiber by Fresnel reflection.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、このよ
うな従来法では、光ファイバ長の2倍程度の距離よりも
、レ−ザ光源の可干渉距離が短い場合には原理的に使用
できないため測定可能なファイバの長さに制限があった
。また測定光と参照光との光路長差が長く、これらの二
光線の間の時間差が大きくなると、レ−ザ光の直線的な
周波数変化からの周波数の揺らぎの影響、及び光源の熱
的周波数揺らぎにより周波数の測定誤差が増大し、理想
的な光周波数領域反射法に期待される程の高い精度を実
現することができなかった。
[Problem to be Solved by the Invention] However, in principle, this conventional method cannot be used when the coherence distance of the laser light source is shorter than the distance of about twice the length of the optical fiber, so it cannot be used for measurement. There were limits to the possible fiber lengths. In addition, if the optical path length difference between the measurement beam and the reference beam is long and the time difference between these two beams becomes large, the influence of frequency fluctuation from the linear frequency change of the laser beam and the thermal frequency of the light source will increase. Frequency measurement errors increased due to fluctuations, and it was not possible to achieve the high accuracy expected from an ideal optical frequency domain reflection method.

【0009】つまり従来の方法では広い測定距離レンジ
と高い距離分解能とを同時に満足することはできないと
いう欠点を持っていた。
In other words, the conventional method has the disadvantage that it is not possible to simultaneously satisfy a wide measurement distance range and high distance resolution.

【0010】本発明の目的は、従来法に比較して広い測
定距離レンジと高い距離分解能とを有する、光線路の遠
隔試験装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a remote testing device for optical lines that has a wider measurement distance range and higher distance resolution than conventional methods.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
、請求項1では時間的に直線的な周波数掃引の可能な狭
線幅レ−ザ光源と、該レ−ザ光源の出射光を測定光と参
照光とに分波するための、第1の方向性結合器と、該測
定光あるいは参照光に周波数シフトを与えるために挿入
された周波数シフタと、被測定光線路に入射する測定光
と該光線路内で反射された反射光とを分波するための第
2の方向性結合器と、該レ−ザ光源の出射光が第1の方
向性結合器を出射してから、該ヘテロダインレシ−バに
入力されるまでの光路長と同程度の長さを有し、該参照
光を入力とするディレイライン光ファイバと、該ディレ
イライン光ファイバ出力である参照光と該反射光とを合
波し、ヘテロダイン検波するためのヘテロダインレシ−
バと、該ヘテロダインレシ−バ出力を入力とするスペク
トルアナライザと光線路の遠隔試験装置を構成した。
[Means for Solving the Problems] In order to achieve the above object, claim 1 provides a narrow linewidth laser light source capable of temporally linear frequency sweep and a measurement of the emitted light of the laser light source. a first directional coupler for splitting into light and reference light; a frequency shifter inserted to give a frequency shift to the measurement light or reference light; and measurement light incident on the optical line under test. and a second directional coupler for demultiplexing the reflected light reflected within the optical path; A delay line optical fiber having a length comparable to the optical path length until it is input to the heterodyne receiver and receiving the reference light as input, and a reference light and the reflected light that are output from the delay line optical fiber. Heterodyne receiver for multiplexing and heterodyne detection
A spectrum analyzer that receives the output of the heterodyne receiver as input, and a remote testing device for an optical line were constructed.

【0012】0012

【作用】請求項1によれば、レ−ザ光源の出射光を第1
の方向性結合器により測定光と参照光とに分岐し、周波
数シフタにより測定光に周波数シフトを与え、被測定光
線路に入射する測定光と該光線路内で反射された反射光
とを第2の方向性結合器で分波し、参照光をディレイラ
イン光ファイバに入力し、該ディレイライン光ファイバ
出力である参照光と反射光とをヘテロダインレシ−バで
合波しヘテロダイン検波し、これをスペクトルアナライ
ザに入力する。
[Operation] According to claim 1, the emitted light of the laser light source is
The directional coupler splits the measurement light into a reference light, and the frequency shifter applies a frequency shift to the measurement light. The reference light is input into the delay line optical fiber, and the reference light and the reflected light output from the delay line optical fiber are combined by a heterodyne receiver and subjected to heterodyne detection. input into the spectrum analyzer.

【0013】[0013]

【実施例】図1は、本発明の実施例を示す構成図である
Embodiment FIG. 1 is a block diagram showing an embodiment of the present invention.

【0014】1は直線的周波数掃引の可能な狭線幅レ−
ザ光源、2は該レ−ザ光源の出射光を測定光と参照光と
に分波するための、第1の方向性結合器、3は測定光に
周波数シフトを与えるための周波数シフタである。4は
参照光用のディレイライン光ファイバであり、その長さ
は参照光と測定光との光路長差が該レ−ザ光源の可干渉
距離より短くなるように選ぶ。(ディレイライン光ファ
イバ自体は何らかの方法によって可変長であることが好
ましい。)5は被測定光線路に入射する測定光と、該光
線路内で反射された反射光とを分波するための、第2の
方向性結合器である。6は被測定光ファイバ線路である
。7は該反射光と参照光とを合波し、ヘテロダイン検波
するためのヘテロダインレシ−バである。8は該ヘテロ
ダインレシ−バ出力を入力とするスペクトルアナライザ
である。
1 is a narrow linewidth range capable of linear frequency sweep.
2 is a first directional coupler for splitting the emitted light from the laser light source into measurement light and reference light; 3 is a frequency shifter for imparting a frequency shift to the measurement light; . 4 is a delay line optical fiber for reference light, and its length is selected so that the difference in optical path length between the reference light and measurement light is shorter than the coherence length of the laser light source. (The delay line optical fiber itself is preferably variable in length by some method.) 5 is for separating the measurement light incident on the optical path to be measured and the reflected light reflected within the optical path; This is a second directional coupler. 6 is an optical fiber line to be measured. 7 is a heterodyne receiver for combining the reflected light and the reference light and performing heterodyne detection. 8 is a spectrum analyzer which receives the output of the heterodyne receiver as an input.

【0015】本構成において参照光と測定光との光路長
差が、光源の可干渉距離よりも小さくなるように参照光
用のディレイライン光ファイバ4の長さを選択すること
により遠方からの反射光であっても良好な精度で測定対
象とすることができる。
In this configuration, by selecting the length of the delay line optical fiber 4 for the reference light so that the difference in optical path length between the reference light and the measurement light is smaller than the coherence length of the light source, reflection from a distance can be prevented. Even light can be measured with good accuracy.

【0016】その理由を以下に述べる。光周波数領域反
射法では、特定の時間差を有する、反射光(測定光)と
参照光との位相の相関が保たれて、両光を入力としたヘ
テロダインレシ−バ7の出力には、常に特定の周波数差
に対応するビ−ト信号が生じることを前提としているが
、時間差が大きくなると(つまり光路長差が長くなると
)この位相の相関は保たれなくなりビ−ト信号が観測さ
れなくなってしまう。この位相の相関が保たれうる光路
長差を可干渉距離とよぶが、ディレイライン光ファイバ
4を参照光の光路中に挿入し、光路長差を可干渉距離よ
りも短くすることによって位相の相関を保持し、常に良
好な状態でビ−ト信号を観測できるようにして測定精度
を改善することができる。
The reason for this will be described below. In the optical frequency domain reflection method, the phase correlation between the reflected light (measurement light) and the reference light, which have a specific time difference, is maintained, and the output of the heterodyne receiver 7, which receives both lights as input, always has a specific It is assumed that a beat signal corresponding to the frequency difference is generated, but as the time difference increases (that is, as the optical path length difference increases), this phase correlation will no longer be maintained and the beat signal will no longer be observed. . The optical path length difference that can maintain this phase correlation is called the coherence length. By inserting the delay line optical fiber 4 into the optical path of the reference light and making the optical path length difference shorter than the coherence length, the phase correlation can be maintained. It is possible to maintain the beat signal in a good condition at all times and improve measurement accuracy.

【0017】光周波数領域反射法では、狭線幅レ−ザ光
の周波数を時間に対して直線的に掃引することを前提と
しているが、実際には、周波数掃引の繰り返しの非再現
性や、レ−ザ光源の熱的周波数揺らぎ等のため、非直線
的に対応する周波数差にある程度のばらつきが生じてし
まう。図4にこの様子を示す。図中の曲線は光源の周波
数fが時間tに対してどのように変化しているのかを示
したものである。T1、T2は参照光と測定光との時間
差で、T1=T2である。しかし周波数の変化df1,
df2が時間に対して直線的ではないため対応する周波
数差は一意には定まらず、ばらつきを持ってしまう(d
f1≠df2)。
The optical frequency domain reflection method is based on the assumption that the frequency of narrow linewidth laser light is swept linearly with respect to time; Due to thermal frequency fluctuations of the laser light source, etc., a certain amount of variation occurs in the non-linearly corresponding frequency difference. Figure 4 shows this situation. The curve in the figure shows how the frequency f of the light source changes with respect to time t. T1 and T2 are time differences between the reference light and the measurement light, and T1=T2. However, the frequency change df1,
Since df2 is not linear with respect to time, the corresponding frequency difference is not uniquely determined and has variations (d
f1≠df2).

【0018】しかし光路長差を短くすることにより、時
間差を小さくし、このばらつきの程度を小さくすること
が出来る。このことは測定精度を向上させる。
However, by shortening the optical path length difference, the time difference can be reduced and the degree of this variation can be reduced. This improves measurement accuracy.

【0019】また周波数シフタ3の必要性は次のように
して説明される。本構成においては、ディレイライン光
ファイバ4の長さよりも被測定光ファイバ線路6の長さ
の2倍の方が長い場合には測定光と参照光との光路長差
は正にも負にもなりうる。このような場合には光路長差
の絶対値が等しい異なる二点からの反射光が、同一の周
波数差をもって測定されることになってしまう(図5(
a))。そこでこのような事態を避けるために、測定光
に周波数シフトfsを与えて周波数の重なりが生じない
ようにする必要がある。具体的には以下の二つの方法を
とれば良い。
The necessity of the frequency shifter 3 can be explained as follows. In this configuration, if twice the length of the optical fiber line to be measured 6 is longer than the length of the delay line optical fiber 4, the optical path length difference between the measurement light and the reference light can be either positive or negative. It can be. In such a case, reflected light from two different points with the same absolute value of optical path length difference will be measured with the same frequency difference (Figure 5 (
a)). Therefore, in order to avoid such a situation, it is necessary to apply a frequency shift fs to the measurement light to prevent frequency overlap. Specifically, the following two methods may be used.

【0020】ある位置における光路長差Lsが光源の可
干渉距離Lsよりも長いとき、この位置に対応する周波
数差がちょうど0になるように周波数シフタ3で周波数
をシフトさせる(図5(b))。この場合、可干渉距離
Lsの範囲外からの反射光は前述の理由によりビ−ト信
号としては観測されないので、周波数の重なりは生じな
い。
When the optical path length difference Ls at a certain position is longer than the coherence length Ls of the light source, the frequency shifter 3 shifts the frequency so that the frequency difference corresponding to this position becomes exactly 0 (FIG. 5(b)). ). In this case, reflected light from outside the range of the coherence length Ls is not observed as a beat signal for the reason described above, so no frequency overlap occurs.

【0021】被測定光ファイバ線路6の出力端からの反
射光に対応するビ−ト信号の周波数が0になるように、
光路長差0における周波数fsだけシフトさせる(図5
(c))。この場合には図中の破線に対応する反射光は
存在しない。尚、同様にして入力端からの反射光に対応
するビ−ト信号の周波数を0に合わせる方法もある。も
ちろん上記周波数シフトの量はfs以上であっても良い
ことは明らかである。
The frequency of the beat signal corresponding to the reflected light from the output end of the optical fiber line 6 to be measured becomes 0.
The frequency fs at the optical path length difference of 0 is shifted (Fig. 5
(c)). In this case, there is no reflected light corresponding to the broken line in the figure. Incidentally, there is also a method of similarly adjusting the frequency of the beat signal corresponding to the reflected light from the input end to zero. Of course, it is clear that the amount of frequency shift may be greater than fs.

【0022】以上述べた周波数シフタ3としては超音波
光変調素子等を使用すれば良い。また上記説明では測定
光に周波数シフトをかけていたが、場合によっては参照
光にかけても良い。
As the frequency shifter 3 described above, an ultrasonic light modulation element or the like may be used. Further, in the above description, the frequency shift is applied to the measurement light, but depending on the case, the frequency shift may be applied to the measurement light.

【0023】[0023]

【発明の効果】以上説明した如く請求項1によれば、参
照光の光路中にディレイライン光ファイバを挿入するこ
とにより参照光と測定光との光路長差を短くして位相の
相関を保つことにより測定精度の改善を達成し、そして
測定光あるいは参照光の光路中に周波数シフタを挿入す
ることにより反射位置と周波数との対応を保証する。こ
のようにして、測定精度を保持しつつ測定可能範囲を著
しく拡大することができ、従来法にはない優れた特色を
光周波数領域反射法にもたせることが可能になり、高距
離分解能の光線路の遠隔試験装置を実現できる。
As described above, according to claim 1, by inserting a delay line optical fiber into the optical path of the reference light, the difference in optical path length between the reference light and the measurement light is shortened to maintain phase correlation. This improves the measurement accuracy, and by inserting a frequency shifter into the optical path of the measurement light or reference light, the correspondence between the reflection position and the frequency is guaranteed. In this way, the measurable range can be significantly expanded while maintaining measurement accuracy, and the optical frequency domain reflection method has excellent features not found in conventional methods. remote testing equipment can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す測定装置の構成図FIG. 1 is a configuration diagram of a measuring device showing an embodiment of the present invention.

【図2
】光周波数領域反射法の原理図
[Figure 2
] Principle diagram of optical frequency domain reflection method

【図3】狭線幅レ−ザ光の周波数掃引の様子を示す図[Figure 3] Diagram showing the frequency sweep of narrow linewidth laser light


図4】被直線的周波数変化の影響を示す図
[
Figure 4: Diagram showing the influence of linear frequency change

【図5】周波
数シフタの使用法を示す図
[Figure 5] Diagram showing how to use a frequency shifter

【符号の説明】[Explanation of symbols]

1…狭線幅レ−ザ光源、2…第1の方向性結合器、3…
周波数シフタ、4…参照光用のディレイライン光ファイ
バ、5…第2の方向性結合器、6…被測定光ファイバ線
路、7…ヘテロダインレシ−バ、8…スペクトルアナラ
イザ。
DESCRIPTION OF SYMBOLS 1... Narrow linewidth laser light source, 2... First directional coupler, 3...
Frequency shifter, 4... Delay line optical fiber for reference light, 5... Second directional coupler, 6... Optical fiber line to be measured, 7... Heterodyne receiver, 8... Spectrum analyzer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  時間的に直線的な周波数掃引の可能な
狭線幅レ−ザ光源と、該レ−ザ光源の出射光を測定光と
参照光とに分波するための、第1の方向性結合器と、該
測定光あるいは参照光に周波数シフトを与えるために挿
入された周波数シフタと、被測定光線路に入射する測定
光と該光線路内で反射された反射光とを分波するための
第2の方向性結合器と、該レ−ザ光源の出射光が第1の
方向性結合器を出射してから、該ヘテロダインレシ−バ
に入力されるまでの光路長と同程度の長さを有し、該参
照光を入力とするディレイライン光ファイバと、該ディ
レイライン光ファイバ出力である参照光と該反射光とを
合波し、ヘテロダイン検波するためのヘテロダインレシ
−バと、該ヘテロダインレシ−バ出力を入力とするスペ
クトルアナライザとより構成されることを特徴とする光
線路の遠隔試験装置。
1. A narrow linewidth laser light source capable of temporally linear frequency sweep, and a first laser light source for splitting the emitted light of the laser light source into measurement light and reference light. A directional coupler, a frequency shifter inserted to give a frequency shift to the measurement light or reference light, and a frequency shifter that separates the measurement light incident on the optical path under test and the reflected light reflected within the optical path. a second directional coupler for the purpose of achieving a second directional coupler, and an optical path length that is approximately the same as the optical path length from when the emitted light of the laser light source exits the first directional coupler until it is input to the heterodyne receiver. a delay line optical fiber having a length of , and a spectrum analyzer whose input is the output of the heterodyne receiver.
JP1358491A 1991-02-04 1991-02-04 Optical line remote testing equipment Expired - Fee Related JP2907350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1358491A JP2907350B2 (en) 1991-02-04 1991-02-04 Optical line remote testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1358491A JP2907350B2 (en) 1991-02-04 1991-02-04 Optical line remote testing equipment

Publications (2)

Publication Number Publication Date
JPH04248434A true JPH04248434A (en) 1992-09-03
JP2907350B2 JP2907350B2 (en) 1999-06-21

Family

ID=11837235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1358491A Expired - Fee Related JP2907350B2 (en) 1991-02-04 1991-02-04 Optical line remote testing equipment

Country Status (1)

Country Link
JP (1) JP2907350B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075068A (en) * 1993-06-17 1995-01-10 Nippon Telegr & Teleph Corp <Ntt> Light frequency region reflection measuring device
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075068A (en) * 1993-06-17 1995-01-10 Nippon Telegr & Teleph Corp <Ntt> Light frequency region reflection measuring device
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JPH08210944A (en) * 1995-02-02 1996-08-20 Yokogawa Electric Corp Optical fiber inspection device
JPH08219947A (en) * 1995-02-09 1996-08-30 Yokogawa Electric Corp Inspection apparatus for optical fiber

Also Published As

Publication number Publication date
JP2907350B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US7110119B2 (en) Determining an optical property by using superimposed delayed signals
CN110646805B (en) Frequency modulation continuous wave laser ranging system based on virtual sweep frequency light source
JP2000180265A (en) Brillouin gain spectrum measuring method and device
US5642196A (en) Method and apparatus for measuring the thickness of a film using low coherence reflectometry
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
US4856092A (en) Optical pulse generating arrangements
US4355899A (en) Interferometric distance measurement method
US5517022A (en) Apparatus for measuring an ambient isotropic parameter applied to a highly birefringent sensing fiber using interference pattern detection
US7460242B2 (en) Systems and methods for high-precision length measurement
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JPH04248434A (en) Remote tester of optical line
US4790655A (en) System for measuring laser spectrum
KR960042027A (en) Optical pressure detection method and optical pressure detection device
US7253906B2 (en) Polarization state frequency multiplexing
US7016023B2 (en) Chromatic dispersion measurement
JPH0354292B2 (en)
JP3905780B2 (en) Brillouin spectral distribution measuring method and apparatus
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP4678236B2 (en) Optical property measuring device
JPH05322699A (en) High distance-resolution optical transmission line measuring device
US6813027B2 (en) Time difference synchronization for determination of a property of an optical device
JP4766885B2 (en) Wavelength fluctuation measuring device
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JPH11304656A (en) Wavelength dispersion measuring method and device
JPH0886717A (en) Light beam passage discriminating optical part and its remote control measuring method and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees