JPH05118954A - Device for measuring reflection in optical frequency area - Google Patents

Device for measuring reflection in optical frequency area

Info

Publication number
JPH05118954A
JPH05118954A JP3279559A JP27955991A JPH05118954A JP H05118954 A JPH05118954 A JP H05118954A JP 3279559 A JP3279559 A JP 3279559A JP 27955991 A JP27955991 A JP 27955991A JP H05118954 A JPH05118954 A JP H05118954A
Authority
JP
Japan
Prior art keywords
frequency
light
light source
measurement
sweep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3279559A
Other languages
Japanese (ja)
Other versions
JP3075433B2 (en
Inventor
Kaoru Shimizu
薫 清水
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03279559A priority Critical patent/JP3075433B2/en
Publication of JPH05118954A publication Critical patent/JPH05118954A/en
Application granted granted Critical
Publication of JP3075433B2 publication Critical patent/JP3075433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Transform (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To reduce the fluctuation of a signal value to be caused by fading, and measure the signal strength accurately by overlapping the temporal modulation waveform with the single sawtooth frequency sweep waveform, and shifting the frequency obtained by the measurement of multiple times, and sampling the data to perform the addition meaning processing. CONSTITUTION:The laser beam 1 from a light source system 1 is divided-into the measuring light MS and the reference light RF by a first directional coupler 2. The light MS enters an object 7 to be measured, and the light RF enters a heterodyne receiver 4. The reflected light RL at any position of the object 7 is divided by a second directional coupler 3 to enter the receiver 4. The receiver 4 performs the coherent wave detection of the reflected light with the light RF as the local light. The output light of the receiver 4 is sampled by a spectrum analyzer 5, and the output thereof is measured multiple times by a signal processing system 6, and the addition meaning processing is performed. Fluctuation of a measured signal value to be caused by fading is thereby reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバおよび光フ
ァイバ部品の損失分布測定並びに障害点探索に使用する
光周波数領域反射測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical frequency domain reflectometer used for measuring loss distribution of optical fibers and optical fiber parts and searching for fault points.

【0002】[0002]

【従来の技術】光周波数領域反射測定とは、光のキャリ
ア周波数に位置の情報を反映させ、その反射強度に物理
量を反映させる、高い距離分解能を有する分布センシン
グ技術の一つである。
2. Description of the Related Art Optical frequency domain reflectometry is one of distributed sensing techniques having a high distance resolution in which position information is reflected in a carrier frequency of light and a physical quantity is reflected in its reflection intensity.

【0003】具体的には、光周波数領域反射測定装置に
おいて、図2に示すように、時間に対して直線的に、一
定の時間T1および一定の周波数範囲F1で周波数を掃
引した狭線幅レーザ光を被測定物体に入射し、この被測
定物体内で反射乃至後方散乱された光を、予め同一光源
より分岐しておいた参照光を局発光としてヘテロダイン
検波することにより測定する。
Specifically, in an optical frequency domain reflectometer, as shown in FIG. 2, a narrow linewidth laser whose frequency is swept linearly with respect to time at a constant time T1 and a constant frequency range F1. Light is incident on the object to be measured, and the light reflected or backscattered in the object to be measured is measured by heterodyne detection using reference light branched in advance from the same light source as local light.

【0004】前述したように、レーザ光の周波数は時間
に対して直線的に変化しているので、測定光と参照光と
のビート周波数は両光の光路長差に比例した一定の値と
なる。従って、その周波数差から被測定物体内での反射
位置を知ることができる。また、参照光強度は一定であ
るため局発光と測定光強度の積に比例するビート信号強
度から被測定物理量の大きさを知ることができる。
As described above, since the frequency of the laser light linearly changes with time, the beat frequency of the measurement light and the reference light has a constant value proportional to the optical path length difference between the two lights. . Therefore, the reflection position within the object to be measured can be known from the frequency difference. Further, since the reference light intensity is constant, the magnitude of the measured physical quantity can be known from the beat signal intensity that is proportional to the product of the local light and the measured light intensity.

【0005】このような従来の光周波数領域反射測定で
は、高い距離分解能を実現することが可能な反面、干渉
性の極めて優れたコヒーレント光を用いているため、距
離分解能の範囲内に分布した複数個の散乱体による反射
光がその位相関係に応じて相互に干渉し合う結果、測定
信号波形にはスペックルパターンが現れる、いわゆるフ
ェーディング現象が起こる。
In such a conventional optical frequency domain reflectometry, a high distance resolution can be realized, but since coherent light having extremely excellent coherence is used, a plurality of wavelength distributions distributed within the range of the distance resolution are obtained. As a result of the reflected lights from the individual scatterers interfering with each other according to their phase relationship, a so-called fading phenomenon occurs in which a speckle pattern appears in the measurement signal waveform.

【0006】即ち、測定信号波形は、各々の分解能単位
内においてランダムに分布した複数個の散乱体による反
射光間の位相関係の、時間的に固定されたランダム性を
反映して、空間的に激しく揺らぐことになる。このよう
なフェーディングによる測定信号波形の揺らぎのパター
ンは、入射する光の波長(周波数)を変えることにより
変化する。これは光の周波数に比例して揺らぎのパター
ンが変化するためである。従って、被測定物体に入射す
る光の周波数を広い範囲で変化させながら多数回に亘っ
て測定を行い、その値を加算平均化処理することにより
フェーディングによる測定信号の揺らぎを実効的に低減
することができる(これを周波数シフト加算平均化処理
と呼ぶことにする)。
That is, the measurement signal waveform reflects the temporally fixed randomness of the phase relationship between the reflected lights by the plurality of scatterers randomly distributed in each resolution unit, and spatially. It will shake violently. The fluctuation pattern of the measurement signal waveform due to such fading changes by changing the wavelength (frequency) of the incident light. This is because the fluctuation pattern changes in proportion to the frequency of light. Therefore, while varying the frequency of the light incident on the object to be measured over a wide range, the measurement is performed a number of times, and the values are added and averaged to effectively reduce fluctuations in the measurement signal due to fading. (This will be referred to as frequency shift arithmetic processing).

【0007】この周波数シフト加算平均化処理によるフ
ェーディング低減の効果は、周波数の可変範囲が大き
く、広い周波数可変範囲に亘って均一に、かつ、細か
く、測定データがスペクトラムアナライザーによってサ
ンプリングされる場合に顕著になる。
The effect of fading reduction due to the frequency shift addition and averaging processing is large when the frequency variable range is large and the measured data is sampled uniformly and finely over a wide frequency variable range by a spectrum analyzer. It will be noticeable.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
光周波数領域反射測定装置では、このようなフェーディ
ングによる測定信号波形の揺らぎを低減するための積極
的な工夫がなされておらず、このため測定物理量に対す
る測定精度を高くとることが困難で、以下に示すような
問題点があった。
However, in the conventional optical frequency domain reflectometry device, no active device for reducing the fluctuation of the measurement signal waveform due to such fading is made, and therefore the measurement is performed. It is difficult to obtain high measurement accuracy with respect to the physical quantity, and there are the following problems.

【0009】1)従来の光周波数領域反射測定装置で
は、前述のようにビート周波数と距離を対応させるた
め、レーザの周波数掃引の時間に対する直線性を保つこ
とが重要である。しかしながら、極めて広い周波数範囲
に亘って、この直線性を保持しながら周波数を掃引する
ことは光源の特性上困難である。そのため、光源として
は広い周波数可変域を有しているにもかかわらず、その
広い可変範囲をフェーディング低減のために利用するこ
とができなかった。
1) In the conventional optical frequency domain reflectometer, it is important to maintain the linearity with respect to the time of the frequency sweep of the laser in order to make the beat frequency correspond to the distance as described above. However, it is difficult due to the characteristics of the light source to sweep the frequency while maintaining this linearity over an extremely wide frequency range. Therefore, even though the light source has a wide frequency variable range, the wide variable range cannot be used for fading reduction.

【0010】2)加算平均化処理のため多数回の測定を
行うにあたり、各々の測定毎のサンプリング開始時点に
おける周波数の値が制御されておらず、加算平均化処理
により効果的に揺らぎの低減がなされているとは必ずし
もいえない。
2) When performing a large number of measurements for the averaging process, the frequency value at the sampling start point for each measurement is not controlled, and the averaging process effectively reduces fluctuations. Not necessarily done.

【0011】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、フェーディングによる信号値の
揺らぎを小さくでき、信号強度を高精度に測定できる光
周波数領域反射測定装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical frequency domain reflectometer capable of reducing fluctuation of a signal value due to fading and measuring the signal strength with high accuracy. Especially.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、時間に対して任意に周波数の制御が可
能なレーザ光源と、周期T1で一定の基準周波数F0を
下限とした周波数可変範囲F1の鋸歯波形状に前記レー
ザ光源の周波数を制御するとともに、当該基準周波数F
0を繰り返し毎に変化させる、または当該鋸歯状波形の
位相を任意に変化させる周波数制御部とを有する光源系
と、前記レーザ光源の出射光を測定光と参照光とに分岐
する第1の光分岐手段と、被測定物体に入射する測定光
と当該測定物体内で反射された反射光とを分岐する第2
の光分岐手段と、前記参照光を局発光として前記反射光
をコヒーレント検波するヘテロダインレシーバと、前記
ヘテロダインレシーバの出力を入力とするスペクトラム
アナライザと、前記スペクトラムアナライザの出力を複
数回の測定に亘って加算平均化処理する信号処理系とを
備えた。
In order to achieve the above object, according to the present invention, a laser light source whose frequency can be arbitrarily controlled with respect to time and a variable frequency whose lower limit is a constant reference frequency F0 in a cycle T1 are used. The frequency of the laser light source is controlled to have a sawtooth wave shape in the range F1, and the reference frequency F
A light source system having a frequency control unit that changes 0 for each repetition or arbitrarily changes the phase of the sawtooth waveform; and a first light that splits the light emitted from the laser light source into measurement light and reference light. Second branching means for branching the measurement light incident on the measured object and the reflected light reflected in the measured object
Optical branching means, a heterodyne receiver that coherently detects the reflected light by using the reference light as local light, a spectrum analyzer that receives the output of the heterodyne receiver, and an output of the spectrum analyzer over a plurality of measurements. And a signal processing system for performing averaging processing.

【0013】[0013]

【作用】本発明によれば、光源系のおけるレ−ザ光源の
発振周波数が、周波数制御部により、一定の基本掃引周
期T1、一定の基準周波数F0を下限として一定の周波
数可変範囲F1で、時間に対して鋸歯状に掃引を繰り返
すだけではなく、当該基準周波数F0が繰り返し毎に変
化させられ、あるいは当該鋸歯状波形の位相が任意に変
化させられて、複数回の測定に亘って周波数がシフトさ
れたレ−ザ光が出射される。
According to the present invention, the oscillation frequency of the laser light source in the light source system is controlled by the frequency control section within a constant frequency variable range F1 with a constant basic sweep period T1 and a constant reference frequency F0 as the lower limits. In addition to repeating the sawtooth sweep with respect to time, the reference frequency F0 is changed at each repetition, or the phase of the sawtooth waveform is arbitrarily changed, so that the frequency is changed over a plurality of measurements. The shifted laser light is emitted.

【0014】光源系から出射されたレ−ザ光は、第1の
光分岐手段により測定光と参照光に分岐され、測定光は
被測定物体に入射され、参照光はヘテロダインレシ−バ
に入射される。測定物体の任意の位置における反射光
は、第2の光分岐手段により入射測定光とは異なる光路
に分岐されてヘテロダインレシ−バに入射される。
The laser light emitted from the light source system is split into the measurement light and the reference light by the first light splitting means, the measurement light is incident on the object to be measured, and the reference light is incident on the heterodyne receiver. To be done. The reflected light at an arbitrary position of the measurement object is branched by the second light branching means into an optical path different from that of the incident measurement light and is incident on the heterodyne receiver.

【0015】ヘテロダインレシ−バでは、参照光を局発
光として反射光がコヒ−レント検波される。ヘテロダイ
ンレシ−バの出力光は、スペクトラムアナライザにおい
てサンプリングされ、その出力は信号処理系により複数
回の測定に亘って加算平均化処理される。
In the heterodyne receiver, the reflected light is coherently detected by using the reference light as local light. The output light of the heterodyne receiver is sampled by the spectrum analyzer, and its output is added and averaged by the signal processing system over a plurality of measurements.

【0016】[0016]

【実施例】図1は、本発明に係る光周波数領域反射測定
装置の一実施例を示す構成図である。図1において、1
は光源系で、時間に対して任意に周波数の制御が可能な
狭線幅レーザ光源と、この狭線幅レーザ光源の周波数を
制御する周波数制御部とにより構成されている。
1 is a block diagram showing an embodiment of an optical frequency domain reflectometer according to the present invention. In FIG. 1, 1
Is a light source system and includes a narrow linewidth laser light source whose frequency can be arbitrarily controlled with respect to time, and a frequency control unit which controls the frequency of the narrow linewidth laser light source.

【0017】図3は光源系1の具体的な構成例を示して
いる。図3の(a) は、狭線幅レーザ光源として注入電流
制御周波数可変半導体レーザ11aを用い、周波数制御
部として注入電流制御部12aを用いる場合の構成例を
示している。また、同図の(b) は、狭線幅レーザ光源と
して固体レーザ、気体レーザ、色素レーザなどのより一
般的な周波数可変レーザ11bを用い、周波数制御部と
して高い周波数掃引をかけるための、例えばLiNbO
3 位相変調器などからなる外部周波数変調器12bを用
いた構成例を示している。
FIG. 3 shows a specific configuration example of the light source system 1. FIG. 3A shows a configuration example in which the injection current control frequency variable semiconductor laser 11a is used as the narrow line width laser light source and the injection current control unit 12a is used as the frequency control unit. Further, (b) of the figure uses a more general frequency variable laser 11b such as a solid-state laser, a gas laser, or a dye laser as a narrow line width laser light source, and a high frequency sweep for applying a high frequency sweep as a frequency control unit. LiNbO
An example of the configuration using an external frequency modulator 12b including a three- phase modulator is shown.

【0018】2は第1の方向性結合器で、レーザ光源の
出射光を測定光MSと参照光RFとに分岐する。3は第
2の方向性結合器で、被測定物体7に入射する測定光M
Sと、測定物体7内で反射された反射光RLとを分岐す
る。4はヘテロダインレシーバで、反射光RLを、参照
光RFを局発光としてコヒーレント検波する。5はスペ
ルクトラムアナライザで、ヘテロダインレシーバ4の出
力を入力とし、入力信号をサンプリングする。6は信号
処理系で、スペクトラムアナライザ5の出力を複数回の
測定に亘って加算平均化処理する。
Reference numeral 2 is a first directional coupler, which splits the light emitted from the laser light source into the measurement light MS and the reference light RF. Reference numeral 3 denotes a second directional coupler, which is the measurement light M incident on the measured object 7.
S and the reflected light RL reflected in the measurement object 7 are branched. A heterodyne receiver 4 coherently detects the reflected light RL using the reference light RF as local light. Reference numeral 5 denotes a spell tram analyzer which receives the output of the heterodyne receiver 4 as an input and samples the input signal. Reference numeral 6 is a signal processing system, which averages the output of the spectrum analyzer 5 over a plurality of measurements.

【0019】次に、図4乃至図8を用いて光源系1の周
波数制御部の周波数制御波形設定の具体例について説明
する。
Next, a specific example of frequency control waveform setting of the frequency control section of the light source system 1 will be described with reference to FIGS.

【0020】まず、図4により二重周波数掃引の場合に
ついて説明する。図4は、基本周波数掃引周期T1、基
本周波数掃引範囲F1を持つ単一鋸歯状掃引波形に対し
て、さらに周波数掃引周期T2、周波数掃引範囲F2で
与えられる周波数掃引波形を重ね合わせたものである。
ここでT2>T1、F2>F1である。このとき個々の
掃引における掃引レートは、 F1/T1 +F2/T2 …(1) (一般には、F1/T1>F2/T2である) で与えられ周波数変化範囲はF1であるが、全体として
の周波数変化範囲はF1+F2となる。ここで、従来の
単一鋸歯状周波数掃引において、式(1) で与えられる値
に近い、高い掃引レートで、F1+F2に亘って周波数
を掃引することは、光源の特性上極めて困難であるとい
う一般的状況に留意しておく。ここではF2/T2の掃
引レートでの周波数掃引は、広い周波数可変範囲に亘っ
てT1より長い時間、即ちゆっくり行われる。
First, the case of double frequency sweep will be described with reference to FIG. FIG. 4 is a diagram in which the frequency sweep waveforms given in the frequency sweep period T2 and the frequency sweep range F2 are further superimposed on the single sawtooth sweep waveform having the fundamental frequency sweep period T1 and the fundamental frequency sweep range F1. ..
Here, T2> T1 and F2> F1. At this time, the sweep rate in each sweep is given by F1 / T1 + F2 / T2 (1) (generally, F1 / T1> F2 / T2), and the frequency change range is F1, but the overall frequency The change range is F1 + F2. Here, in the conventional single sawtooth frequency sweep, it is generally difficult to sweep the frequency over F1 + F2 at a high sweep rate close to the value given by the equation (1) because of the characteristics of the light source. Be aware of the situation. Here, the frequency sweep at the sweep rate of F2 / T2 is performed for a time longer than T1 over a wide frequency variable range, that is, slowly.

【0021】図4中、Sは特定のポイントのデータを、
スペクトラムアナライザ5および信号処理系6によりサ
ンプリングするサンプリング時間間隔である。スペクト
ラムアナライザ5において距離分解能の幅を有する1ポ
イントのデータをサンプリングするためには、受信帯域
幅の逆数で与えられる分解時間を要する。このとき、N
ポイントの測定データをとって一回の測定が終了するも
のとすると、特定ポイントの測定データを取り込んでゆ
くサンプリング時間間隔Sは受信帯域幅、測定ポイント
数Nによって一意に決定される。これに対して基本周波
数掃引時間T1は任意に設定が可能であるが、最も効果
的に周波数シフト加算平均化処理が行われるように設定
されることが望ましい。一例として、 T1=S …(2) と設定した場合には、測定を繰り返す度に、測定ポイン
トからの反射光RLのサンプリング開始時点における光
の周波数は Fstep=(F2/T2)S …(3) ずつステップ状に変化してゆく。図中、四角「□」で示
す周波数掃引波形と破線との交点が、各サンプリング開
始時点における周波数である。測定回数 M=T2/S …(4) に亘っての測定信号値の加算平均化は、同一周波数での
測定値が複数回サンプリングされることなく、高い周波
数掃引レートF1/T1+F2/T2〜F1/T1を保
ったまま、広い周波数範囲F2の間で最も効率的に行わ
れ、測定信号値のフェーディングによる揺らぎは効果的
に低減される。
In FIG. 4, S is data of a specific point,
It is a sampling time interval for sampling by the spectrum analyzer 5 and the signal processing system 6. In the spectrum analyzer 5, in order to sample 1-point data having a range of range resolution, a decomposition time given by the reciprocal of the reception bandwidth is required. At this time, N
Assuming that the measurement data of a point is taken and one measurement is completed, the sampling time interval S in which the measurement data of a specific point is taken in is uniquely determined by the reception bandwidth and the number N of measurement points. On the other hand, the fundamental frequency sweep time T1 can be arbitrarily set, but it is desirable to set it so that the frequency shift addition / averaging process is most effectively performed. As an example, when T1 = S ... (2) is set, the frequency of the light at the sampling start time of the reflected light RL from the measurement point is Fstep = (F2 / T2) S. ) Each step changes. In the figure, the intersection of the frequency sweep waveform indicated by a square “□” and the broken line is the frequency at the start of each sampling. The number of times of measurement M = T2 / S (4) In addition averaging of the measurement signal values, the high-frequency sweep rate F1 / T1 + F2 / T2 to F1 is achieved without the measurement values at the same frequency being sampled multiple times. With / T1 maintained, it is most efficiently performed over a wide frequency range F2, and fluctuations due to fading of the measured signal value are effectively reduced.

【0022】図3の(a) のように、注入電流制御周波数
可変半導体レーザ11aを用いる場合には、注入電流を
周期、変化量の異なる二つの鋸歯状掃引電流の重ね合わ
せとすればよい。もしくは基本掃引毎に、一定の段差と
時間間隔T1をもつステップ関数を単一鋸歯状掃引波形
に重ね合わせて行けばよい。特に、DFBレーザに代表
される周波数可変半導体レーザでは、広い周波数可変範
囲に亘って、高い掃引レートで直線性を保持しながら連
続的に掃引することは難しく、何段かに分けて不連続的
に条件を変えて周波数を制御している。しかし、本発明
を用いれば、半導体レーザの上記の欠点は、広い周波数
可変範囲をとるという目的に対して何ら妨げとはならな
い。
When the injection current control frequency variable semiconductor laser 11a is used as shown in FIG. 3A, the injection current may be a superposition of two sawtooth sweep currents having different periods and different amounts of change. Alternatively, a step function having a constant step and a time interval T1 may be superposed on a single sawtooth sweep waveform for each basic sweep. In particular, in a frequency variable semiconductor laser represented by a DFB laser, it is difficult to continuously sweep while maintaining linearity at a high sweep rate over a wide frequency variable range, and it is discontinuous in several stages. The frequency is controlled under different conditions. However, using the present invention, the above-mentioned drawbacks of the semiconductor laser do not hinder the purpose of taking a wide frequency variable range.

【0023】次に、図3の(b) のように、一般の周波数
可変レーザ11bと外部周波数変調器12bを用いる場
合について説明する。この場合、固体レーザ、気体レー
ザ、色素レーザなどでは、広い周波数可変範囲を有する
反面、温度変化による周波数制御などを行うため、掃引
レートを高くとることが難しい。一方で二重周波数掃引
におけるF2/T2の値には、大きな値は要求されてい
ない。従って、F2/T2の掃引は光源の直接周波数制
御により行い、F1/T1の基本周波数掃引は外部周波
数変調器12bを用いて行えばよい。具体的には、位相
変化量が時間の二次関数となるように位相変調器を制御
する。
Next, as shown in FIG. 3B, a case where a general frequency variable laser 11b and an external frequency modulator 12b are used will be described. In this case, a solid-state laser, a gas laser, a dye laser, and the like have a wide frequency variable range, but on the other hand, it is difficult to obtain a high sweep rate because frequency control is performed by temperature change. On the other hand, a large value is not required for the F2 / T2 value in the double frequency sweep. Therefore, the sweeping of F2 / T2 may be performed by direct frequency control of the light source, and the sweeping of the fundamental frequency of F1 / T1 may be performed using the external frequency modulator 12b. Specifically, the phase modulator is controlled so that the phase change amount becomes a quadratic function of time.

【0024】図5は、図4の二重周波数掃引の方法に従
って周波数シフト加算平均化処理を行った場合の、“信
号強度分散値(<σI >)ー信号強度平均値(<I>)
の比(揺らぎ振幅/測定信号値)”の測定回数依存性の
計算値を、周波数可変範囲F2、分解能zをパラメータ
として示している。また、図6は、図5の距離分解能、
周波数可変範囲と各数値グラフとの対応表を示してい
る。図5中の(a) 〜(e)は、それぞれパラメータの値が
図6の表に従って選択される場合に対応している。
FIG. 5 shows "the signal strength variance value (<σI>)-the signal strength average value (<I>)" when the frequency shift addition and averaging process is performed according to the double frequency sweep method of FIG.
The calculated value of the measurement frequency dependence of the ratio (fluctuation amplitude / measurement signal value) ”is shown with the frequency variable range F2 and the resolution z as parameters. In addition, FIG. 6 shows the distance resolution of FIG.
The correspondence table of the frequency variable range and each numerical graph is shown. (A) to (e) in FIG. 5 correspond to the case where the parameter values are selected according to the table of FIG.

【0025】次に、図7を用いて上記した二重周波数掃
引とは異なる周波数制御波形の設定例について説明す
る。
Next, an example of setting a frequency control waveform different from the above double frequency sweep will be described with reference to FIG.

【0026】図7は、基本周波数掃引周期T1、基本周
波数掃引範囲F1である単一鋸歯状周波数掃引波形(実
線で示す)に対して、周期T1の間は平坦であるような
ランダムなステップ波形(破線で示す)を重ね合わせる
波形設定例を示している。
FIG. 7 shows a random step waveform that is flat during the period T1 with respect to a single sawtooth frequency sweep waveform (shown by a solid line) having a fundamental frequency sweep period T1 and a fundamental frequency sweep range F1. An example of waveform setting for overlapping (indicated by a broken line) is shown.

【0027】この場合、ステップの段差は光源の特性の
許す範囲で任意にとれるものとし、周波数はF2の範囲
で可変であるものとする。この設定例では、各測定時点
における周波数はランダムになるために周波数シフト加
算平均化処理の効率は基本周波数掃引周期T1には依存
しない。
In this case, the step difference can be arbitrarily set within the range allowed by the characteristics of the light source, and the frequency can be changed within the range of F2. In this setting example, since the frequency at each measurement time point is random, the efficiency of the frequency shift addition / averaging process does not depend on the fundamental frequency sweep period T1.

【0028】次に、図8を用いて上記した図4および図
7とは異なる周波数制御波形の設定例について説明す
る。
Next, a setting example of the frequency control waveform different from those in FIGS. 4 and 7 described above will be described with reference to FIG.

【0029】図8は、基本周波数掃引周期T1、基本周
波数掃引範囲F1である個々の単位掃引波形の間の間隔
t(一般に、t<T1)を不規則に変化させる、もしく
は一定の変化量で階段状に変化させていく波形設定例を
示している。この場合、各サンプリング時点における周
波数は、ランダムもしくは規則的に、基本周波数掃引範
囲F1の一様に変化し、その結果、加算平均化処理が効
率的に行われることになる。
FIG. 8 shows that the interval t (generally t <T1) between the individual unit sweep waveforms having the fundamental frequency sweep period T1 and the fundamental frequency sweep range F1 is changed irregularly or with a constant variation amount. An example of waveform setting in which the waveform is changed stepwise is shown. In this case, the frequency at each sampling time randomly or regularly changes uniformly in the fundamental frequency sweep range F1, and as a result, the averaging process is efficiently performed.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
従来の光周波数領域反射測定における単一鋸歯状周波数
掃引波形に対して、さらに意図的に設定された時間的な
変調波形を重ね合わせ、複数回の測定に亘って周波数を
シフトさせながら、データのサンプリングを行い加算平
均化処理することにより、フェーディングによる測定信
号値の揺らぎを低減することができる。このようにし
て、距離分解能のみではなく、測定物理量に対しても高
い測定精度を達成することが可能となる。
As described above, according to the present invention,
A single sawtooth frequency sweep waveform used in conventional optical frequency domain reflectometry is overlaid with an intentionally set temporal modulation waveform to shift the frequency over multiple measurements while By performing sampling and averaging processing, fluctuations in the measured signal value due to fading can be reduced. In this way, it is possible to achieve high measurement accuracy not only for the distance resolution but also for the measured physical quantity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光周波数領域反射測定装置の一実
施例を示す構成図
FIG. 1 is a configuration diagram showing an embodiment of an optical frequency domain reflectometry device according to the present invention.

【図2】従来の周波数掃引波形を示す図FIG. 2 is a diagram showing a conventional frequency sweep waveform.

【図3】本発明に係る光源系の構成例を示す図FIG. 3 is a diagram showing a configuration example of a light source system according to the present invention.

【図4】本発明に係る周波数制御波形の一設定例を示す
図(二重周波数掃引)
FIG. 4 is a diagram showing a setting example of a frequency control waveform according to the present invention (double frequency sweep).

【図5】“揺らぎ振幅/測定信号値(信号強度分散値/
信号強度平均値)”の測定回数依存性の理論値を示す図
FIG. 5 shows “fluctuation amplitude / measured signal value (signal strength variance value /
The figure which shows the theoretical value of the measurement frequency dependence of "signal strength average value)"

【図6】図5と各設定パラメータとの対応表を示す図FIG. 6 is a diagram showing a correspondence table between FIG. 5 and each setting parameter.

【図7】本発明に係る周波数制御波形の他の設定例を示
す図(鋸歯状掃引とランダムステップ波形の重ね合わ
せ)
FIG. 7 is a diagram showing another setting example of the frequency control waveform according to the present invention (superposition of saw-tooth sweep and random step waveform).

【図8】本発明に係る周波数制御波形の他の設定例を示
す図(鋸歯状掃引間隔の制御)
FIG. 8 is a diagram showing another example of setting the frequency control waveform according to the present invention (control of the sawtooth sweep interval).

【符号の説明】[Explanation of symbols]

1…光源系、11a…注入電流制御周波数可変半導体レ
ーザ、11b…周波数可変レーザ、12a…注入電流制
御部、12b…外部周波数変調器、2…第1の方向性結
合器、3…第2の方向性結合器、4…ヘテロダインレシ
ーバ、5…スペクトラムアナライザ、6…加算平均化信
号処理系。
DESCRIPTION OF SYMBOLS 1 ... Light source system, 11a ... Injection current control frequency variable semiconductor laser, 11b ... Frequency variable laser, 12a ... Injection current control part, 12b ... External frequency modulator, 2 ... 1st directional coupler, 3 ... 2nd Directional coupler, 4 ... Heterodyne receiver, 5 ... Spectrum analyzer, 6 ... Addition / averaging signal processing system.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 時間に対して任意に周波数の制御が可能
なレーザ光源と、周期T1で一定の基準周波数F0を下
限とした周波数可変範囲F1の鋸歯波形状に前記レーザ
光源の周波数を制御するとともに、当該基準周波数F0
を繰り返し毎に変化させる、または当該鋸歯状波形の位
相を任意に変化させる周波数制御部とを有する光源系
と、 前記レーザ光源の出射光を測定光と参照光とに分岐する
第1の光分岐手段と、被測定物体に入射する測定光と当
該測定物体内で反射された反射光とを分岐する第2の光
分岐手段と、 前記参照光を局発光として前記反射光をコヒーレント検
波するヘテロダインレシーバと、 前記ヘテロダインレシーバの出力を入力とするスペクト
ラムアナライザと、 前記スペクトラムアナライザの出力を複数回の測定に亘
って加算平均化処理する信号処理系とを備えたことを特
徴とする光周波数領域反射測定装置。
1. A laser light source whose frequency can be arbitrarily controlled with respect to time, and a frequency of the laser light source is controlled in a sawtooth wave shape of a frequency variable range F1 with a fixed reference frequency F0 having a lower limit in a period T1. Together with the reference frequency F0
A light source system having a frequency control unit that changes the frequency of the laser light source every repetition or arbitrarily changes the phase of the sawtooth waveform, and a first optical branch that splits the light emitted from the laser light source into measurement light and reference light. Means, second light splitting means for splitting the measurement light incident on the measured object and the reflected light reflected in the measured object, and a heterodyne receiver for coherently detecting the reflected light with the reference light as local light. An optical frequency domain reflection measurement, comprising: a spectrum analyzer that receives the output of the heterodyne receiver; and a signal processing system that performs an averaging process on the output of the spectrum analyzer over a plurality of measurements. apparatus.
JP03279559A 1991-10-25 1991-10-25 Optical frequency domain reflectometer Expired - Fee Related JP3075433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03279559A JP3075433B2 (en) 1991-10-25 1991-10-25 Optical frequency domain reflectometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03279559A JP3075433B2 (en) 1991-10-25 1991-10-25 Optical frequency domain reflectometer

Publications (2)

Publication Number Publication Date
JPH05118954A true JPH05118954A (en) 1993-05-14
JP3075433B2 JP3075433B2 (en) 2000-08-14

Family

ID=17612664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03279559A Expired - Fee Related JP3075433B2 (en) 1991-10-25 1991-10-25 Optical frequency domain reflectometer

Country Status (1)

Country Link
JP (1) JP3075433B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075068A (en) * 1993-06-17 1995-01-10 Nippon Telegr & Teleph Corp <Ntt> Light frequency region reflection measuring device
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
JPH08136405A (en) * 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd Optical multipath measuring method
JPH09304110A (en) * 1996-05-15 1997-11-28 Tech Res & Dev Inst Of Japan Def Agency Reflection-type optical fiber sensor array for remote measurement
KR100691871B1 (en) * 2005-03-25 2007-03-12 광주과학기술원 Apparatus and Method for Compensation of the Nonlinearity of an OFDR system
JP2011158330A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measurement of optical path
CN102455301A (en) * 2011-04-08 2012-05-16 安徽农业大学 Laser coherence detection device for ceramic product surface defect
CN104634540A (en) * 2015-01-21 2015-05-20 北京理工大学 Testing system and testing method for front end of heterodyne terahertz quasi-optical receiver
CN104634541A (en) * 2015-01-30 2015-05-20 北京理工大学 Quasi-optical testing system and method for terahertz frequency mixer
JP2017138181A (en) * 2016-02-03 2017-08-10 日本電信電話株式会社 Method for analyzing rayleigh backscattering light waveform of optical fiber, and device for analyzing rayleigh backscattering light waveform of optical fiber
JP2019020146A (en) * 2017-07-11 2019-02-07 学校法人明治大学 Measuring device and measuring method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075068A (en) * 1993-06-17 1995-01-10 Nippon Telegr & Teleph Corp <Ntt> Light frequency region reflection measuring device
JPH07159281A (en) * 1993-12-09 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> Reflection measuring apparatus for optical frequency region
JPH08136405A (en) * 1994-11-15 1996-05-31 Matsushita Electric Ind Co Ltd Optical multipath measuring method
JPH09304110A (en) * 1996-05-15 1997-11-28 Tech Res & Dev Inst Of Japan Def Agency Reflection-type optical fiber sensor array for remote measurement
KR100691871B1 (en) * 2005-03-25 2007-03-12 광주과학기술원 Apparatus and Method for Compensation of the Nonlinearity of an OFDR system
JP2011158330A (en) * 2010-01-29 2011-08-18 Nippon Telegr & Teleph Corp <Ntt> Apparatus and method for measurement of optical path
CN102455301A (en) * 2011-04-08 2012-05-16 安徽农业大学 Laser coherence detection device for ceramic product surface defect
CN104634540A (en) * 2015-01-21 2015-05-20 北京理工大学 Testing system and testing method for front end of heterodyne terahertz quasi-optical receiver
CN104634541A (en) * 2015-01-30 2015-05-20 北京理工大学 Quasi-optical testing system and method for terahertz frequency mixer
JP2017138181A (en) * 2016-02-03 2017-08-10 日本電信電話株式会社 Method for analyzing rayleigh backscattering light waveform of optical fiber, and device for analyzing rayleigh backscattering light waveform of optical fiber
JP2019020146A (en) * 2017-07-11 2019-02-07 学校法人明治大学 Measuring device and measuring method

Also Published As

Publication number Publication date
JP3075433B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US8134696B2 (en) Measuring Brillouin backscatter from an optical fibre using a tracking signal
US6057919A (en) Apparatus and method for measuring characteristics of optical pulses
CN109459126B (en) Distributed optical fiber vibration sensing device and method for reducing detection dead zone probability
EP0358756A1 (en) Phase noise measurement system.
JP2000180265A (en) Brillouin gain spectrum measuring method and device
JP3075433B2 (en) Optical frequency domain reflectometer
US10816368B2 (en) Method and system for high sensitivity in distributed fiber sensing applications
JP3070880B2 (en) Backscattered light measuring device
JP3307153B2 (en) Laser radar device
CN109443590A (en) Phase sensitivity type OTDR and measurement method based on frequency-airspace matching and injection locking technique
CN113607277B (en) Demodulation method of narrow linewidth laser linewidth measurement system
JP3223439B2 (en) Fiber inspection equipment
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP2972885B1 (en) Optical fiber dispersion measurement method
JPH07103828A (en) Estimation unit for variable frequency characteristics
JPH05322695A (en) Light pulse tester
Kingsley et al. OFDR diagnostics for fiber/integrated optic systems and high resolution distributed fiber optic sensing
JP3354630B2 (en) Optical transmission characteristics measurement device
JPH06112572A (en) Optical resonator and optical frequency weeping light source
JPH06207847A (en) Measuring device for optical fm modulation characteristic
RU2624827C1 (en) Measurement method of the brillouin scattering frequency shift on the optical fiber length
Wang et al. Brillouin optical fiber sensing via optical chirp chain for ultrafast distributed measurement
JP2000193528A (en) Optical quenching ratio measurement method and device therefor
JPH0540075A (en) Light pulse tester
JP3078632B2 (en) Optical pulse tester

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees