JPH0886717A - Light beam passage discriminating optical part and its remote control measuring method and device - Google Patents

Light beam passage discriminating optical part and its remote control measuring method and device

Info

Publication number
JPH0886717A
JPH0886717A JP6220455A JP22045594A JPH0886717A JP H0886717 A JPH0886717 A JP H0886717A JP 6220455 A JP6220455 A JP 6220455A JP 22045594 A JP22045594 A JP 22045594A JP H0886717 A JPH0886717 A JP H0886717A
Authority
JP
Japan
Prior art keywords
optical
light
identification information
reflection
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6220455A
Other languages
Japanese (ja)
Other versions
JP3287441B2 (en
Inventor
Hideyuki Iwata
秀行 岩田
Shigeru Tomita
茂 冨田
Michito Matsumoto
三千人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22045594A priority Critical patent/JP3287441B2/en
Publication of JPH0886717A publication Critical patent/JPH0886717A/en
Application granted granted Critical
Publication of JP3287441B2 publication Critical patent/JP3287441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE: To provide a light beam passage discriminating optical part which can be downsized without requiring a reference optical fiber, and its remote control measuring method and device. CONSTITUTION: The reflected light is obtained by sending the low coherence light to a light beam passage discriminating optical part 10 provided with a discriminating information reflecting part to display discriminating information depending on whether or not reflecting points are arranged at prescribed intervals and a reference reflecting part which is arranged at a distance longer than the total length of the discriminating information reflecting part between it and the discriminating information reflecting part and is composed of the reflecting points. This is divided into two parts in a Mach-Zehnder interferometer 50, and one is delayed to the other, and they are again put together, and the reflected light by the discriminating information reflecting part and the reflected light by the reference reflecting part are made to interfere with each other, and a change in the light intensity is detected by a detector 60, and the existence of the reflecting points in the discriminating information reflecting part, that is, the discriminating information is read.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光線路識別用光部品並び
にその遠隔測定方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical component for identifying an optical line and a remote measuring method and device therefor.

【0002】[0002]

【従来の技術】光線路の所定の位置(通常、先端)に設
けて該光線路を識別するための識別情報を付与する部品
として、線路方向の数100μm間隔毎に反射点を設け
るか否かによって識別情報の「1」及び「0」を表すよ
うになした光線路識別用光部品(以下、単に光部品と称
す。)がある。この光部品を遠隔から測定する、いいか
えれば識別情報を遠隔から読み取る方法として、従来、
低コヒーレンス光源とマイケルソン干渉計とを用いた方
法が知られている(例えば、光学、18〔11〕(19
89)「光導波路評価用干渉型後方散乱測定系」参
照)。
2. Description of the Related Art Whether or not reflection points are provided at intervals of several 100 μm in the direction of a line as a component which is provided at a predetermined position (usually the tip) of an optical line and gives identification information for identifying the optical line. There is an optical component for identifying an optical line (hereinafter, simply referred to as an optical component) that represents "1" and "0" of the identification information. As a method of remotely measuring this optical component, in other words, a method of remotely reading the identification information,
A method using a low coherence light source and a Michelson interferometer is known (for example, optics, 18 [11] (19
89) See "Interferometric Backscattering Measurement System for Optical Waveguide Evaluation").

【0003】図2は前述した従来の遠隔測定方法を示す
もので、図中、1は低コヒーレンス光源、2はビームス
プリッタ、3は測定対象の光線路、4は参照光用の光線
路、例えば参照光ファイバ、5は光部品、6は参照光フ
ァイバ4の延長方向に変位可能な移動鏡、7は検出器で
ある。
FIG. 2 shows the above-mentioned conventional telemetry method. In the figure, 1 is a low coherence light source, 2 is a beam splitter, 3 is an optical line to be measured, and 4 is an optical line for reference light, for example. Reference optical fiber, 5 is an optical component, 6 is a movable mirror displaceable in the extension direction of the reference optical fiber 4, and 7 is a detector.

【0004】低コヒーレンス光源1より出射した信号光
はビームスプリッタ2で2分され、一方は光線路3に入
射し、また、他方は参照光ファイバ4に入射する。光線
路3を伝搬した信号光は光部品5の反射点で反射され、
識別情報用反射光として光線路3を逆方向に伝搬する。
一方、参照光ファイバ4を伝搬した信号光は移動鏡6で
反射され、参照用反射光として参照光ファイバ4を逆方
向に伝搬する。
The signal light emitted from the low coherence light source 1 is split into two by the beam splitter 2, one of which enters the optical line 3 and the other of which enters the reference optical fiber 4. The signal light propagating through the optical line 3 is reflected at the reflection point of the optical component 5,
The reflected light for identification information propagates in the opposite direction through the optical line 3.
On the other hand, the signal light propagating in the reference optical fiber 4 is reflected by the movable mirror 6 and propagates in the opposite direction in the reference optical fiber 4 as reference reflected light.

【0005】前記識別情報用反射光と参照用反射光とは
ビームスプリッタ2で合波されるが、この時、移動鏡6
の変位により変化する参照用反射光の光路長が、反射点
からの識別情報用反射光に対する光路長と一致すると、
干渉縞(フリンジ)が発生する。従って、光部品5に複
数の反射点があると、各反射点に対応して干渉フリンジ
が発生する。該干渉フリンジは検出器7にて光強度の変
化として検出される。
The identification information reflected light and the reference reflected light are combined by the beam splitter 2. At this time, the movable mirror 6 is used.
When the optical path length of the reference reflected light that changes due to the displacement of is equal to the optical path length for the identification information reflected light from the reflection point,
Interference fringes are generated. Therefore, when the optical component 5 has a plurality of reflection points, interference fringes occur corresponding to the respective reflection points. The interference fringe is detected by the detector 7 as a change in light intensity.

【0006】ここで、低コヒーレンス光源1として、ス
ペクトル幅数10nmのLEDを用いた時の干渉フリン
ジ幅は数10μmであり、この値が測定分解能(分離し
て検出可能な各反射点の最低間隔)となる。
Here, when an LED having a spectral width of several 10 nm is used as the low coherence light source 1, the interference fringe width is several tens of μm, and this value is the measurement resolution (the minimum interval between the reflection points that can be separately detected). ).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、測定位置から光部品の設置位置までの距
離、即ち光線路の長さaに対応した参照光ファイバが必
要となり、長さの異なる光線路の測定を行うには、各光
線路に正確に対応した長さの参照光ファイバを用意し
て、測定の都度、これを交換しなければならず、実用的
でないという問題があった。
However, in the above-mentioned method, the reference optical fiber corresponding to the distance from the measurement position to the installation position of the optical component, that is, the length a of the optical line is required, and the light beams of different lengths are required. In order to measure the path, it is necessary to prepare a reference optical fiber having a length accurately corresponding to each optical line and replace the reference optical fiber at each measurement, which is not practical.

【0008】また、光線路の長さが数キロに達する場
合、光線路と参照光ファイバとの相違に基づく波長分散
や偏波分散の影響により、測定分解能が距離に比例して
劣化するため、光部品における各反射点の配設間隔を広
くしなければならず、その分、光部品が大型化してしま
うという問題があった。
When the length of the optical line reaches several kilometers, the measurement resolution deteriorates in proportion to the distance due to the influence of chromatic dispersion and polarization dispersion due to the difference between the optical line and the reference optical fiber. It is necessary to widen the arrangement interval of each reflection point in the optical component, and there is a problem that the optical component becomes large accordingly.

【0009】本発明の目的は、参照光ファイバを必要と
することなく、しかも小型となし得る光線路識別用光部
品並びにその遠隔測定方法及び装置を提供することにあ
る。
An object of the present invention is to provide an optical component for identifying an optical line which does not require a reference optical fiber and can be made compact, and a remote measuring method and apparatus thereof.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、請求項1では、光線路の所定の位置に設けて該光線
路を識別するための識別情報を付与する光線路識別用光
部品において、所定の間隔毎に反射点を設けるか否かに
よって識別情報を表す識別情報用反射部と、識別情報用
反射部との間に該識別情報用反射部の全長よりも長い距
離を隔てて設けられた反射点よりなる参照用反射部とを
備えた光線路識別用光部品を提案する。
In order to achieve the above object, the optical line identifying optical component according to claim 1 is provided at a predetermined position of the optical line and is provided with identification information for identifying the optical line. , Provided at a distance longer than the entire length of the identification information reflection section between the identification information reflection section and the identification information reflection section, which represents identification information depending on whether or not reflection points are provided at predetermined intervals. An optical component for identifying an optical line is proposed, which includes a reference reflection portion including the reflection points.

【0011】また、請求項2では、光ファイバのコアの
部分まで達するスリットにより反射点を構成した請求項
1記載の光線路識別用光部品を提案する。
In a second aspect of the present invention, there is proposed the optical component for optical line identification according to the first aspect, wherein the reflection point is constituted by a slit reaching the core portion of the optical fiber.

【0012】また、請求項3では、所定の間隔毎に反射
点を設けるか否かによって識別情報を表す識別情報用反
射部と、識別情報用反射部との間に該識別情報用反射部
の全長よりも長い距離を隔てて設けられた反射点よりな
る参照用反射部とを備えた光線路識別用光部品を所定の
位置に設けた光線路に低コヒーレンスな光を入射し、前
記光線路識別用光部品からの反射光を二分し、該二分し
た一方の反射光に遅延を与えるとともに他方の反射光に
変調を加えて再び合波し、前記遅延量を前記識別情報用
反射部と参照用反射部との間の距離に相当する量を中心
として変化させながら前記合波光の光強度の変化を測定
する光線路識別用光部品の遠隔測定方法を提案する。
Further, according to a third aspect of the present invention, the identification information reflection section is provided between the identification information reflection section that represents identification information depending on whether or not reflection points are provided at predetermined intervals, and the identification information reflection section. Light with low coherence is incident on an optical line provided at a predetermined position with an optical component for identifying an optical line having a reference reflection part formed of a reflection point provided at a distance longer than the entire length, and the optical line is provided. The reflected light from the identification optical component is divided into two parts, one of the two divided reflected lights is delayed, and the other reflected light is modulated and recombined, and the delay amount is referred to the identification information reflection part. A remote measuring method of an optical component for optical line identification is proposed, in which the change in the light intensity of the combined light is measured while changing the amount corresponding to the distance to the reflection part for the center.

【0013】また、請求項4では、低コヒーレンスな光
を発生する光源と、光源からの光を、所定の間隔毎に反
射点を設けるか否かによって識別情報を表す識別情報用
反射部と、識別情報用反射部との間に該識別情報用反射
部の全長よりも長い距離を隔てて設けられた反射点より
なる参照用反射部とを備えた光線路識別用光部品を所定
の位置に設けた光線路に入射するとともに、該光線路か
ら出射される光を分離して出力する反射光分離部と、反
射光分離部から出力される光を二分する第1の光カプラ
と、該二分した一方の光に遅延を与える光遅延回路部
と、二分した他方の光に位相変調を加える変調回路部
と、その各々の光を再び合波する第2の光カプラとから
なるマッハツェンダ干渉計と、第2の光カプラからの出
力光の光強度を検出する検出器とを備え、前記遅延量を
前記識別情報用反射部と参照用反射部との間の距離に相
当する量を中心として変化させながら第2の光カプラか
らの出力光の光強度の変化を測定する光線路識別用光部
品の遠隔測定装置を提案する。
According to a fourth aspect of the present invention, there is provided a light source for generating light of low coherence, an identification information reflecting section for indicating the identification information of the light from the light source at every predetermined interval. An optical component for identifying an optical line, which is provided with a reference reflection portion including reflection points provided at a distance longer than the entire length of the identification information reflection portion between the reflection portion for identification information, is provided at a predetermined position. A reflected light splitting unit that splits and outputs light that is incident on the provided optical line and that is output from the optical line; a first optical coupler that splits the light output from the reflected light splitting unit into two; And a Mach-Zehnder interferometer including an optical delay circuit unit that delays one light beam, a modulation circuit unit that applies phase modulation to the other divided light beam, and a second optical coupler that multiplexes the respective light beams again. , Detects the light intensity of the output light from the second optical coupler A detector, and changing the optical intensity of the output light from the second optical coupler while changing the delay amount centering on the amount corresponding to the distance between the identification information reflection unit and the reference reflection unit. We propose a remote measuring device for optical components for optical line identification.

【0014】また、請求項5では、第2の光カプラから
出力される2つの出力光をそれぞれ電気信号に変換する
2つの光検出器と、該2つの光検出器の出力信号を加算
する差動増幅器と、差動増幅器の出力信号よりマッハツ
ェンダ干渉計における変調周波数又はその高調波成分の
信号振幅を検出するベクトルシグナルアナライザとから
なる検出器を用いた請求項4記載の光線路識別用光部品
の遠隔測定装置を提案する。
According to a fifth aspect of the present invention, two photodetectors for converting the two output lights output from the second optical coupler into electric signals, respectively, and a difference for adding the output signals of the two photodetectors. 5. An optical component for optical line identification according to claim 4, wherein a detector comprising a dynamic amplifier and a vector signal analyzer for detecting the signal amplitude of the modulation frequency or its harmonic component in the Mach-Zehnder interferometer from the output signal of the differential amplifier is used. We propose a telemetry device.

【0015】[0015]

【作用】請求項1の発明によれば、識別情報反射部によ
り識別情報用反射光を発生させ、また、参照用反射部に
より参照用反射光を発生させることができ、これらを干
渉させることによって識別情報を表す光強度の変化を取
り出すことができる。
According to the invention of claim 1, the identification information reflecting portion can generate the identification information reflected light, and the reference reflecting portion can generate the reference reflected light. It is possible to take out the change in the light intensity representing the identification information.

【0016】また、請求項2の発明によれば、光ファイ
バに切削加工を施すのみで反射点を形成できる。
According to the second aspect of the invention, the reflection point can be formed only by cutting the optical fiber.

【0017】また、請求項3の発明によれば、光線路に
入射された低コヒーレンスな光は光線路識別用光部品の
識別情報用反射部により反射されて識別情報用反射光を
生じるとともに参照用反射部により反射されて参照用反
射光を生じる。該識別情報用反射光及び参照用反射光を
含む反射光は二分され、一方の反射光が他方の反射光に
対して前記識別情報用反射部と参照用反射部との間の距
離に相当する量だけ遅延されて合波されることにより、
時間位置の一致した識別情報用反射光のうちの一の反射
光と参照用反射光とが干渉し、さらに遅延量が変化され
ることによって識別情報用反射光中の各反射光と参照用
反射光とが順次干渉し、識別情報用反射部における各反
射点に対応した干渉光が得られ、識別情報が取り出され
る。
According to the invention of claim 3, the low coherence light incident on the optical line is reflected by the identification information reflecting portion of the optical component for identifying the optical line to generate reflected light for identification information and to be referred to. The reference reflection light is generated by being reflected by the reflection portion. The reflected light including the reflected light for identification information and the reflected light for reference is divided into two, and one reflected light corresponds to the distance between the reflected portion for identification information and the reference reflective portion with respect to the other reflected light. By being delayed by the amount and combined,
One reflected light of the identification information reflected lights whose time positions match and the reference reflected light interfere with each other, and the delay amount is changed, so that each reflected light in the identification information reflected light and the reference reflected light The light and the light sequentially interfere with each other, and interference light corresponding to each reflection point in the identification information reflection section is obtained, and the identification information is extracted.

【0018】また、請求項4の発明によれば、光源より
発生した低コヒーレンスな光は反射光分離部を経て光線
路に入射され、これを伝搬して光線路識別用光部品に達
し、その識別情報用反射部により反射されて識別情報用
反射光として光線路を逆方向に伝搬するとともに参照用
反射部により反射されて参照用反射光として光線路を逆
方向に伝搬する。該識別情報用反射光及び参照用反射光
を含む反射光は反射光分離部により分離されてマッハツ
ェンダ干渉計に入射され、その第1の光カプラにより二
分される。二分された一方の反射光は光遅延回路部によ
り前記識別情報用反射部と参照用反射部との間の距離に
相当する量の遅延が与えられ、また、他方の反射光は変
調回路部により位相変調され、第2の光カプラにより再
び合波される。ここで、時間位置の一致した識別情報用
反射光のうちの一の反射光と参照用反射光とが干渉し、
さらに遅延量が変化されることによって識別情報用反射
光中の各反射光と参照用反射光とが順次干渉し、識別情
報用反射部における各反射点に対応した干渉光が得られ
るが、この時、第2の光カプラから出力される光の光強
度が検出器により検出され、識別情報が取り出される。
なお、識別情報用反射光は変調回路部により位相変調を
受けているため、参照用反射光との干渉成分のみが検出
され、背景光は検出されない。
Further, according to the invention of claim 4, the low coherence light generated from the light source is incident on the optical line through the reflected light separating portion, propagates through the optical line, and reaches the optical line identifying optical component. The reflected light for the identification information propagates in the reverse direction as reflected light for the identification information in the opposite direction, and is reflected by the reference reflection portion to propagate in the reverse direction as reflected light for the reference. The reflected light including the reflected light for identification information and the reflected light for reference is separated by the reflected light separation unit, is incident on the Mach-Zehnder interferometer, and is divided into two by the first optical coupler. One of the two reflected lights is delayed by the optical delay circuit unit in an amount corresponding to the distance between the identification information reflection unit and the reference reflection unit, and the other reflected light is modulated by the modulation circuit unit. It is phase-modulated and recombined by the second optical coupler. Here, the reflected light for one of the reflected light for identification information and the reflected light for reference at the same time position interfere with each other,
By further changing the delay amount, each reflected light in the reflected light for identification information and the reflected light for reference sequentially interfere, and interference light corresponding to each reflection point in the reflection portion for identification information is obtained. At this time, the light intensity of the light output from the second optical coupler is detected by the detector, and the identification information is extracted.
Since the reflected light for identification information is phase-modulated by the modulation circuit section, only the interference component with the reflected light for reference is detected, and the background light is not detected.

【0019】また、請求項5の発明によれば、第2の光
カプラから出力される2つの出力光、即ち干渉光は2つ
の光検出器でそれぞれ電気信号に変換され、差動増幅器
で加算されるが、この際、雑音信号が互いに打ち消し合
うことになる。
Further, according to the invention of claim 5, the two output lights output from the second optical coupler, that is, the interference lights are converted into electric signals by the two photodetectors, and added by the differential amplifier. However, at this time, the noise signals cancel each other out.

【0020】[0020]

【実施例】図1は本発明の光線路識別用光部品の一実施
例を示すもので、光線路識別用光部品(以下、単に光部
品と称す。)10は波長選択部品11及び反射部品12
から構成され、波長選択部品11により通信用信号光A
と測定用信号光Bとに分離し、通信用信号光Aに対する
反射部品12の影響を抑えるようになしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of an optical component for optical line identification according to the present invention. An optical component for optical line identification (hereinafter, simply referred to as an optical component) 10 is a wavelength selection component 11 and a reflective component. 12
And a signal light A for communication by the wavelength selection component 11.
Is separated into the measurement signal light B and the influence of the reflection component 12 on the communication signal light A is suppressed.

【0021】反射部品12は、図3に示すように、光フ
ァイバ13のコア14の部分まで切削加工によりスリッ
トを設けて識別情報用反射部15及び参照用反射部16
を形成してなるものである。識別情報用反射部15は数
100μmの一定間隔毎に反射点を構成するスリット1
7を設けるか否かによって光線路の識別情報の「1」及
び「0」を表すようになしている。また、参照用反射部
16は識別情報用反射部15との間に該識別情報用反射
部15全体の長さよりも長い距離を隔てて設けられたス
リットにより構成されている。
As shown in FIG. 3, the reflective component 12 has slits formed by cutting to the core 14 of the optical fiber 13 to provide an identification information reflector 15 and a reference reflector 16.
Is formed. The reflection portion 15 for identification information is a slit 1 that forms reflection points at regular intervals of several 100 μm.
Depending on whether or not 7 is provided, "1" and "0" of the identification information of the optical line are represented. The reference reflection portion 16 is composed of a slit provided between the reference reflection portion 16 and the identification information reflection portion 15 at a distance longer than the entire length of the identification information reflection portion 15.

【0022】図4は本発明の遠隔測定方法の測定原理を
示すもので、前述した光部品10の識別情報用反射部1
5による識別情報用反射光Cと参照用反射部16による
参照用反射光Dとを含む反射光Eを二分し、これらをそ
れぞれ別々の光路に入射して一方の反射光を他方の反射
光に対して遅延させ、合波することにより、時間位置の
一致した識別情報用反射光Cのうちの一の反射光と参照
用反射光Dとを干渉させ、さらに一方の光路の長さ、即
ち遅延量を変化させ、識別情報用反射光C中の各反射光
と参照用反射光Dとを順次干渉させることにより、光部
品10の識別情報用反射部15における各スリット17
に対応した干渉光Fを得るようになしている。
FIG. 4 shows the measuring principle of the remote measuring method of the present invention. The above-mentioned identification information reflecting portion 1 of the optical component 10 is described.
The reflected light E including the reflected light C for identification information by 5 and the reflected light D for reference by the reference reflection portion 16 is divided into two, and these are respectively incident on different optical paths to make one reflected light the other reflected light. By delaying and multiplexing with respect to each other, one reflected light of the reflected light C for identification information and the reflected light D for reference at the same time position are caused to interfere with each other, and further, the length of one optical path, that is, the delay. By changing the amount and sequentially causing the reflected light in the reflected light C for identification information and the reflected light D for reference to interfere with each other, each slit 17 in the reflection portion 15 for identification information of the optical component 10 is increased.
The interference light F corresponding to is obtained.

【0023】図5は本発明の遠隔測定方法を実施する装
置の一実施例を示すもので、図中、10は前述した光線
路識別用光部品、20は光源、30は反射光分離部、4
0は測定対象の光線路、50はマッハツェンダ干渉計、
60は検出器である。
FIG. 5 shows an embodiment of an apparatus for carrying out the telemetry method of the present invention. In the figure, 10 is the above-mentioned optical component for optical line identification, 20 is a light source, 30 is a reflected light separating section, Four
0 is an optical line to be measured, 50 is a Mach-Zehnder interferometer,
60 is a detector.

【0024】光源20はコヒーレンス長が短く、適当な
広いスペクトル幅を有する光を発生する。この光はファ
イバ型光分岐部品で構成される反射光分離部30を経
て、先端に光部品10が設置された光線路40に入射さ
れ、これを伝搬する。光部品10で反射され、光線路4
0を逆方向に伝搬してきた光は前記反射光分離部30を
介してマッハツェンダ干渉計50に導かれる。
The light source 20 has a short coherence length and emits light having an appropriately wide spectrum width. This light passes through the reflected light separation unit 30 composed of a fiber type optical branching component, enters the optical line 40 having the optical component 10 at its tip, and propagates this. The optical line 4 is reflected by the optical component 10
The light propagating in the reverse direction of 0 is guided to the Mach-Zehnder interferometer 50 via the reflected light separation unit 30.

【0025】マッハツェンダ干渉計50は、図6(a) に
示すように、第1の光カプラ51と、第2の光カプラ5
2と、光遅延回路部53と、位相変調を行う変調回路部
54とから構成されている。前記反射光は光カプラ51
で等しい強度比で二分され、一方は光遅延回路部53
に、他方は変調回路部54に導かれる。
The Mach-Zehnder interferometer 50 includes a first optical coupler 51 and a second optical coupler 5 as shown in FIG. 6 (a).
2, an optical delay circuit section 53, and a modulation circuit section 54 that performs phase modulation. The reflected light is an optical coupler 51.
Is divided into two equal intensity ratios, one of which is the optical delay circuit section 53.
And the other is guided to the modulation circuit section 54.

【0026】光遅延回路部53は移動鏡53aと、移動
鏡機構部53bと、光ファイバ及び移動鏡53aの光結
合に用いるレンズ53cとから構成される。変調回路部
54は、例えばシングルモードファイバを圧電素子54
aに巻き付けてなる位相変調器と、偏光子54bとから
構成される。
The optical delay circuit section 53 comprises a movable mirror 53a, a movable mirror mechanism section 53b, and a lens 53c used for optical coupling of the optical fiber and the movable mirror 53a. The modulation circuit unit 54 uses, for example, a single mode fiber as the piezoelectric element 54.
It is composed of a phase modulator wound around a and a polarizer 54b.

【0027】光遅延回路部53に導かれた反射光E1は
移動鏡53aにより参照用反射光Dが識別情報用反射光
Cと干渉するように光路差を与える。変調回路部54に
導かれた反射光E2は圧電素子54a及び偏光子54b
により構成される変調器により位相変調される。
The reflected light E1 guided to the optical delay circuit section 53 gives an optical path difference such that the reference reflected light D interferes with the identification information reflected light C by the movable mirror 53a. The reflected light E2 guided to the modulation circuit unit 54 receives the piezoelectric element 54a and the polarizer 54b.
Is phase-modulated by the modulator configured by.

【0028】光遅延回路部53で遅延された光と変調回
路部54で変調された光は光カプラ52において合波さ
れ、移動鏡53aの変化とともに参照用反射光Dが順
次、識別情報用反射光Cと干渉して干渉フリンジを生じ
るとともに、等しい強度比で二分される。
The light delayed by the optical delay circuit section 53 and the light modulated by the modulation circuit section 54 are combined by the optical coupler 52, and the reference reflected light D is sequentially reflected with the change of the movable mirror 53a. The light C interferes with the light C to generate an interference fringe, and the light C is divided into two equal intensity ratios.

【0029】検出器60は、図6(b) に示すように、2
つのフォトディテクタ61,62と、差動増幅器63
と、ベクトルシグナルアナライザ64とから構成されて
いる。前記二分された干渉光は前記フォトディテクタ6
1,62で電気信号に変換され、差動増幅器63で加算
され、変調回路部54の変調周波数又はその高調波成分
の信号振幅がベクトルシグナルアナライザ64で検出さ
れる。なお、識別情報用反射光Cは変調回路部53によ
り位相変調を受けているため、参照用反射光Dと識別情
報用反射光Cの干渉成分のみが検出され、背景光は検出
されない。そのため、雑音成分を打ち消し合せて検出感
度を向上させることができる。
The detector 60, as shown in FIG.
Two photo detectors 61 and 62 and a differential amplifier 63
And a vector signal analyzer 64. The divided interference light is the photodetector 6
The signals are converted into electric signals at 1 and 62, added at the differential amplifier 63, and the signal amplitude of the modulation frequency of the modulation circuit unit 54 or its harmonic component is detected by the vector signal analyzer 64. Since the reflected light C for identification information is subjected to phase modulation by the modulation circuit section 53, only the interference component of the reflected light D for reference and the reflected light C for identification information is detected, and the background light is not detected. Therefore, the noise components can be canceled out to improve the detection sensitivity.

【0030】この時、移動鏡53aを識別情報用反射部
15の長さの分だけ移動させ、光路長差を変化させるこ
とにより、参照用反射光Dと数100μm間隔で構成さ
れた識別情報用反射光Cとの干渉波形を順次得ることが
できる。
At this time, the movable mirror 53a is moved by the length of the identification information reflecting portion 15 to change the optical path length difference, so that the reference reflected light D and the identification information for every several hundred μm are formed. An interference waveform with the reflected light C can be sequentially obtained.

【0031】図7は光線路識別用光部品の一具体例を示
す(但し、反射部品のみを示す。)もので、フェルール
71で固定された光ファイバ72に、該光ファイバ72
のコア73まで切断する幅15μmのスリット74を、
200μm間隔で識別情報「1101」に対応して設け
てなっている。
FIG. 7 shows a specific example of the optical component for identifying the optical line (however, only the reflective component is shown). The optical fiber 72 is fixed to the optical fiber 72 by the ferrule 71.
The slit 74 with a width of 15 μm that cuts to the core 73 of
It is provided at intervals of 200 μm corresponding to the identification information “1101”.

【0032】図8は前述した光部品を前記実施例の測定
方法により実際に測定した際の波形を示すものである。
図中、横軸は光路長差、縦軸は反射率、斜め軸は測定位
置から光部品の設置位置までの距離であり、ここでは距
離0、2、4、8、10、12、16kmの時の測定波
形を示している。
FIG. 8 shows a waveform when the above-mentioned optical component is actually measured by the measuring method of the above-mentioned embodiment.
In the figure, the horizontal axis represents the optical path length difference, the vertical axis represents the reflectance, and the diagonal axis represents the distance from the measurement position to the installation position of the optical component. Here, the distances of 0, 2, 4, 8, 10, 12, 16 km are shown. The measured waveform at the time is shown.

【0033】このように、本実施例によれば、16km
先に設置された光線路識別用光部品を参照用光ファイバ
を必要とすることなく測定可能であることが分かる。
Thus, according to this embodiment, 16 km
It can be seen that the previously installed optical component for optical line identification can be measured without the need for the reference optical fiber.

【0034】[0034]

【発明の効果】以上説明したように、請求項1の発明に
よれば、識別情報反射部により識別情報用反射光を発生
させ、また、参照用反射部により参照用反射光を発生さ
せることができ、これらを干渉させることによって識別
情報を表す光強度の変化を取り出すことができるため、
参照光ファイバを必要としない測定方法の実施が可能と
なり、また、識別情報用反射光と参照用反射光とを同一
光線路より得ることができ、測定位置から光部品の設置
位置までの距離の延長に伴う測定分解能の劣化を少なく
できるので、光部品における各反射点の配設間隔を広く
する必要がなく、超小型の光線路識別用光部品を提供で
きる。
As described above, according to the first aspect of the invention, the identification information reflecting portion can generate the identification information reflected light, and the reference reflecting portion can generate the reference reflected light. It is possible to extract the change of the light intensity representing the identification information by interfering these,
It is possible to implement a measurement method that does not require a reference optical fiber, and it is possible to obtain the reflected light for identification information and the reflected light for reference from the same optical line, and to measure the distance from the measurement position to the installation position of the optical component. Since the deterioration of the measurement resolution due to the extension can be reduced, it is not necessary to widen the arrangement interval of each reflection point in the optical component, and it is possible to provide the optical component for optical line identification of a very small size.

【0035】また、請求項2の発明によれば、光ファイ
バに切削加工を施すのみで反射点を形成でき、製作容易
で安価な光線路識別用光部品を提供できる。
According to the second aspect of the present invention, the reflection point can be formed only by cutting the optical fiber, and the optical component for optical line identification which is easy to manufacture and inexpensive can be provided.

【0036】また、請求項3の発明によれば、光線路を
介して光線路識別用光部品に低コヒーレンスな光を入射
することにより識別情報用反射光及び参照用反射光を含
む反射光を得て、これを二分して一方の反射光を他方の
反射光に対して遅延させて合波することにより干渉さ
せ、この遅延量を変化させることによって光線路識別用
光部品の識別情報用反射部における各反射点に対応した
干渉光を得ることができるので、参照光ファイバを必要
とすることなく識別情報を取り出すことができ、また、
識別情報用反射光と参照用反射光とを同一光線路より得
ることができ、測定位置から光部品の設置位置までの距
離の延長に伴う測定分解能の劣化を少なくできるので、
光部品における各反射点の配設間隔を広くする必要がな
く、超小型の光線路識別用光部品を提供できる。
According to the third aspect of the invention, the reflected light including the reflected light for identification information and the reflected light for reference is provided by injecting low coherence light into the optical component for optical line identification through the optical line. Then, this is divided into two, and one reflected light is delayed with respect to the other reflected light to be combined to cause interference, and by changing the delay amount, reflection for identification information of the optical component for optical line identification is performed. Since the interference light corresponding to each reflection point in the section can be obtained, the identification information can be taken out without the need for the reference optical fiber, and
Since the reflected light for identification information and the reflected light for reference can be obtained from the same optical line, the deterioration of the measurement resolution due to the extension of the distance from the measurement position to the installation position of the optical component can be reduced,
It is not necessary to widen the arrangement interval of each reflection point in the optical component, and it is possible to provide an optical component for optical line identification that is microminiature.

【0037】また、請求項4の発明によれば、識別情報
用反射光及び参照用反射光を含む反射光をマッハツェン
ダ干渉計に入射し、第1の光カプラにより二分し、一方
の反射光を光遅延回路部により遅延し、また、他方の反
射光を変調回路部により位相変調し、第2の光カプラに
より再び合波して干渉させ、該第2の光カプラから出力
される光の光強度を検出器により検出し、さらに光遅延
回路部における遅延量を変化させることによって光線路
識別用光部品の識別情報用反射部における各反射点に対
応した干渉光を得ることができるので、参照光ファイバ
を必要とすることなく識別情報を取り出すことができる
とともに、識別情報用反射光は変調回路部により位相変
調を受けているため、参照用反射光との干渉成分のみが
検出され、背景光は検出されないので、これによって検
出感度を向上させることができる。
Further, according to the invention of claim 4, the reflected light including the reflected light for identification information and the reflected light for reference is incident on the Mach-Zehnder interferometer, and is bisected by the first optical coupler, and one reflected light is The light delayed by the optical delay circuit section, the other reflected light is phase-modulated by the modulation circuit section, and the second reflected light is combined and interfered by the second optical coupler to output the light output from the second optical coupler. By detecting the intensity with a detector and changing the delay amount in the optical delay circuit section, it is possible to obtain interference light corresponding to each reflection point in the identification information reflection section of the optical component for optical line identification. The identification information can be taken out without the need for an optical fiber, and since the reflected light for identification information is subjected to phase modulation by the modulation circuit unit, only the interference component with the reflected light for reference is detected and the background light Because it is not detected, whereby it is possible to improve the detection sensitivity.

【0038】また、請求項5の発明によれば、第2の光
カプラから出力される2つの出力光、即ち干渉光を2つ
の光検出器でそれぞれ電気信号に変換し、差動増幅器で
加算し、その後、ベクトルシグナルアナライザによりマ
ッハツェンダ干渉計における変調周波数又はその高調波
成分の信号振幅を検出しているため、雑音信号を互いに
打ち消し合せることができ、これによって検出感度を向
上させることができる。
According to the fifth aspect of the invention, the two output lights output from the second optical coupler, that is, the interference lights are converted into electric signals by the two photodetectors, and added by the differential amplifier. However, after that, since the signal amplitude of the modulation frequency in the Mach-Zehnder interferometer or its harmonic component is detected by the vector signal analyzer, it is possible to cancel the noise signals to each other, thereby improving the detection sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光線路識別用光部品の一実施例を示す
構成図
FIG. 1 is a configuration diagram showing an embodiment of an optical component for optical line identification of the present invention.

【図2】従来の遠隔測定方法の一例を示す構成図FIG. 2 is a configuration diagram showing an example of a conventional telemetry method.

【図3】図1中の反射部品の詳細を示す構成図FIG. 3 is a configuration diagram showing details of a reflective component in FIG.

【図4】本発明の遠隔測定方法の測定原理を示す図FIG. 4 is a diagram showing the measurement principle of the telemetry method of the present invention.

【図5】本発明の遠隔測定方法を実施する装置の一実施
例を示す構成図
FIG. 5 is a block diagram showing an embodiment of an apparatus for carrying out the telemetry method of the present invention.

【図6】図5中のマッハツェンダ干渉計及び検出器の詳
細を示す構成図
6 is a configuration diagram showing details of a Mach-Zehnder interferometer and a detector in FIG.

【図7】光線路識別用光部品の一具体例を示す図FIG. 7 is a diagram showing a specific example of an optical component for identifying an optical line.

【図8】図7の光部品を本発明の遠隔測定方法により測
定した際の結果を示す図
FIG. 8 is a diagram showing a result of measuring the optical component of FIG. 7 by a remote measuring method of the present invention.

【符号の説明】[Explanation of symbols]

10…光線路識別用光部品、11…波長選択部品、12
…反射部品、13…光ファイバ、14…コア、15…識
別情報用反射部、16…参照用反射部、17…スリッ
ト、20…光源、30…反射光分離部、40…光線路、
50…マッハツェンダ干渉計、51,52…光カプラ、
53…光遅延回路部、54…変調回路部、60…検出
器、61,62…フォトディテクタ、63…差動増幅
器、64…ベクトルシグナルアナライザ。
10 ... Optical component for optical line identification, 11 ... Wavelength selection component, 12
... Reflecting component, 13 ... Optical fiber, 14 ... Core, 15 ... Identification information reflecting section, 16 ... Reference reflecting section, 17 ... Slit, 20 ... Light source, 30 ... Reflected light separating section, 40 ... Optical line,
50 ... Mach-Zehnder interferometer, 51, 52 ... Optical coupler,
53 ... Optical delay circuit section, 54 ... Modulation circuit section, 60 ... Detector, 61, 62 ... Photodetector, 63 ... Differential amplifier, 64 ... Vector signal analyzer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光線路の所定の位置に設けて該光線路を
識別するための識別情報を付与する光線路識別用光部品
において、 所定の間隔毎に反射点を設けるか否かによって識別情報
を表す識別情報用反射部と、 識別情報用反射部との間に該識別情報用反射部の全長よ
りも長い距離を隔てて設けられた反射点よりなる参照用
反射部とを備えたことを特徴とする光線路識別用光部
品。
1. An optical component for identifying an optical line, which is provided at a predetermined position of an optical line and is provided with identification information for identifying the optical line, identification information depending on whether or not reflection points are provided at predetermined intervals. And a reference reflection portion including a reflection point provided at a distance longer than the entire length of the identification information reflection portion between the identification information reflection portion and the identification information reflection portion. A characteristic optical component for optical line identification.
【請求項2】 光ファイバのコアの部分まで達するスリ
ットにより反射点を構成したことを特徴とする請求項1
記載の光線路識別用光部品。
2. The reflection point is constituted by a slit reaching the core of the optical fiber.
The optical component for optical line identification described.
【請求項3】 所定の間隔毎に反射点を設けるか否かに
よって識別情報を表す識別情報用反射部と、識別情報用
反射部との間に該識別情報用反射部の全長よりも長い距
離を隔てて設けられた反射点よりなる参照用反射部とを
備えた光線路識別用光部品を所定の位置に設けた光線路
に低コヒーレンスな光を入射し、 前記光線路識別用光部品からの反射光を二分し、 該二分した一方の反射光に遅延を与えるとともに他方の
反射光に変調を加えて再び合波し、 前記遅延量を前記識別情報用反射部と参照用反射部との
間の距離に相当する量を中心として変化させながら前記
合波光の光強度の変化を測定することを特徴とする光線
路識別用光部品の遠隔測定方法。
3. A distance longer than the total length of the identification information reflection section between the identification information reflection section, which represents identification information depending on whether or not reflection points are provided at predetermined intervals, and the identification information reflection section. A low-coherence light is incident on an optical line provided at a predetermined position with an optical component for identifying an optical line having a reference reflection part formed of a reflection point provided apart from the optical component for identifying the optical line. The reflected light is divided into two, the reflected light of one of the two is delayed, the reflected light of the other is modulated, and the reflected light is recombined, and the delay amount is divided into the reflecting portion for identification information and the reflecting portion for reference. A remote measuring method of an optical component for optical line identification, which is characterized in that a change in the light intensity of the combined light is measured while changing an amount corresponding to a distance between them as a center.
【請求項4】 低コヒーレンスな光を発生する光源と、 光源からの光を、所定の間隔毎に反射点を設けるか否か
によって識別情報を表す識別情報用反射部と、識別情報
用反射部との間に該識別情報用反射部の全長よりも長い
距離を隔てて設けられた反射点よりなる参照用反射部と
を備えた光線路識別用光部品を所定の位置に設けた光線
路に入射するとともに、該光線路から出射される光を分
離して出力する反射光分離部と、 反射光分離部から出力される光を二分する第1の光カプ
ラと、該二分した一方の光に遅延を与える光遅延回路部
と、二分した他方の光に位相変調を加える変調回路部
と、その各々の光を再び合波する第2の光カプラとから
なるマッハツェンダ干渉計と、 第2の光カプラからの出力光の光強度を検出する検出器
とを備え、 前記遅延量を前記識別情報用反射部と参照用反射部との
間の距離に相当する量を中心として変化させながら第2
の光カプラからの出力光の光強度の変化を測定すること
を特徴とする光線路識別用光部品の遠隔測定装置。
4. A light source that generates low-coherence light, an identification information reflector that represents identification information for the light from the light source at each predetermined interval, and an identification information reflector. And an optical line identification optical component provided with a reference reflection section composed of reflection points provided at a distance longer than the entire length of the identification information reflection section in an optical line provided at a predetermined position. A reflected light splitting unit that splits and outputs the light that is incident and that is emitted from the optical line, a first optical coupler that splits the light output from the reflected light splitting unit, and one of the two split light beams. A Mach-Zehnder interferometer including an optical delay circuit section for giving a delay, a modulation circuit section for phase-modulating the other half of the light, and a second optical coupler for recombining the respective lights, and a second light And a detector for detecting the light intensity of the output light from the coupler, While changing the delay amount with an amount corresponding to the distance between the identification information reflection unit and the reference reflection unit as a center,
Telemetry device for optical components for optical line identification, characterized by measuring the change in the light intensity of the output light from the optical coupler.
【請求項5】 第2の光カプラから出力される2つの出
力光をそれぞれ電気信号に変換する2つの光検出器と、
該2つの光検出器の出力信号を加算する差動増幅器と、
差動増幅器の出力信号よりマッハツェンダ干渉計におけ
る変調周波数又はその高調波成分の信号振幅を検出する
ベクトルシグナルアナライザとからなる検出器を用いた
ことを特徴とする請求項4記載の光線路識別用光部品の
遠隔測定装置。
5. Two photodetectors for respectively converting the two output lights output from the second optical coupler into electric signals,
A differential amplifier that adds the output signals of the two photodetectors;
5. The optical line identifying light according to claim 4, wherein a detector comprising a vector signal analyzer for detecting the signal amplitude of the modulation frequency or its harmonic component in the Mach-Zehnder interferometer from the output signal of the differential amplifier is used. Telemetry device for parts.
JP22045594A 1994-09-14 1994-09-14 Optical component for optical line identification and remote measuring method and device therefor Expired - Fee Related JP3287441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22045594A JP3287441B2 (en) 1994-09-14 1994-09-14 Optical component for optical line identification and remote measuring method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22045594A JP3287441B2 (en) 1994-09-14 1994-09-14 Optical component for optical line identification and remote measuring method and device therefor

Publications (2)

Publication Number Publication Date
JPH0886717A true JPH0886717A (en) 1996-04-02
JP3287441B2 JP3287441B2 (en) 2002-06-04

Family

ID=16751392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22045594A Expired - Fee Related JP3287441B2 (en) 1994-09-14 1994-09-14 Optical component for optical line identification and remote measuring method and device therefor

Country Status (1)

Country Link
JP (1) JP3287441B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043704A (en) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical path equipment monitoring system
WO2019172056A1 (en) * 2018-03-06 2019-09-12 日本電信電話株式会社 Optical communication wiring core-line contrast method and core-line contrast system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102106948B1 (en) * 2017-02-06 2020-05-06 (주)노티스 Remote Node Identification System for Optical Fiber Using Optical Time Domain Reflectometer and Device for The Same
KR102107639B1 (en) * 2018-02-07 2020-05-08 (주)노티스 Remote Node Identification System for Optical Fiber Using Optical Time Domain Reflectometer and Device for The Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011043704A (en) * 2009-08-21 2011-03-03 Nippon Telegr & Teleph Corp <Ntt> Optical path equipment monitoring system
WO2019172056A1 (en) * 2018-03-06 2019-09-12 日本電信電話株式会社 Optical communication wiring core-line contrast method and core-line contrast system

Also Published As

Publication number Publication date
JP3287441B2 (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP2578601B2 (en) Sensor system, sensor array and method for remotely sensing environmental changes
US4799797A (en) Coherence multiplexing of optical sensors
Spammer et al. Merged Sagnac-Michelson interferometer for distributed disturbance detection
KR101000974B1 (en) Measurement Method of Chromatic Dispersion of Optical Beam Waveguide Using Interference Fringe Measurement system
US20040130724A1 (en) Determining an optical property by using superimposed delayed signals
US7557930B2 (en) Bessel beam interferometer and measurement method
EP0023345A2 (en) Optical sensing system
US4995697A (en) Fiber optic sensing system
US7515275B2 (en) Optical apparatus and method for distance measuring
JP7363614B2 (en) Optical interference measurement device
US4974961A (en) Optical fibre measuring system
JPH03180704A (en) Laser interference gauge
JP2003528326A (en) Method and apparatus for evaluating chromatic dispersion in fiber Bragg gratings
JP2003322588A (en) Reflection type method and instrument for measuring brillouin spectrum distribution
GB2490497A (en) A stationary waveguide spectrum analyser
KR960042027A (en) Optical pressure detection method and optical pressure detection device
JP3287441B2 (en) Optical component for optical line identification and remote measuring method and device therefor
US5333045A (en) Process and apparatus for absolute interferometric measurement of physical magnitudes utilizing a variable center frequency pass-band filter located downstream of a light beam source
WO2022191201A1 (en) Physical quantity measurement device
JPH11295153A (en) Wavelength detecting device
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP4329256B2 (en) Method for adjusting interference type optical fiber sensor
CN1588144A (en) Full optical fiber interference system
US20230324165A1 (en) Broadband interferometry and method for measurement range extension by using same
JPH01143931A (en) Method and device for measuring mode double refractive index of birefringent fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees