JP3354630B2 - Optical transmission characteristics measurement device - Google Patents

Optical transmission characteristics measurement device

Info

Publication number
JP3354630B2
JP3354630B2 JP15136093A JP15136093A JP3354630B2 JP 3354630 B2 JP3354630 B2 JP 3354630B2 JP 15136093 A JP15136093 A JP 15136093A JP 15136093 A JP15136093 A JP 15136093A JP 3354630 B2 JP3354630 B2 JP 3354630B2
Authority
JP
Japan
Prior art keywords
light
optical
frequency
pulse
loop path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15136093A
Other languages
Japanese (ja)
Other versions
JPH06341907A (en
Inventor
誠範 待鳥
昭仁 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP15136093A priority Critical patent/JP3354630B2/en
Publication of JPH06341907A publication Critical patent/JPH06341907A/en
Application granted granted Critical
Publication of JP3354630B2 publication Critical patent/JP3354630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信や計測に利用さ
れる光波長フィルタ等の光学部品の伝送特性、すなわち
透過、吸収、反射等の振幅及び位相の周波数特性を計測
する光伝送特性測定装置に関し、特に測定周波数の確度
を改善した光伝送特性測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission characteristic for measuring transmission characteristics of optical components such as an optical wavelength filter used for optical communication and measurement, that is, amplitude and phase frequency characteristics such as transmission, absorption and reflection. The present invention relates to a measuring device, and more particularly to an optical transmission characteristic measuring device with improved accuracy of a measuring frequency.

【0002】[0002]

【従来の技術】図3に、従来の光伝送特性測定装置(
3のものは、一般に光波ネットワークアナイザと言わ
れる)のブロック図を示す。周波数可変の半導体レー
ザ1は周波数掃引した光を発生する。なお、周波数掃引
は、周波数掃引手段2がペルチェ素子等により半導体レ
ーザ1の温度制御を行って、半導体レーザ1の発振動作
点を変化させることによって行われる。半導体レーザ1
から出射された光は、光分岐回路3に入射し、ここで二
つの経路に分岐されて、一方は音響光学変調器4(以下
AOM4という)へ、また他方は参照光として光結合器
8へ出射される。
2. Description of the Related Art FIG. 3 shows a conventional optical transmission characteristic measuring device (see FIG.
3 of what is commonly referred to as a light wave network analyzers. FIG. The frequency-variable semiconductor laser 1 generates frequency-swept light. The frequency sweeping is performed by the frequency sweeping means 2 controlling the temperature of the semiconductor laser 1 using a Peltier element or the like to change the oscillation operating point of the semiconductor laser 1. Semiconductor laser 1
The light emitted from the light enters the optical branching circuit 3, where it is branched into two paths, one to the acousto-optic modulator 4 (hereinafter AOM4) and the other to the optical coupler 8 as reference light. Is emitted.

【0003】AOM4は、駆動信号源5から出力される
駆動信号によって駆動されており、光分岐回路3から入
射された光を駆動周波数fだけ周波数シフトさせ(回折
光という)て、測定光として被測定物6へ出射する。な
お、駆動信号の駆動周波数fはAOM4で十分な回折効
率が得られるように、例えば100MHzに設定されて
いる。
The AOM 4 is driven by a drive signal output from a drive signal source 5 and shifts the light incident from the optical branching circuit 3 by a drive frequency f (referred to as diffracted light) to be used as measurement light. The light is emitted to the measurement object 6. The drive frequency f of the drive signal is set to, for example, 100 MHz so that the AOM 4 can obtain a sufficient diffraction efficiency.

【0004】被測定物6を透過してきた測定光は、光結
合器8へ入射される。光結合器8は、この測定光と上述
の光分岐回路3からの参照光とを合波させて干渉光を出
射する。光電変換器9は、この干渉光を電気的なビート
信号に変換し、振幅検出器10及び位相比較器11に出
力する。ビート信号の周波数はAOM4の駆動周波数f
と同一であり、上記の例の場合には100MHzとな
る。なお、光結合器8と光電変換器9は光干渉手段7を
構成している。
The measuring light transmitted through the device under test 6 enters the optical coupler 8. The optical coupler 8 combines the measurement light with the reference light from the optical branching circuit 3 and emits interference light. The photoelectric converter 9 converts the interference light into an electric beat signal and outputs the signal to the amplitude detector 10 and the phase comparator 11. The frequency of the beat signal is the driving frequency f of the AOM4.
And 100 MHz in the case of the above example. Note that the optical coupler 8 and the photoelectric converter 9 constitute the optical interference unit 7.

【0005】振幅検出器10は、ビート信号を検波し
て、被測定物6が測定光に与える振幅減衰率を検出す
る。また、位相比較器11は、駆動信号源5の駆動信号
(位相比較の基準となる)とビート信号との位相比較を
行って、被測定物6が測定光に与える位相推移量を検出
する。そして、これらの検出結果を、半導体レーザ1の
周波数掃引に対応させて、表示器(図示してない)等に
表示することによって、被測定物(例えば光波長フィル
タ等)の振幅及び位相の周波数特性を測定することがで
きる。あるいは、光電変換器9から出力されるビート信
号を、振幅検出器10及び位相比較器11の代わりに、
周波数解析装置で受けて周波数解析を行えば、被測定物
の長手方向の構造や状態を測定することが可能である。
[0005] The amplitude detector 10 detects a beat signal and detects an amplitude decay rate given by the DUT 6 to the measurement light. Further, the phase comparator 11 compares the phase of the drive signal of the drive signal source 5 (which is a reference for phase comparison) with the beat signal, and detects the amount of phase transition given to the measurement light by the device under test 6. These detection results are displayed on a display (not shown) or the like in correspondence with the frequency sweep of the semiconductor laser 1, so that the frequency of the amplitude and phase of the device under test (for example, an optical wavelength filter or the like) is displayed. Properties can be measured. Alternatively, the beat signal output from the photoelectric converter 9
Signal, instead of the amplitude detector 10 and the phase comparator 11,
If the frequency analysis device receives and analyzes the frequency,
It is possible to measure the structure and state in the longitudinal direction.

【0006】[0006]

【発明が解決しようとする課題】しかし、周波数掃引の
方法として、周波数可変の半導体レーザ1の温度を制御
して発振動作点を変える従来の方法では、周波数掃引中
の周波数確度が数100MHzと低いために、ファブリ
・ペロ共振器(図4( a) )のような狭帯域の被測定物
を測定する際のように、数10MHz以下の確度を必要
とするときに問題が生ずる。すなわち、周波数設定が一
度だけで簡単にすまない。仮に、何回か周波数設定をや
り直して測定ができるようになったとしても、ファブリ
・ペロ共振器の二つの振幅のピーク点(図4( b) の(
イ) )の周波数を正確に把握できないという問題があっ
た。
However, in the conventional method of changing the oscillation operating point by controlling the temperature of the frequency-variable semiconductor laser 1 as the frequency sweeping method, the frequency accuracy during the frequency sweeping is as low as several hundred MHz. Therefore, a problem arises when an accuracy of several tens of MHz or less is required, such as when measuring an object to be measured in a narrow band such as a Fabry-Perot resonator (FIG. 4A). That is, it is not easy to set the frequency only once. Even if the frequency can be set again and the measurement can be performed several times, the peak points of the two amplitudes of the Fabry-Perot resonator ((
B) There was a problem that the frequency of (1) cannot be accurately grasped.

【0007】また、上述のような方法で周波数掃引を行
っているために、周波数の再現性、安定性が悪い、ま
た、半導体レーザ1のマウント部分やペルチェ素子等の
持つ熱的時定数に制限されて、掃引時間が20秒/20
GHzと遅い(測定時間が長い)等、実用的な測定装置
として問題があった。周波数解析装置で受けて周波数解
析を行う場合には、周波数確度や掃引速度は距離分解能
に影響する。
Further, since the frequency sweep is performed by the method described above, the reproducibility and stability of the frequency are poor, and the thermal time constant of the mount portion of the semiconductor laser 1 and the Peltier device is limited. And the sweep time is 20 seconds / 20
There is a problem as a practical measuring device, such as a low GHz (measuring time is long). Frequency solution received by frequency analyzer
When performing analysis, the frequency accuracy and sweep speed
Affect.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、音響光学変調器と帰還路とで光パルス
を周回させるための光ループ路を形成して、この光ルー
プ路に周波数固定の光パルスを導入して周回させ、各周
回毎に音響光学変調器の駆動周波数fだけ周波数シフト
させることで、階段状に周波数掃引を行うようにした。
また、音響光学変調器に周波数掃引のための周波数シフ
ト手段と、光パルスを非回折光と該非回折光に対して駆
動周波数fだけ異なる回折光とに分岐する分岐手段とを
兼ねさせた。
In order to solve the above-mentioned problems, according to the present invention, an optical loop path for circulating an optical pulse is formed between an acousto-optic modulator and a return path, and the optical loop path is formed in the optical loop path. A frequency sweep is performed in a stepwise manner by introducing an optical pulse having a fixed frequency and rotating the optical pulse, and shifting the frequency by the driving frequency f of the acousto-optic modulator for each rotation.
Further, the acousto-optic modulator also serves as a frequency shifting means for frequency sweeping and a branching means for branching the light pulse into undiffracted light and diffracted light different from the undiffracted light by a driving frequency f.

【0009】[0009]

【作用】周波数掃引中の周波数は、光パルスに含まれる
固定の光周波数を基準にして、音響光学変調器の駆動周
波数fの整数倍となるために、掃引中の相対的な周波数
確度を駆動周波数fの確度と同等に高くすることができ
る。そして、掃引時間も、主に光パルスの光ループ路を
周回する時間で決まるために、高速にすることができ
る。また、音響光学変調器に周波数シフト手段と分岐手
段とを兼ねさせることで、周波数掃引に必要な回折光は
もちろん、非回折光も有効に利用することができ、その
結果、参照光と測定光とを同時に音響光学変調器で発生
させることができる。
The frequency during the frequency sweep is an integral multiple of the drive frequency f of the acousto-optic modulator based on the fixed optical frequency included in the light pulse, so that the relative frequency accuracy during the sweep is driven. It can be as high as the accuracy of the frequency f. Since the sweep time is determined mainly by the time required for the optical pulse to circulate in the optical loop, the speed can be increased. Further, by making the acousto-optic modulator serve as both the frequency shifting means and the branching means, not only diffracted light necessary for frequency sweeping but also undiffracted light can be effectively used. As a result, the reference light and the measuring light can be used. Can be simultaneously generated by the acousto-optic modulator.

【0010】[0010]

【実施例】図1は本発明の一実施例を示す光伝送特性測
定装置のブロック図である。なお、従来例と同一の構成
部分には同一の符号を付け、その部分の詳細な説明は省
略する。光パルス発生手段12は、光源13と光パルス
変調器14で構成され、固定周波数の光(周波数掃引さ
れていない光)を含んだ光パルスを発生する。すなわ
ち、周波数固定の光源13は、周波数の安定した光を連
続的に発生して、光パルス変調器14へ出射する。光パ
ルス変調器14は、制御装置19から入力されるパルス
信号で、光源13から入射する光にパルス変調をかけて
光パルスを発生する。
FIG. 1 is a block diagram of an optical transmission characteristic measuring apparatus showing an embodiment of the present invention. The same components as those in the conventional example are denoted by the same reference numerals, and detailed description of those components will be omitted. The optical pulse generating means 12 includes a light source 13 and an optical pulse modulator 14, and generates an optical pulse including light of a fixed frequency (light that has not been frequency-swept). That is, the fixed-frequency light source 13 continuously generates light having a stable frequency and emits the light to the optical pulse modulator 14. The optical pulse modulator 14 generates an optical pulse by applying a pulse modulation to the light incident from the light source 13 with a pulse signal input from the control device 19.

【0011】上記光パルスは、光結合器16、波形整形
器17を経由して、AOM4へ入射される。AOM4
は、駆動信号源5から出力される駆動信号(周波数f)
によって駆動されており、入射された光パルスによっ
て、駆動周波数fだけ周波数シフトさせた光パルス(1
次光又は回折光という)と周波数シフトさせない光パル
ス(0次光又は非回折光という)とを発生させるととも
に、これらの光パルスを回折光と非回折光とに分岐し
て、空間的に異なる方向に出射する。すなわち、回折光
の光パルスは光分岐回路18に、また非回折光の光パル
スは測定光として被測定物6に出射される。
The above-mentioned optical pulse is incident on the AOM 4 via the optical coupler 16 and the waveform shaper 17. AOM4
Is a drive signal (frequency f) output from the drive signal source 5
The optical pulse (1) is frequency-shifted by the driving frequency f by the incident optical pulse.
And a light pulse that does not shift in frequency (referred to as zero-order light or undiffracted light), and these light pulses are split into diffracted light and undiffracted light to be spatially different. Emit in the direction. That is, the light pulse of the diffracted light is emitted to the optical branch circuit 18, and the light pulse of the undiffracted light is emitted to the DUT 6 as measurement light.

【0012】この場合、AOM4へ入射された光パルス
の周波数をf0 と仮定すると、非回折光の周波数は入射
された光パルスと同一のf0 、また回折光の周波数はf
0 +fとなる。なお、f0 +fは回折光に+1次光を用
いる場合で、−1次光を用いる場合はf0 −fとなる。
以下、+1次光を用いる場合について説明する。
In this case, assuming that the frequency of the light pulse incident on the AOM 4 is f 0 , the frequency of the undiffracted light is the same as that of the incident light pulse, and the frequency of the diffracted light is f 0 .
0 + f. Note that f 0 + f is the case where the + 1st-order light is used as the diffracted light, and becomes f 0 −f when the −1st-order light is used.
Hereinafter, a case where + 1st-order light is used will be described.

【0013】次に、光分岐回路18に入射された回折光
の光パルスは、ここで分岐されて、一方は参照光として
光干渉手段7に、また他方は光結合器16に出射され
る。光結合器16に入射された回折光の光パルスは、波
形整形器17を経由して、再びAOM4へ入射される。
そして、AOM4は入射した光パルスを再び回折光と非
回折光に分岐して出射する。このとき、それぞれの周波
数は、非回折光がf0 +f、回折光がf0 +2fとな
る。
Next, the light pulse of the diffracted light that has entered the optical branching circuit 18 is branched here, one of which is emitted to the optical interference means 7 as reference light and the other is emitted to the optical coupler 16. The optical pulse of the diffracted light incident on the optical coupler 16 is incident again on the AOM 4 via the waveform shaper 17.
Then, the AOM 4 splits the incident light pulse into diffracted light and undiffracted light again and emits them. At this time, the respective frequencies are f 0 + f for the non-diffracted light and f 0 + 2f for the diffracted light.

【0014】以上の周波数の変化から、AOM4から出
射された回折光が、光分岐回路18、光結合器16及び
波形整形器17を経由して、AOM4に入射されて出射
される毎に、非回折光及び回折光の周波数がそれぞれ周
波数fずつ大きくなる、すなわち周波数掃引されること
が分かる。
From the frequency change described above, every time the diffracted light emitted from the AOM 4 enters the AOM 4 via the optical branching circuit 18, the optical coupler 16 and the waveform shaper 17, and is output from the AOM 4, a non-diffused light is output. It can be seen that the frequencies of the diffracted light and the diffracted light increase by the frequency f, that is, the frequency is swept.

【0015】したがって、光分岐回路18、光結合器1
6及び波形整形器17で帰還路15を形成し、かつ、こ
の帰還路15とAOM4とで光ループ路を形成して、光
パルス発生手段12からの光パルスをこの光ループ路に
導入するとともに周回させ、各周回毎に、AOM4の駆
動周波数fだけ周波数をシフトさせることによって、階
段状の周波数掃引が行われる。なお、上記帰還路15に
は、図1には示していないが光ファイバを含む場合があ
る。
Therefore, the optical branch circuit 18, the optical coupler 1
6, a feedback path 15 is formed by the waveform shaper 17, and an optical loop path is formed by the return path 15 and the AOM 4, and an optical pulse from the optical pulse generating means 12 is introduced into the optical loop path. The frequency is shifted by the driving frequency f of the AOM 4 for each rotation, so that a stepwise frequency sweep is performed. Although not shown in FIG. 1, the return path 15 may include an optical fiber.

【0016】なお、波形整形器17は、光ループ路のA
OM4、光分岐回路18及び光結合器16の損失を補う
だけでなく、光量が増加し過ぎると利得の飽和によって
リミッタとして機能するもので、ファイバーアンプ、L
Dアンプ等で構成される。
Note that the waveform shaper 17 has a function of A in the optical loop path.
It not only compensates for the loss of the OM 4, the optical branching circuit 18 and the optical coupler 16, but also functions as a limiter due to gain saturation when the light quantity increases too much.
It is composed of a D amplifier and the like.

【0017】ここで、図2を用いて、上述の周波数掃引
の動作を説明する。光源13は、図2の(c)に示すよ
うに周波数f0 の連続光を発生している。光パルス変調
器14は、制御装置19から出力される、(a)に示す
ようなパルス信号(パルス幅Tp ,周期Ts )で上記連
続光にパルス変調をかけて、(d)に示すように周波数
0 ,パルス幅Tp の光パルスを発生する。この光パル
スは光結合器16及び波形整形器17を経由してAOM
4に入射される。
The operation of the above-described frequency sweep will now be described with reference to FIG. The light source 13 generates continuous light having a frequency f 0 as shown in FIG. The optical pulse modulator 14 applies pulse modulation to the continuous light with a pulse signal (pulse width Tp, cycle Ts) as shown in FIG. An optical pulse having a frequency f 0 and a pulse width Tp is generated. This optical pulse is transmitted through the optical coupler 16 and the waveform shaper 17 to the AOM.
4 is incident.

【0018】AOM4は、駆動信号源5からの駆動信号
(周波数f)で駆動されており、入射した光パルスを非
回折光と回折光に分岐して出射する。この初めに出射さ
れた非回折光と回折光の周波数は、図2の(e),
(f)のに示すように、それぞれf0 ,f0 +fとな
る。そして、AOM4から出射された回折光の光パルス
は、帰還路15を経由してAOM4に再度入射され(光
ループ路を1回周回する)て、AOM4から再度出射
(2回目)される。この2回目に出射された非回折光と
回折光の周波数は、(e),(f)のに示すように、
それぞれf0 +f,f0 +2fとなる。さらに続いて、
光パルスが光ループ路を上記のように周回すると、その
周回毎に、非回折光と回折光の周波数は、(e),
(f)の,,に示すように、それぞれfずつ大き
くなる。
The AOM 4 is driven by a drive signal (frequency f) from the drive signal source 5, and splits an incident light pulse into undiffracted light and diffracted light and emits the same. The frequencies of the undiffracted light and the diffracted light emitted first are shown in FIG.
As shown in (f), they are f 0 and f 0 + f, respectively. Then, the optical pulse of the diffracted light emitted from the AOM 4 enters the AOM 4 again via the return path 15 (circulates the optical loop path once), and is emitted again from the AOM 4 (second time). The frequencies of the undiffracted light and the diffracted light emitted this second time are, as shown in (e) and (f),
They are f 0 + f and f 0 + 2f, respectively. Further on,
When the optical pulse circulates around the optical loop path as described above, the frequency of the undiffracted light and the frequency of the diffracted light become (e),
As shown in (f) and (f), each of them increases by f.

【0019】そして、上記の次に周回してAOM4に
入射された光パルスは、(e)のに示すように、非回
折光としてのみ(回折光の発生はない)出射される。す
なわち、1回目の掃引(t0 から開始)は、〜の期
間で終了し、においては、光ループ路に残存してい
て、次の掃引(t3 から開始)に不要な光パルスを放出
している。このために、制御装置19は、(b)に示す
ような制御信号によって駆動信号源5を制御して、t2
〜t3 の期間はAOM4に駆動信号が供給されないよう
にしている。なお、t0 〜t2 の期間は、AOM4に駆
動信号が供給されている。以上のような動作を繰り返し
て、2回目、3回目・・の周波数掃引が行われる。
Then, the light pulse that has entered the AOM 4 while circulating next to the above is emitted only as non-diffracted light (no generation of diffracted light) as shown in FIG. In other words, the first sweep (starting from t 0 ) ends in the period of 、, and in に お い て, the unnecessary light pulse remaining in the optical loop path and emitted in the next sweep (starting from t 3 ) is emitted. ing. For this, the controller 19 controls the driving signal source 5 by a control signal as shown in (b), t 2
Period ~t 3 is as the drive signal is not supplied to the AOM4. Note that the drive signal is supplied to the AOM 4 during the period from t 0 to t 2 . By repeating the above operation, the second, third,... Frequency sweep is performed.

【0020】なお、光パルスのパルス幅Tp は光ループ
路の光伝搬時間以下の時間幅でなければならない。図2
の(e),(f)に示したものは、パルス幅Tp と光伝
搬時間とを等しくして、擬似的な連続光にした例であ
る。パルス幅Tp と光伝搬時間とを等しくする方法とし
ては、パルス幅Tp を調整するか、又は帰還路15に光
ファイバを付加(又は長さ変更)することによって光伝
搬時間を調整する方法等がある。このようにして、参照
光と測定光とが階段状に周波数掃引されて、光分岐回路
18及びAOM4からそれぞれ出射される。
The pulse width Tp of the light pulse must be less than the light propagation time of the optical loop. FIG.
(E) and (f) show examples in which the pulse width Tp is made equal to the light propagation time to make pseudo continuous light. As a method of making the pulse width Tp equal to the light propagation time, there is a method of adjusting the pulse width Tp or adjusting the light propagation time by adding (or changing the length of) an optical fiber to the return path 15. is there. In this way, the reference light and the measurement light are frequency-swept in a stepwise manner and emitted from the optical branch circuit 18 and the AOM 4, respectively.

【0021】参照光と、被測定物6を透過してきた測定
光は、光結合器8及び光電変換器9で構成される光干渉
手段7へ入射されて、周波数fの電気的なビート信号に
変換され出力される。振幅検出器10は、このビート信
号を検波して被測定物の振幅特性を検出する。また、位
相比較器11は、このビート信号と駆動信号(周波数
f)との位相比較を行って、被測定物の位相特性を検出
する。したがって、以上説明したような光伝送特性測定
装置であれば、図4(b)に示すファブリ・ペロ共振器
の急峻な特性についても、容易かつ正確に測定すること
ができる。
The reference light and the measurement light transmitted through the device under test 6 are incident on an optical interference means 7 composed of an optical coupler 8 and a photoelectric converter 9 and are converted into an electric beat signal of a frequency f. Converted and output. The amplitude detector 10 detects the beat signal and detects the amplitude characteristic of the device under test. Further, the phase comparator 11 performs a phase comparison between the beat signal and the drive signal (frequency f) to detect a phase characteristic of the device under test. Therefore, with the optical transmission characteristic measuring apparatus described above, the steep characteristic of the Fabry-Perot resonator shown in FIG. 4B can be easily and accurately measured.

【0022】なお、図1の実施例においては、光パルス
発生手段12が光源13と光パルス変調器14で構成さ
れるようにしたが、これに限定されるものではなく、パ
ルス信号で直に光パルスを発生させる光パルス発生器で
あってもよい。また、上記実施例では、周波数を順次増
大する例を示したが、順次減少させる場合には、回折光
として前述の−1次光を用いるようにすればよい。
In the embodiment shown in FIG. 1, the light pulse generating means 12 is constituted by the light source 13 and the light pulse modulator 14. However, the present invention is not limited to this. An optical pulse generator that generates an optical pulse may be used. Further, in the above-described embodiment, an example in which the frequency is sequentially increased has been described. However, in the case of sequentially decreasing the frequency, the above-described -1st-order light may be used as the diffracted light.

【0023】また、上記実施例では、被測定物6の振幅
・位相特性を測定する場合について説明したが、反射特
性の測定を行う場合には、図5に示すように、AOM4
と被測定物6との間に光方向性結合器20を付加すれば
よい。さらに、上記実施例では、非回折光を測定光に、
回折光を参照光として用いるようにしたが、その逆であ
ってもよい。
In the above embodiment, the case where the amplitude / phase characteristics of the DUT 6 are measured has been described. However, when the reflection characteristics are measured, as shown in FIG.
An optical directional coupler 20 may be added between the device and the device under test 6. Further, in the above embodiment, the undiffracted light is used as the measurement light,
Although the diffracted light is used as the reference light, the reverse may be used.

【0024】[0024]

【発明の効果】周波数掃引中の周波数は、光パルスに含
まれる固定の光周波数を基準にして、音響光学変調器
(AOM)の駆動周波数fの整数倍となるために、掃引
中の相対的な周波数確度を駆動周波数fの確度と同等の
数Hzと高くすることができた。そして、光パルス発生
手段に基準光源を使用することにより、絶対確度は1.
5μm帯で10MHz以下にできた。その結果、周波数
の再現性、安定性も優れたものとなった。
The frequency during the frequency sweep is an integer multiple of the drive frequency f of the acousto-optic modulator (AOM) with respect to the fixed optical frequency included in the light pulse. The frequency accuracy was as high as several Hz equal to the accuracy of the drive frequency f. By using a reference light source for the light pulse generation means, the absolute accuracy is 1.
10 MHz or less was achieved in the 5 μm band. As a result, frequency reproducibility and stability were also excellent.

【0025】また、掃引時間は、主に光パルスの光ルー
プ路を周回する時間で決まるために、従来の20秒/2
0GHzに対して、20m秒/20GHzと高速にする
ことができた。なお、この掃引時間は、音響光学変調器
の駆動周波数を10MHz、光ループ路の光路長を3k
m(帰還路の光ファイバ長は約2km)とした場合の値
である。また、音響光学変調器に周波数シフト手段と分
岐手段とを兼ねさせることで、周波数掃引に必要な回折
光はもちろん、非回折光も有効に利用することができ、
その結果、参照光と測定光とを同時に音響光学変調器で
発生させることができた。
The sweep time is determined mainly by the time required for the optical pulse to circulate in the optical loop path.
The speed could be increased to 20 ms / 20 GHz with respect to 0 GHz. In this sweep time, the driving frequency of the acousto-optic modulator is 10 MHz, and the optical path length of the optical loop is 3 k.
m (the optical fiber length of the return path is about 2 km). In addition, by making the acousto-optic modulator serve both as a frequency shift unit and a branching unit, not only diffracted light required for frequency sweeping but also undiffracted light can be effectively used,
As a result, the reference light and the measurement light could be simultaneously generated by the acousto-optic modulator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す光伝送特性測定装置
のブロック図、
FIG. 1 is a block diagram of an optical transmission characteristic measuring apparatus showing one embodiment of the present invention;

【図2】 本発明の各部の動作状態を示すタイミング
図、
FIG. 2 is a timing chart showing an operation state of each unit of the present invention;

【図3】 従来例を示すブロック図、FIG. 3 is a block diagram showing a conventional example;

【図4】 ファブリ・ペロ共振器の構成とその特性を示
す図、
FIG. 4 is a diagram showing a configuration and characteristics of a Fabry-Perot resonator;

【図5】 本発明の他の実施例を示す図。FIG. 5 is a view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4・・・・音響光学変調器(AOM)、5・・・・駆動信号源、
6・・・・被測定物、7・・・・光干渉手段、8,16・・・・光結
合器、9・・・・光電変換器、10・・・・振幅検出器、11・・
・・位相比較器、12・・・・光パルス発生手段、13・・・・光
源、14・・・・光パルス変調器、15・・・・帰還路、17・・
・・波形整形器、18・・・・光分岐回路、19・・・・制御装
置、20・・・・光方向性結合器。
4... Acousto-optic modulator (AOM), 5... Drive signal source,
6... DUT, 7... Optical interference means, 8, 16... Optical coupler, 9... Photoelectric converter, 10... Amplitude detector, 11.
..Phase comparator, 12 ... light pulse generating means, 13 ... light source, 14 ... light pulse modulator, 15 ... feedback path, 17 ...
..Waveform shaper, 18 optical branch circuit, 19 control device, 20 optical directional coupler.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01J 9/02 G01M 11/00 G01B 9/02 G02F 2/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01J 9/02 G01M 11/00 G01B 9/02 G02F 2/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 参照光と被測定物を経由した測定光とか
ら被測定物の伝送特性を測定する光伝送特性測定装置に
おいて、 光パルスを発生する光パルス発生手段(12)と、前記光パルスを入力として周回させ、その光量の一部を
出力する1入力2出力の光ループ路にして、前記光パル
スを該光ループ路に入力するための光結合器(16)
と、前記光ループ路を周回する光パルスに対して回折に
よる周波数シフトを与えると共に非回折光を前記光ルー
プ路から出力する音響光学変調器(4)と、前記光ルー
プ路を周回する光パルスの光量の一部を該光ループ路か
ら出力する光分岐手段(18)と、前記光ループ路中の
任意の位置に配設され該光ループ路を周回する光パルス
に対して光量の損失を補う波形整形器(17)とを含
む、前記光ループ路と、 該光ループ路の2つの出力の一方が前記被測定物を経由
した測定光と前記2つの出力の他方である参照光 との干
渉を得る光干渉手段(7)とを備えたことを特徴とする
光伝送特性測定装置。
1. An optical transmission characteristic measuring device for measuring a transmission characteristic of a device under test from a reference light and a measuring beam passing through the device under test, comprising: an optical pulse generating means (12) for generating a light pulse; The pulse rotates as an input, and a part of the light amount is
A 1-input 2-output optical loop path for output
Optical coupler for inputting a signal to the optical loop path (16)
Diffracts the light pulse circling the optical loop path.
Frequency shift and undiffracted light
An acousto-optic modulator (4) for outputting from the loop,
A part of the light amount of the light pulse circling the loop
An optical branching means (18) for outputting the light from the optical loop path;
An optical pulse disposed at an arbitrary position and circulating through the optical loop path
And a waveform shaper (17) that compensates for the loss of light amount.
The optical loop path and one of two outputs of the optical loop path pass through the device under test.
<br/> optical transmission characteristic measuring apparatus characterized by comprising an optical interference means (7) and the measuring light to obtain interference with other a is the reference light of the two outputs.
JP15136093A 1993-05-28 1993-05-28 Optical transmission characteristics measurement device Expired - Fee Related JP3354630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15136093A JP3354630B2 (en) 1993-05-28 1993-05-28 Optical transmission characteristics measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15136093A JP3354630B2 (en) 1993-05-28 1993-05-28 Optical transmission characteristics measurement device

Publications (2)

Publication Number Publication Date
JPH06341907A JPH06341907A (en) 1994-12-13
JP3354630B2 true JP3354630B2 (en) 2002-12-09

Family

ID=15516846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15136093A Expired - Fee Related JP3354630B2 (en) 1993-05-28 1993-05-28 Optical transmission characteristics measurement device

Country Status (1)

Country Link
JP (1) JP3354630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105660A (en) * 2004-10-01 2006-04-20 National Institute Of Advanced Industrial & Technology Circuit characteristic measuring apparatus having port extending device

Also Published As

Publication number Publication date
JPH06341907A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
US5844235A (en) Optical frequency domain reflectometer for use as an optical fiber testing device
US4551019A (en) Measuring chromatic dispersion of fibers
US6008487A (en) Optical-fiber inspection device
JP5148420B2 (en) Optical fiber testing equipment
US6856723B1 (en) Group velocity dispersion measuring device and group velocity dispersion measuring method
JP3070880B2 (en) Backscattered light measuring device
JP3075433B2 (en) Optical frequency domain reflectometer
JP3354630B2 (en) Optical transmission characteristics measurement device
EP0275974A2 (en) Methods of and apparatus for measuring the frequency response of optical detectors
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JP2009236813A (en) Brillouin scattering measuring device
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JPH05322695A (en) Light pulse tester
JP3243774B2 (en) Optical frequency domain reflection measurement method and measurement circuit
JP2972885B1 (en) Optical fiber dispersion measurement method
JPH06112572A (en) Optical resonator and optical frequency weeping light source
JP3088031B2 (en) Optical pulse tester
JPH0522216B2 (en)
JPH09133585A (en) Optical pulse train measuring method
JP3537372B2 (en) Variable spectral linewidth light source device
JPH03123828A (en) Instrument and method for measuring characteristic of optical phase modulator
JP3453746B2 (en) Optical fiber inspection equipment
JPH08184502A (en) Light waveform measuring equipment
JP3078632B2 (en) Optical pulse tester
JP2000329649A (en) Apparatus for measuring polarization dependent loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees