JPH05322699A - High distance-resolution optical transmission line measuring device - Google Patents

High distance-resolution optical transmission line measuring device

Info

Publication number
JPH05322699A
JPH05322699A JP4132904A JP13290492A JPH05322699A JP H05322699 A JPH05322699 A JP H05322699A JP 4132904 A JP4132904 A JP 4132904A JP 13290492 A JP13290492 A JP 13290492A JP H05322699 A JPH05322699 A JP H05322699A
Authority
JP
Japan
Prior art keywords
light
optical
pulse
waveguide
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4132904A
Other languages
Japanese (ja)
Inventor
Kaoru Shimizu
薫 清水
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4132904A priority Critical patent/JPH05322699A/en
Publication of JPH05322699A publication Critical patent/JPH05322699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To achieve a high distance resolution by providing a ring resonator optical circuit in that a ring waveguide path which has the same loop length as light pulse length and where a gain medium is added and a frequency shifter are formed on a crystal substrate. CONSTITUTION:An optical pulse modulator 2 converts irradiation light of a coherence light source 1 to an optical pulse with a specified pulse length. A synthesizer 3 synthesizes an excitation light from a light source 8 for excitation and that from the modulator 2 and then transmits it to a ring resonator optical circuit 4. The circuit 4 has an optical waveguide 44 and a ring waveguide 45 which has the same loop length as the incidence light pulse length and where a gain medium is added, a directional coupler 46 which connects the optical waveguide 44 and the waveguide 45, and a frequency shifter 47 which is inserted halfway through the waveguide 45 for shifting the frequency of a passage light on a crystal substrate 41, thus enabling an output light to be an equivalent continuous light which changes stepwise. Also, the loop length can be equal to 0.01mm, thus achieving a high distance resolution. Also, light pulse loss can be compensated by the waveguide 45 and the shifter 47 and loss in the circuit 4 can reduced to 0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光伝送路中に入射させ
た光パルスの反射光および後方散乱光を測定し、光伝送
路中に生じた破断点や障害点の特定に用いる高距離分解
能光伝送路測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures a reflected light and a backscattered light of an optical pulse incident on an optical transmission line, and a high distance used for identifying a break point or a failure point generated in the optical transmission line. The present invention relates to a resolution optical transmission line measuring device.

【0002】[0002]

【従来の技術】光伝送路中に生じた破断点や障害点を探
索する従来の光伝送路測定装置では、光時間領域反射測
定法(以下、OTDRという。)が用いられている。O
TDRは、光伝送路中に光パルスを入射し、その反射光
が往復して戻ってくるまでの時間から反射位置を測定
し、その強度から障害の程度を測定するが、現在の距離
分解能は 100m前後になっている。しかし、分岐箇所や
接続箇所を多く有する光加入者系の光伝送路の測定試験
では、1mから 0.1m程度のさらに高い距離分解能が要
求されている。
2. Description of the Related Art In a conventional optical transmission line measuring apparatus for searching for a break point or a failure point occurring in an optical transmission line, an optical time domain reflectometry method (hereinafter referred to as OTDR) is used. O
TDR measures the reflection position from the time it takes for an optical pulse to enter the optical transmission line and the reflected light goes back and forth and returns, and measures the degree of obstacle from its intensity. It is around 100m. However, in a measurement test of an optical transmission line of an optical subscriber system having many branch points and connection points, a higher distance resolution of about 1 m to 0.1 m is required.

【0003】OTDRの距離分解能の向上は、入射する
光パルスの幅を狭くし、かつ受信系の帯域幅を広くする
ことにより実現される。しかし、反射光が低レベルの場
合には、広帯域化に伴う雑音の増加により受光感度が劣
化し、反射位置や障害程度の測定が不可能になることが
あった。このためにOTDRの高距離分解能化には限界
があった。
The improvement of the distance resolution of the OTDR is realized by narrowing the width of the incident optical pulse and widening the bandwidth of the receiving system. However, when the reflected light is at a low level, the photosensitivity is deteriorated due to the increase of noise accompanying the widening of the band, and it may be impossible to measure the reflection position and the degree of obstacle. For this reason, there has been a limit to the high-distance resolution of OTDR.

【0004】一方、高距離分解能を可能にする技術とし
て、光周波数領域反射法(以下、OFDRという。)が
提案されている。OFDRは、コヒーレント光源の周波
数を時間に対して直線的に掃引したのちに信号光と参照
光とに分波し、信号光を被測定光伝送路に入射させ、反
射光を参照光と合波してヘテロダイン検波する。このと
き、反射光と参照光の周波数差は、両光の光路長差と比
例関係にあるので、周波数領域における反射光強度分布
を測定することにより、反射位置が特定できるようにな
っている。
On the other hand, an optical frequency domain reflection method (hereinafter referred to as OFDR) has been proposed as a technique that enables high distance resolution. The OFDR sweeps the frequency of a coherent light source linearly with respect to time, demultiplexes it into a signal light and a reference light, makes the signal light incident on a measured optical transmission line, and combines the reflected light with the reference light. Then, heterodyne detection is performed. At this time, the frequency difference between the reflected light and the reference light is proportional to the optical path length difference between the two lights, so that the reflected position can be specified by measuring the reflected light intensity distribution in the frequency domain.

【0005】このOFDRでは、受信系の帯域幅を狭く
することにより距離分解能を高めることができるので、
帯域幅の狭窄化による最小受光量の改善により、容易に
高距離分解能を有する反射測定を行うことができる。
In this OFDR, the range resolution can be improved by narrowing the bandwidth of the receiving system.
By improving the minimum amount of received light by narrowing the bandwidth, it is possible to easily perform reflection measurement with high distance resolution.

【0006】[0006]

【発明が解決しようとする課題】ところで、OFDR
は、非常に高い周波数掃引精度が要求され、特に周波数
掃引の直線性が求められている。しかし、現状ではその
要求を満たす光源が存在しないので、測定技術として実
用化されるまでには至っていない。
By the way, OFDR
Requires extremely high frequency sweep accuracy, and particularly requires linearity of frequency sweep. However, at present, there is no light source that meets the demand, and it has not been put to practical use as a measurement technique.

【0007】本発明は、高い距離分解能を実現できるO
FDRにおいて、周波数掃引精度を高めて実用に供する
ことができる高距離分解能光伝送路測定装置を提供する
ことを目的とする。
According to the present invention, it is possible to realize high range resolution.
It is an object of the present invention to provide a high-distance resolution optical transmission line measuring device that can be used for practical purposes by improving frequency sweep accuracy in FDR.

【0008】[0008]

【課題を解決するための手段】本発明は、光周波数掃引
手段として、コヒーレント光源の出射光を所定のパルス
長を有する光パルスに変換する光パルス生成手段と、光
パルスのパルス長と同一のループ長を有しかつゲイン媒
質を添加したリング導波路と、リング導波路内で通過光
に所定の周波数シフトを与える周波数偏移器とを石英基
盤上に形成し、光パルス生成手段からの光パルスをリン
グ導波路へ入射させ、その出力光を光分岐手段に送出す
るリング共振器光回路とを備え、リング共振器光回路に
励起光を入射し、リング共振器光回路内における光パル
スの損失を補償する励起光注入手段を備えたことを特徴
とする。
According to the present invention, as an optical frequency sweeping means, an optical pulse generating means for converting the light emitted from a coherent light source into an optical pulse having a predetermined pulse length, and the same pulse length as the optical pulse are used. A ring waveguide having a loop length and added with a gain medium, and a frequency shifter for giving a predetermined frequency shift to passing light in the ring waveguide are formed on a quartz substrate, and the light from the optical pulse generating means is formed. A ring resonator optical circuit that makes a pulse incident on the ring waveguide and sends the output light to the optical branching means is provided, and excitation light is made incident on the ring resonator optical circuit to It is characterized in that a pumping light injection means for compensating for the loss is provided.

【0009】[0009]

【作用】リング共振器光回路では、リング導波路のルー
プ長を入射光パルスのパルス長と等しくし、かつ周波数
偏移器で所定の周波数シフトを与えることにより、出力
光の周波数が時間軸上でシフト周波数を単位として階段
状に変化する等価的な連続光とすることができ、周波数
掃引精度の高い光パルスとして出力させることができ
る。
In the ring resonator optical circuit, by making the loop length of the ring waveguide equal to the pulse length of the incident light pulse and giving a predetermined frequency shift by the frequency shifter, the frequency of the output light is changed on the time axis. Thus, an equivalent continuous light that changes stepwise with the shift frequency as a unit can be output, and can be output as an optical pulse with high frequency sweep accuracy.

【0010】このリング共振器光回路から出力される光
パルスを信号光と参照光に分波し、信号光を被測定光伝
送路に入射させ、参照光と被測定光伝送路からの反射光
および後方散乱光とをヘテロダイン検波して反射位置を
測定したときに、光パルスのパルス長(リング導波路の
ループ長)の距離分解能を得ることができる。
The optical pulse output from this ring resonator optical circuit is demultiplexed into a signal light and a reference light, the signal light is made incident on the measured optical transmission line, and the reflected light from the reference light and the measured optical transmission line. When the reflection position is measured by heterodyne detection of the and backscattered light, the distance resolution of the pulse length of the optical pulse (loop waveguide loop length) can be obtained.

【0011】[0011]

【実施例】図1は、本発明の一実施例構成を示すブロッ
ク図である。図において、コヒーレント光源1、光パル
ス変調器2、合波器3、リング共振器光回路4、方向性
結合器5,6、被測定光伝送路7が直列に接続される。
また、合波器3の他方の入力端には励起光用光源8が接
続され、方向性結合器5,6からの分岐路にはヘテロダ
イン検波器9、スペクトラムアナライザ10、信号処理
装置11が直列に接続される。
1 is a block diagram showing the configuration of an embodiment of the present invention. In the figure, a coherent light source 1, an optical pulse modulator 2, a multiplexer 3, a ring resonator optical circuit 4, directional couplers 5 and 6, and a measured optical transmission line 7 are connected in series.
A pumping light source 8 is connected to the other input terminal of the multiplexer 3, and a heterodyne detector 9, a spectrum analyzer 10, and a signal processing device 11 are connected in series in a branch path from the directional couplers 5 and 6. Connected to.

【0012】光パルス変調器2は、コヒーレント光源1
の出射光を所定のパルス長を有する光パルスに変換す
る。合波器3では、励起光用光源8から出射される励起
光と、光パルス変調器2から出射される光パルスとを合
波してリング共振器光回路4に送出する。
The optical pulse modulator 2 is a coherent light source 1.
The emitted light is converted into an optical pulse having a predetermined pulse length. The multiplexer 3 multiplexes the pumping light emitted from the pumping light source 8 and the optical pulse emitted from the optical pulse modulator 2 and sends them to the ring resonator optical circuit 4.

【0013】リング共振器光回路4は、石英基盤41上
に、入力ポート42と出力ポート43との間を結ぶ光導
波路44と、入射光パルスのパルス長と同一のループ長
を有し、かつゲイン媒質として希土類(例えばエルヒウ
ム)イオンを添加したリング導波路45と、光導波路4
4とリング導波路45とを結合する方向性結合器46
と、リング導波路45の途中に挿入して通過光の周波数
をF〔Hz〕単位でシフトさせる周波数偏移器47とを形
成したものである。なお、周波数偏移器47としては、
音響光学素子、光位相変調器、その他を用いることがで
きる。
The ring resonator optical circuit 4 has an optical waveguide 44 connecting an input port 42 and an output port 43 on a quartz substrate 41, a loop length equal to the pulse length of an incident optical pulse, and A ring waveguide 45 to which rare earth (for example, erhium) ions are added as a gain medium, and an optical waveguide 4.
4 and the ring waveguide 45 are coupled to each other by a directional coupler 46.
And a frequency shifter 47 that is inserted in the middle of the ring waveguide 45 and shifts the frequency of the passing light in units of F [Hz]. As the frequency shifter 47,
An acousto-optic device, an optical phase modulator, etc. can be used.

【0014】ここで、リング導波路45のループ長を入
射光パルスのパルス長と等しくし、かつ周波数偏移器4
7でF〔Hz〕の周波数シフトを与えることにより、リン
グ共振器光回路4の出力光は、図2に示すようにその周
波数が時間軸上でF〔Hz〕を単位として階段状に変化す
る等価的な連続光とすることができる。なお、リング導
波路45を石英基盤41上に形成することによってその
ループ長を 0.1m以下にすることが可能である。
Here, the loop length of the ring waveguide 45 is made equal to the pulse length of the incident light pulse, and the frequency shifter 4
By applying a frequency shift of F [Hz] at 7, the frequency of the output light of the ring resonator optical circuit 4 changes stepwise in units of F [Hz] on the time axis as shown in FIG. It may be equivalent continuous light. By forming the ring waveguide 45 on the quartz substrate 41, the loop length can be set to 0.1 m or less.

【0015】また、リング共振器光回路4に注入される
励起光の増幅作用により、リング導波路45および周波
数偏移器47を通過することによって生じる光パルスの
損失を補償することができ、リング共振器光回路4にお
ける損失を実効的に0にすることができる。
Further, by the amplifying action of the pumping light injected into the ring resonator optical circuit 4, it is possible to compensate the loss of the optical pulse generated by passing through the ring waveguide 45 and the frequency shifter 47. The loss in the resonator optical circuit 4 can be effectively reduced to zero.

【0016】方向性結合器5は、リング共振器光回路4
の出力光を信号光と参照光に分波し、信号光を方向性結
合器6を介して被測定光伝送路7に送出し、参照光をヘ
テロダイン検波器9に送出する。
The directional coupler 5 is a ring resonator optical circuit 4
The output light of 1 is split into a signal light and a reference light, the signal light is sent out to the measured light transmission line 7 through the directional coupler 6, and the reference light is sent out to the heterodyne detector 9.

【0017】方向性結合器6は、信号光を被測定光伝送
路7に送出するとともに、被測定光伝送路7からの反射
光および後方散乱光を分岐してヘテロダイン検波器9に
送出する。
The directional coupler 6 sends out the signal light to the measured optical transmission line 7 and branches the reflected light and the backscattered light from the measured optical transmission line 7 to the heterodyne detector 9.

【0018】ヘテロダイン検波器9は、方向性結合器5
から入力する参照光を局部発振光として、方向性結合器
6から入力する反射光および後方散乱光をコヒーレント
検波し、その検波信号を電気信号でスペクトラムアナラ
イザ10に送出する。スペクトラムアナライザ10は、
ヘテロダイン検波器9における検波信号を周波数解析す
る。信号処理装置11は、その測定値を平均化加算処理
して信号対雑音比の改善を行う。
The heterodyne detector 9 is a directional coupler 5.
The reflected light and the backscattered light input from the directional coupler 6 are coherently detected using the reference light input from the local oscillation light as local oscillation light, and the detected signal is sent to the spectrum analyzer 10 as an electric signal. The spectrum analyzer 10
The frequency of the detection signal in the heterodyne detector 9 is analyzed. The signal processing device 11 averages and adds the measured values to improve the signal-to-noise ratio.

【0019】以上示した構成に基づいて、被測定光伝送
路7に入射させた信号光の反射位置を特定する情報を生
成するが、リング共振器光回路4の出力光の周波数は、
原理的に非常に高い精度で周波数掃引されているので、
従来のOFDRで問題となっていた周波数掃引の非直線
性を解決することができる。
Information for specifying the reflection position of the signal light incident on the optical transmission line 7 to be measured is generated based on the configuration described above. The frequency of the output light of the ring resonator optical circuit 4 is
In principle, since the frequency is swept with extremely high accuracy,
It is possible to solve the nonlinearity of the frequency sweep, which has been a problem in the conventional OFDR.

【0020】また、光ファイバによる共振器光回路では
なく、石英基盤41上に形成したリング導波路45を主
要構成要素とするリング共振器光回路4を用いることに
より、そのループ長を 0.1m以下とすることが可能とな
り、距離に関する離散的な刻み幅とすることができる。
これは、反射光の反射位置が例えば 0.1m変わるごと
に、反射光と参照光との周波数差がF〔Hz〕単位で変化
することを意味し、距離分解能が 0.1mであることに対
応する。すなわち、距離分解能を飛躍的に高めることが
できる。
Further, by using the ring resonator optical circuit 4 whose main component is the ring waveguide 45 formed on the quartz substrate 41, instead of the resonator optical circuit using the optical fiber, the loop length is 0.1 m or less. Can be set, and can be a discrete step size related to the distance.
This means that the frequency difference between the reflected light and the reference light changes in units of F [Hz] every time the reflection position of the reflected light changes by 0.1 m, which corresponds to a distance resolution of 0.1 m. .. That is, the distance resolution can be dramatically improved.

【0021】[0021]

【発明の効果】以上説明したように本発明は、リング共
振器光回路を構成するリング導波路のループ長に対応し
た距離分解能を得ることができるが、リング導波路は石
英基盤上に形成されるので、そのループ長を 0.1m以下
とすることができ、OFDRにおいて高距離分解能を容
易に達成することができる。
As described above, according to the present invention, it is possible to obtain the distance resolution corresponding to the loop length of the ring waveguide constituting the ring resonator optical circuit, but the ring waveguide is formed on the quartz substrate. Therefore, the loop length can be set to 0.1 m or less, and high range resolution can be easily achieved in OFDR.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.

【図2】光パルスの周波数時間依存性を示す図。FIG. 2 is a diagram showing frequency time dependence of an optical pulse.

【符号の説明】[Explanation of symbols]

1 コヒーレント光源 2 光パルス変調器 3 合波器 4 リング共振器光回路 5,6 方向性結合器 7 被測定光伝送路 8 励起光用光源 9 ヘテロダイン検波器 10 スペクトラムアナライザ 11 信号処理装置 41 石英基盤 42 入力ポート 43 出力ポート 44 光導波路 45 リング導波路 46 方向性結合器 47 周波数偏移器 1 Coherent light source 2 Optical pulse modulator 3 Multiplexer 4 Ring resonator Optical circuit 5, 6 Directional coupler 7 Optical transmission line under test 8 Excitation light source 9 Heterodyne detector 10 Spectrum analyzer 11 Signal processor 41 Quartz substrate 42 input port 43 output port 44 optical waveguide 45 ring waveguide 46 directional coupler 47 frequency shifter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コヒーレント光源の出射光を時間軸上で
周波数掃引して出力する光周波数掃引手段と、 前記出力光を信号光と参照光に分波して信号光を被測定
光伝送路に入射させ、参照光と被測定光伝送路から出射
する反射光および後方散乱光を分岐出力する光分岐手段
と、 前記参照光を局部発振光として、前記反射光および後方
散乱光をヘテロダイン検波し、周波数解析および所定の
信号処理により前記被測定光伝送路の反射位置を特定す
る測定手段とを備えた光伝送路測定装置において、 前記光周波数掃引手段は、 コヒーレント光源の出射光を所定のパルス長を有する光
パルスに変換する光パルス生成手段と、 前記光パルスのパルス長と同一のループ長を有しかつゲ
イン媒質を添加したリング導波路と、リング導波路内で
通過光に所定の周波数シフトを与える周波数偏移器とを
石英基盤上に形成し、前記光パルス生成手段からの光パ
ルスをリング導波路へ入射させ、その出力光を前記光分
岐手段に送出するリング共振器光回路とを備え、 前記リング共振器光回路に励起光を入射し、前記リング
共振器光回路内における光パルスの損失を補償する励起
光注入手段を備えたことを特徴とする高距離分解能光伝
送路測定装置。
1. An optical frequency sweeping means for frequency-sweeping an output light of a coherent light source on a time axis and outputting the output light, the output light being demultiplexed into a signal light and a reference light, and the signal light being sent to a measured optical transmission line. Incident, optical branching means for branching and outputting reflected light and back scattered light emitted from the reference light and the measured light transmission path, the reference light as local oscillation light, heterodyne detection of the reflected light and back scattered light, In an optical transmission line measuring device provided with a measuring unit that specifies a reflection position of the measured optical transmission line by frequency analysis and predetermined signal processing, the optical frequency sweeping unit emits light from a coherent light source to a predetermined pulse length. An optical pulse generating means for converting the optical pulse to a light pulse, a ring waveguide having a loop length the same as the pulse length of the optical pulse and having a gain medium added thereto, and a predetermined pass light in the ring waveguide. A ring resonator optical circuit for forming a frequency shifter for giving a frequency shift on a quartz substrate, inputting an optical pulse from the optical pulse generating means to a ring waveguide, and sending the output light to the optical branching means. And a pumping light injection means for compensating for a loss of an optical pulse in the ring resonator optical circuit by injecting pumping light into the ring resonator optical circuit. measuring device.
JP4132904A 1992-05-25 1992-05-25 High distance-resolution optical transmission line measuring device Pending JPH05322699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4132904A JPH05322699A (en) 1992-05-25 1992-05-25 High distance-resolution optical transmission line measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4132904A JPH05322699A (en) 1992-05-25 1992-05-25 High distance-resolution optical transmission line measuring device

Publications (1)

Publication Number Publication Date
JPH05322699A true JPH05322699A (en) 1993-12-07

Family

ID=15092259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4132904A Pending JPH05322699A (en) 1992-05-25 1992-05-25 High distance-resolution optical transmission line measuring device

Country Status (1)

Country Link
JP (1) JPH05322699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
JPH07159280A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JP2005515416A (en) * 2002-01-19 2005-05-26 スフェロン ヴィアール アクチエンゲゼルシャフト Image generation device for detecting depth
JP2009014456A (en) * 2007-07-03 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical reflectance distribution
JP2011174760A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Method and device of measuring reflection of optical frequency region

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
JPH07159280A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
WO1996024038A1 (en) * 1995-02-02 1996-08-08 Yokogawa Electric Corporation Optical fibre detecting device
JP2005515416A (en) * 2002-01-19 2005-05-26 スフェロン ヴィアール アクチエンゲゼルシャフト Image generation device for detecting depth
US7684019B2 (en) 2002-01-19 2010-03-23 Spheron Vr Ag Method and device for measuring distance
US7800738B2 (en) 2002-01-19 2010-09-21 Spheron Vr Ag Imaging device for recording depth
JP2009014456A (en) * 2007-07-03 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring optical reflectance distribution
JP2011174760A (en) * 2010-02-23 2011-09-08 Nippon Telegr & Teleph Corp <Ntt> Method and device of measuring reflection of optical frequency region

Similar Documents

Publication Publication Date Title
CN110383009B (en) Optical sensing system and method for detecting stress in optical sensing optical fiber
CA1327898C (en) Optical fiber evaluation method and system
EP0578400B1 (en) Optical low coherence reflectometer with delay sequence
EP0358756B1 (en) Phase noise measurement system
EP0754939B1 (en) Optical fibre detecting device
JP2000180265A (en) Brillouin gain spectrum measuring method and device
Healey Review of long wavelength single-mode optical fiber reflectometry techniques
JP5148420B2 (en) Optical fiber testing equipment
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
JPH05322699A (en) High distance-resolution optical transmission line measuring device
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
JP3282135B2 (en) Optical frequency domain reflectometer
JP2575794B2 (en) Optical fiber characteristics evaluation device
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JP3905780B2 (en) Brillouin spectral distribution measuring method and apparatus
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP2907350B2 (en) Optical line remote testing equipment
JPH05322695A (en) Light pulse tester
JP3223439B2 (en) Fiber inspection equipment
CN110631617A (en) Long-distance high-resolution Brillouin optical time domain analysis method
US7106427B2 (en) Apparatus and method for measuring chromatic dispersion by variable wavelength
JP5264659B2 (en) Optical line characteristic measuring method and apparatus
JPH08334436A (en) Wavelength dispersion measuring method for optical fiber
JPH0331736A (en) Method and instrument for measuring curvature distribution of optical fiber
Chen et al. Digital-RF-synthesizer-based laser phase noise compensation method for optical fiber sensors