JPH08184502A - Light waveform measuring equipment - Google Patents

Light waveform measuring equipment

Info

Publication number
JPH08184502A
JPH08184502A JP6338582A JP33858294A JPH08184502A JP H08184502 A JPH08184502 A JP H08184502A JP 6338582 A JP6338582 A JP 6338582A JP 33858294 A JP33858294 A JP 33858294A JP H08184502 A JPH08184502 A JP H08184502A
Authority
JP
Japan
Prior art keywords
signal
light
output
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6338582A
Other languages
Japanese (ja)
Inventor
Madoka Hamada
圓 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP6338582A priority Critical patent/JPH08184502A/en
Publication of JPH08184502A publication Critical patent/JPH08184502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To realize measurement of light waveform with a high S/N ratio by performing heterodyne detection for detecting the beat of the output light from a nonlinear optical element and a local oscillation light of oscillation frequency in order to detect the mixture of four light waves from the output light of the nonlinear optical element. CONSTITUTION: A light waveform measuring circuit comprises a local oscillation light source 14, a polarization controller 15, an optical coupler 16, a band-pass filter(BPF) 17, and a squaring unit 18, as a specific constitution. An output light from a nonlinear optical element 10 controlled by a polarization controller 13 is coupled through an optical coupler 16 with an output light from the local oscillation light source 14 controlled by the polarization controller 15, and five types of light are transduced through an opto-electric transducer 11. The mixture 10a of four light waves is detected by means of a BPF 17 for the frequency band δ [Hz] of the mixed light 10a and a local oscillation light 14a. Since deterioration of S/N due to the optical filter is avoided through heterodyne detection, the light waveform can be measured well at a high speed while reducing the averaging operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主に超高速光通信を
実現するシステムの機能回路、素子、材料等の高速伝送
特性を評価する光波形測定方法についてのものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to an optical waveform measuring method for evaluating high speed transmission characteristics of functional circuits, elements, materials and the like of a system for realizing ultra high speed optical communication.

【0002】[0002]

【従来の技術】次に従来技術による超高速光波形測定装
置の構成を図2に示す。図2の1・2は信号発生器、3
はミキサ、4は信号光源、5・8・13は偏波制御器、
6は被測定物(以下、DUTという。)、7はパルス光
源、9は光カプラ、10は非線形光学素子、11は光電
気変換器、12は表示部、20は光フィルタである。D
UT6は、例えば光導波路、光スイッチ、光フィルタ、
光回路あるいは光源を含む回路などである。
2. Description of the Related Art Next, FIG. 2 shows the configuration of an ultrahigh-speed optical waveform measuring device according to the prior art. 2, 1 and 2 are signal generators and 3
Is a mixer, 4 is a signal light source, 5 / 8.13 is a polarization controller,
Reference numeral 6 is an object to be measured (hereinafter referred to as DUT), 7 is a pulse light source, 9 is an optical coupler, 10 is a nonlinear optical element, 11 is a photoelectric converter, 12 is a display unit, and 20 is an optical filter. D
The UT 6 is, for example, an optical waveguide, an optical switch, an optical filter,
An optical circuit or a circuit including a light source.

【0003】図2で、信号発生器1は高速な繰り返し周
波数f0 [Hz]の電気信号を発生する。信号光源4は信号
発生器1の出力を入力とし、繰り返し周波数f0 [Hz]の
光信号4aを出力する。信号光源4の発振周波数はνS
[Hz]であるとする。
In FIG. 2, the signal generator 1 generates an electric signal having a high repetition frequency f 0 [Hz]. The signal light source 4 receives the output of the signal generator 1 and outputs an optical signal 4a having a repetition frequency f 0 [Hz]. The oscillation frequency of the signal light source 4 is ν S
[Hz].

【0004】信号発生器2はごく低速な繰り返し周波数
△f[Hz]の電気信号を発生する。ミキサ3は信号発生器
1と信号発生器2の2つの繰り返し周波数の差f0 −△
f[Hz]の周波数の電気信号を生成する。パルス光源7は
信号発生器2の出力を入力とし、繰り返し周波数f0
△f[Hz]のパルス光7aを出力する。パルス光源7aの
発振周波数はνP [Hz]であるとする。
The signal generator 2 generates an electric signal having a very low repetition frequency Δf [Hz]. The mixer 3 has a difference f 0 −Δ between the two repetition frequencies of the signal generator 1 and the signal generator 2.
An electric signal having a frequency of f [Hz] is generated. The pulse light source 7 receives the output of the signal generator 2 as input, and the repetition frequency f 0
The pulsed light 7a of Δf [Hz] is output. The oscillation frequency of the pulse light source 7a is assumed to be ν P [Hz].

【0005】パルス光源7の光信号7aは偏波制御器8
を介して光カプラ9に入力し、信号光源4の光信号4a
は偏波制御器5を介してDUT6に入力し、DUT6の
出力が光カプラ9に入力して合波される。偏波制御器5
・8は非線形光学素子10の4光波混合光生成効率が最
大となるように入射両光の偏光状態を制御するためのも
のである。
The optical signal 7a of the pulse light source 7 is a polarization controller 8
Input to the optical coupler 9 via the optical signal 4a of the signal light source 4
Is input to the DUT 6 via the polarization controller 5, and the output of the DUT 6 is input to the optical coupler 9 and multiplexed. Polarization controller 5
Numeral 8 is for controlling the polarization states of both incident lights so that the four-wave mixing light generation efficiency of the nonlinear optical element 10 is maximized.

【0006】非線形光学素子10は光カプラ9の出力を
入力とし、信号光4aとパルス光7aが同時に存在する
ときのみ発振周波数2νP −νS の4光波混合光10a
と発振周波数2νS −νP の4光波混合光10bを発生
する。
The nonlinear optical element 10 receives the output of the optical coupler 9 as an input, and only when the signal light 4a and the pulsed light 7a are present at the same time, the four-wave mixed light 10a having an oscillation frequency of 2ν PS is generated.
And four-wave mixed light 10b having an oscillation frequency of 2ν S −ν P is generated.

【0007】4光波混合光10a・10bの繰り返し周
波数は、パルス光7aと同じくf0−△f[Hz]となる。
また、4光波混合光10aの光強度はパルス光7aの光
強度の2乗と信号光4aの光強度との積に比例するの
で、パルス光7aの光強度を一定に保てば、4光波混合
光10aの光強度は信号光4aの光強度に比例する。
The repetition frequency of the four-wave mixed lights 10a and 10b is f 0 -Δf [Hz] as in the pulsed light 7a.
Further, since the light intensity of the four-wave mixed light 10a is proportional to the product of the square of the light intensity of the pulsed light 7a and the light intensity of the signal light 4a, if the light intensity of the pulsed light 7a is kept constant, the The light intensity of the mixed light 10a is proportional to the light intensity of the signal light 4a.

【0008】非線形光学素子10の出力光は、偏波制御
器13を介して光フィルタ20に入力し、4光波混合光
10a以外の信号光4a、パルス光7aおよび4光波混
合光10bを除去する。偏波制御器13は光フィルタ2
0の偏光特性に合うように非線形光学ソし0の出力光の
偏光状態を制御するためのものである。すなわち、図2
で、DUT6の高速光伝送特性は、信号光路上のDUT
6の有無による信号波形の変化により評価される。
The output light of the non-linear optical element 10 is input to the optical filter 20 via the polarization controller 13, and the signal light 4a other than the four-wave mixing light 10a, the pulsed light 7a and the four-wave mixing light 10b are removed. . The polarization controller 13 is the optical filter 2
This is for controlling the polarization state of the output light of 0 through non-linear optics so as to match the polarization property of 0. That is, FIG.
Therefore, the high-speed optical transmission characteristics of the DUT6 are as follows:
It is evaluated by the change of the signal waveform depending on the presence or absence of 6.

【0009】次に図2の各部の出力光のパワーと発振周
波数の関係を図3に示す。図3Aは光カプラ9の出力光
であり、信号光4aの発振周波数νS とパルス光7aの
発振周波数νP は例としてνS >νP としたが、νS
νP でもよい。図3Bは非線形光学素子10の出力光で
あり、光カプラ9の出力光を入力することにより、信号
光4aとパルス光7aの両脇に4光波混合光10a・1
0bが生じる。図3Cは光フィルタ20の出力光であ
り、光フィルタ20により2つの4光波混合光のうちで
出力光レベルの大きい10aのみを通過させた最終光出
力である。光フィルタ20の出力光は光電気変換器11
に入力され、光電気変換されて表示部12に表示され
る。
Next, FIG. 3 shows the relationship between the power of the output light from each part of FIG. 2 and the oscillation frequency. Figure 3A is the output light of the optical coupler 9, the oscillation frequency [nu P of the oscillation frequency [nu S and pulsed light 7a of the signal light 4a is set to ν S> ν P as an example, [nu S <
It may be ν P. FIG. 3B shows the output light of the nonlinear optical element 10. By inputting the output light of the optical coupler 9, the four-wave mixed light 10a.1 is provided on both sides of the signal light 4a and the pulsed light 7a.
0b occurs. FIG. 3C shows the output light of the optical filter 20, which is the final optical output of the optical filter 20 which passes only 10a having a high output light level of the two four-wave mixed lights. The output light of the optical filter 20 is the photoelectric converter 11
Is input to the display unit 12, is photoelectrically converted, and is displayed on the display unit 12.

【0010】次に、信号光4aとパルス光7aの時間に
対する相対位置を図5に示す。両光の相対位置は繰り返
し周期ごとに△t=△f/f0 2だけずれ、△fの周期が
経過すると再び両光の相対位置が一致する。したがっ
て、信号発生器2の△fの出力信号をトリガにして、両
光の相互作用光である4光波混合光10aの光強度すな
わち光電気変換器11の出力信号を波形再生すれば、図
6に示すような光波形の包絡線が得られ、信号光波形の
時間軸はf0 /△f倍に拡大されて光電気変換器11の
帯域に制限されることなく超高速信号光波形を観測でき
る。
Next, FIG. 5 shows the relative positions of the signal light 4a and the pulsed light 7a with respect to time. The relative positions of the two lights are deviated by Δt = Δf / f 0 2 for each repeating cycle, and after the period of Δf elapses, the relative positions of the two lights match again. Therefore, if the output signal of Δf of the signal generator 2 is used as a trigger to reproduce the light intensity of the four-wave mixing light 10a which is the interaction light of both lights, that is, the output signal of the photoelectric converter 11, the waveform is reproduced. The envelope of the optical waveform as shown in Fig. 4 is obtained, and the time axis of the signal optical waveform is expanded to f 0 / Δf times to observe the ultrahigh-speed signal optical waveform without being limited to the band of the photoelectric converter 11. it can.

【0011】[0011]

【発明が解決しようとする課題】図3Bで、信号光4a
とパルス光7aおよび4光波混合光10a・10bの周
波数は接近しており、通常、その分離のための光フィル
タ20には分光器が用いられる。しかし、分光器を挿入
することにより、出力される4光波混合光10aは損失
を生じ、そのレベルは入力レベルの約0.1倍程度にな
る。もともと非線形光学現象は低生成効率であるので得
られる光強度はさらに微弱となり、SN比が劣化するた
め、実用上は平均化処理によりSN比を良くしている。
この発明は4光波混合光10aをヘテロダイン検波する
ことにより、SN比の良い光波形測定を行う装置を提供
することを目的とする。
In FIG. 3B, the signal light 4a is used.
The frequencies of the pulsed light 7a and the four-wave mixed light 10a and 10b are close to each other, and a spectroscope is usually used as the optical filter 20 for separating them. However, the insertion of the spectroscope causes a loss in the output four-wave mixed light 10a, and its level becomes about 0.1 times the input level. Originally, since the nonlinear optical phenomenon has a low generation efficiency, the obtained light intensity becomes weaker and the SN ratio deteriorates. Therefore, the SN ratio is practically improved by the averaging process.
An object of the present invention is to provide an apparatus for performing an optical waveform measurement with a good SN ratio by performing heterodyne detection on the four-wave mixed light 10a.

【0012】[0012]

【課題を解決するための手段】この目的を達成するた
め、この発明は、繰り返し周波数f0 [Hz]の電気信号を
発生する信号発生器1と、繰り返し周波数Δf[Hz]の電
気信号を発生する信号発生器2と、信号発生器1と信号
発生器2の出力を入力とし、繰り返し周波数f0−Δf
[Hz]の電気信号を生成するミキサ3と、信号発生器1の
出力を入力とし、繰り返し周波数f0 [Hz]の光信号を出
射する発振周波数νS [Hz]の信号光源4と、信号光源4
の出射光信号を入力とし、偏波状態を制御して被測定物
6に入力する偏波制御器5と、ミキサ3の出力を入力と
し、繰り返し周波数f0 −Δf[Hz]の光パルス信号を出
射する発振周波数νP [Hz]のパルス光源7と、パルス光
源7の出射光パルス信号を入力とし、偏波状態を制御す
る偏波制御器8と、被測定物6からの出力光信号と偏波
制御器8からの出射光パルス信号を合波する光カプラ9
と、光カプラ9の合波光信号を入力とし、入力合波光信
号の一部を発振周波数2νP −νS [Hz]、2νS −νP
[Hz]の4光波混合光に変換し、入力合波光信号の大部分
と4光波混合光を出力する非線形光学素子10と、非線
形光学素子10の出力光を入力とし、偏波状態を制御す
る偏波制御器13と、非線形光学素子10の出力光より
発振周波数2νP −νS [Hz]の4光波混合光のみを入力
し、光強度を電気信号に変換する光電気変換器11と、
信号発生器2の出力信号をトリガとして光電気変換器1
1の出力電気信号を測定表示する表示部12を備える光
波形測定装置において、発振周波数νL =2νP −νS
+δ[Hz]の局発光源14と、局発光源14の出射光を入
力し、偏波状態を制御する偏波制御器15と、偏波制御
器13と偏波制御器14の出力光を合波し、光電気変換
器11に出力する光カプラ16と、光電気変換器11の
出力電気信号からδ[Hz]帯の電気信号を検波するバンド
パスフィルタ17と、バンドパスフィルタ17の出力電
気信号を2乗し、表示部12に出力する2乗器18を備
える。
In order to achieve this object, the present invention provides a signal generator 1 for generating an electric signal having a repetition frequency f 0 [Hz] and an electric signal having a repetition frequency Δf [Hz]. The signal generator 2 and the outputs of the signal generator 1 and the signal generator 2 as input, and the repetition frequency f 0 −Δf
A mixer 3 for generating an electric signal of [Hz], a signal light source 4 of an oscillating frequency ν S [Hz] for receiving an output of the signal generator 1 and emitting an optical signal of a repetition frequency f 0 [Hz], and a signal. Light source 4
The optical pulse signal having the repetition frequency f 0 -Δf [Hz] as the input, the polarization controller 5 for controlling the polarization state and inputting it to the DUT 6 and the output of the mixer 3 as the input. Pulsed light source 7 having an oscillation frequency of ν P [Hz], a polarization controller 8 that controls the polarization state by using the output light pulse signal of the pulsed light source 7, and an output optical signal from the DUT 6. And an optical coupler 9 for combining the optical pulse signals emitted from the polarization controller 8
And an input of the combined optical signal of the optical coupler 9, and a part of the input combined optical signal is oscillated at a frequency of 2ν P −ν S [Hz], 2ν S −ν P.
Non-linear optical element 10 that converts into four-wave mixed light of [Hz] and outputs most of the input combined optical signal and four-wave mixed light, and the output light of non-linear optical element 10 as input, and controls the polarization state A polarization controller 13, an opto-electric converter 11 for converting only the four-wave mixed light having an oscillation frequency of 2ν P −ν S [Hz] from the output light of the nonlinear optical element 10, and converting the light intensity into an electric signal.
The photoelectric converter 1 using the output signal of the signal generator 2 as a trigger
In the optical waveform measuring device provided with the display unit 12 for measuring and displaying the output electric signal of No. 1, the oscillation frequency ν L = 2ν P −ν S
A local light source 14 of + δ [Hz], a polarization controller 15 for inputting the outgoing light of the local light source 14 and controlling the polarization state, and an output light of the polarization controller 13 and the polarization controller 14. The optical coupler 16 which combines and outputs to the opto-electric converter 11, the band pass filter 17 which detects the δ [Hz] band electric signal from the output electric signal of the opto-electric converter 11, and the output of the band pass filter 17 A squarer 18 that squares an electric signal and outputs the squared electric signal to the display unit 12 is provided.

【0013】[0013]

【作用】非線形光学素子10の出力光より必要とする4
光波混合光10aを検波するため、非線形光学素子10
の出力光と発振周波数νL の局発光14aのビート光を
検出するヘテロダイン検波を行う。
[Function] 4 required from the output light of the nonlinear optical element 10
In order to detect the light wave mixed light 10a, the nonlinear optical element 10
Output light and the beat light of the local light 14a having the oscillation frequency ν L are detected by heterodyne detection.

【0014】[0014]

【実施例】次に、この発明による光波形測定回路の構成
図を図1に示す。図1の14は局発光源、15は偏波制
御器、16は光カプラ、17はバンドパスフィルタ(以
下、BPFという。)、18は2乗器であり、他は図2
と同じである。すなわち、図1の構成は、局発光源14
と局発光源14の出力光14aを入力する偏波制御器1
5と、光フィルタ20のかわりに挿入して偏波制御器1
3と偏波制御器15の出力を合波する光カプラ16を備
え、光電気変換器11により変換された電気信号のうち
4光波混合光10aをBPF17で検波する。
1 is a block diagram of an optical waveform measuring circuit according to the present invention. In FIG. 1, reference numeral 14 is a local light source, 15 is a polarization controller, 16 is an optical coupler, 17 is a bandpass filter (hereinafter referred to as BPF), 18 is a squarer, and others are shown in FIG.
Is the same as That is, the configuration of FIG.
And the polarization controller 1 for inputting the output light 14a of the local light source 14
5 and a polarization controller 1 inserted in place of the optical filter 20.
An optical coupler 16 that multiplexes the output of the polarization controller 15 and the output of the polarization controller 15 is provided, and the four-wave mixed light 10a of the electric signal converted by the photoelectric converter 11 is detected by the BPF 17.

【0015】次に、図1の構成による光波形測定装置に
おける各部の波形を図3と図4を参照して説明する。入
出力光は図3A・Bまでは図2の従来例と同じである。
偏波制御器13で制御された非線形光学素子10の出力
光は、偏波制御器15で制御された局発光源14の出力
光と光カプラ16で合波され、5種類の光が光電気変換
器11で変換され、図4に示すような波形となる。ここ
で、4光波混合光10aと局発光14aのビート周波数
δ[Hz]帯のBPF17で4光波混合光10aを検波す
る。
Next, the waveform of each part in the optical waveform measuring device having the configuration of FIG. 1 will be described with reference to FIGS. 3 and 4. The input / output light is the same as in the conventional example of FIG. 2 up to FIGS.
The output light of the nonlinear optical element 10 controlled by the polarization controller 13 is combined with the output light of the local light source 14 controlled by the polarization controller 15 by the optical coupler 16, and five kinds of light are optoelectrically converted. The waveform is converted by the converter 11 and has a waveform as shown in FIG. Here, the four-wave mixed light 10a is detected by the BPF 17 in the beat frequency δ [Hz] band of the four-wave mixed light 10a and the local light 14a.

【0016】非線形光学素子10としては、例えば1.
55μm零分散光ファイバを使用することができ、この
場合、パルス光7aの発振周波数νP を1.55μm零
分散光ファイバの零分散周波数に一致させた時、最大の
4光波混合光生成効率が得られる。また能動素子として
は進行波型LDアンプも非線形光学素子10として使用
できる。
As the non-linear optical element 10, for example, 1.
A 55 μm zero-dispersion optical fiber can be used. In this case, when the oscillation frequency ν P of the pulsed light 7a is matched with the zero-dispersion frequency of the 1.55 μm zero-dispersion optical fiber, the maximum four-wave mixing light generation efficiency is increased. can get. A traveling wave LD amplifier can also be used as the non-linear optical element 10 as an active element.

【0017】次に、光源類の実施例の構成図を図7に示
す。図7Aは信号光源4の実施例である。光源には狭線
幅で安定なDFB−LDを用いる。そして必要な信号波
形はマッハツェンダ導波路型光強度変調器等により生成
する。さらに、信号光強度を上げるためにエルビウムド
ープファイバアンプ(以下、EDFAという。)を用い
る。
Next, FIG. 7 shows a block diagram of an embodiment of the light sources. FIG. 7A shows an example of the signal light source 4. As the light source, a stable DFB-LD with a narrow line width is used. The necessary signal waveform is generated by a Mach-Zehnder waveguide type optical intensity modulator or the like. Further, an erbium-doped fiber amplifier (hereinafter referred to as EDFA) is used to increase the signal light intensity.

【0018】図7Bはパルス光源7の実施例である。モ
ードロック型のエルビウムドープファイバレーザ等が短
パルス光源として有効である。パルス光強度を上げるた
めにEDFAを用いる。なお短パルス光の発振周波数は
かなり広いものが多く、たとえば100G[Hz]幅とする
とB=107 [Hz]の場合、ヘテロダイン検波の感度は1
-4劣化するので、できるだけ光周波数幅の狭い短パル
ス光源を用いる注意が必要である。
FIG. 7B shows an embodiment of the pulse light source 7. A mode-lock type erbium-doped fiber laser or the like is effective as a short pulse light source. EDFA is used to increase the pulsed light intensity. Note that the oscillation frequency of short pulsed light is often quite wide. For example, if the width is 100 G [Hz] and B = 10 7 [Hz], the sensitivity of heterodyne detection is 1.
Since it deteriorates by 0 -4, it is necessary to be careful to use a short pulse light source whose optical frequency width is as narrow as possible.

【0019】図7Cは局発光源14の実施例である。4
光波混合光10aの発振周波数2νP −νS とδ[Hz]ず
らすために可変波長LDを使用して、発振周波数νL
制御する。
FIG. 7C shows an embodiment of the local light source 14. Four
A variable wavelength LD is used to shift the oscillation frequency 2ν P −ν S and δ [Hz] of the mixed light wave 10a to control the oscillation frequency ν L.

【0020】つぎに、図2の構成による直接検波方式と
図1の構成によるヘテロダイン検波方式のSN比を比較
する。光電気変換の受光感度は波長1.5μm帯ではほ
ぼ1であるとし、非線形光学素子10の出力4光波混合
光10aの光強度をPS とすると、図2に示す直接検波
方式の構成の場合、光フィルタ20の損失も考慮した光
電気変換器11の出力のSN比は、 SNRIM=PS 2/[100(in 2)B] ・・・(1) となる。ここで、in は入力換算雑音電流密度、Bは帯
域幅である。
Next, the SN ratios of the direct detection system having the configuration of FIG. 2 and the heterodyne detection system having the configuration of FIG. 1 will be compared. It is assumed that the photosensitivity of photoelectric conversion is almost 1 in the wavelength band of 1.5 μm, and the light intensity of the output four-wave mixed light 10a of the nonlinear optical element 10 is P S. In the case of the direct detection system configuration shown in FIG. , SN ratio of the output of the photoelectric converter 11 the loss of the optical filter 20 is also taken into consideration becomes SNR IM = P S 2 / [ 100 (i n 2) B] ··· (1). Here, i n is the input conversion noise current density, and B is the bandwidth.

【0021】これに対して図1のヘテロダイン検波方式
の場合、局発光14aの光強度が大きいために局発光1
4aによる散弾雑音が主雑音となり、BPF17の出力
のSN比は、 SNRH =PS /(eB) ・・・(2) となる。ただしeは素電荷1.6×10-19 Cである。
On the other hand, in the case of the heterodyne detection system shown in FIG.
The shot noise due to 4a becomes the main noise, and the SN ratio of the output of the BPF 17 is SNR H = P S / (eB) (2). However, e has an elementary charge of 1.6 × 10 −19 C.

【0022】ここで、比較のためにSN比が1となる4
光波混合光10aの光強度をそれぞれPIM、PH とする
と、 PH /PIM=e[B/(in 2)]1/2 /10 ・・・(3) となり、一般的な値としてB=107 [Hz]、in 2=10
-22 [ A2 /Hz] を代入すれば、 PH /PIM=5×10-6 となり、SNR=1となる4光波混合光10aの光強度
は、ヘテロダイン検波のほうが従来の構成による直接検
波よりも5×10-6倍小さくてよいことがわかる。
Here, for comparison, the SN ratio becomes 1 4
The light intensity of the light wave mixed light 10a respectively P IM, when the P H, P H / P IM = e [B / (i n 2)] 1/2 / 10 ··· (3) , and the typical value As B = 10 7 [Hz], i n 2 = 10
-22 Substituting [A 2 / Hz], the light intensity of P H / P IM = 5 × 10 -6 next, SNR = 1 become four-wave mixing light 10a is towards the heterodyne detection directly by conventional configuration It can be seen that it may be 5 × 10 −6 times smaller than the detection.

【0023】[0023]

【発明の効果】この発明によれば、光フィルタによるS
N劣化をヘテロダイン検波により回避するので、より少
ない平均化処理で良好な高速光波形測定を行うことがで
きる。
According to the present invention, the S by the optical filter is
Since N deterioration is avoided by heterodyne detection, good high-speed optical waveform measurement can be performed with less averaging processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来の実施例を示す構成図である。FIG. 2 is a configuration diagram showing a conventional embodiment.

【図3】図2の各部の出力光のパワーと発振周波数の関
係を示す図である。
FIG. 3 is a diagram showing the relationship between the output light power of each part of FIG. 2 and the oscillation frequency.

【図4】この発明による光カプラ16の合波光のパワー
と発振周波数の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the power of combined light and the oscillation frequency of the optical coupler 16 according to the present invention.

【図5】繰り返し周波数が△f(Hz)ずれている信号光と
パルス光の関係図である。
FIG. 5 is a relationship diagram between signal light and pulsed light whose repetition frequency is deviated by Δf (Hz).

【図6】サンプリングされた信号光の光波形である。FIG. 6 is an optical waveform of sampled signal light.

【図7】光源の実施例を示す構成図である。FIG. 7 is a configuration diagram showing an embodiment of a light source.

【符号の説明】[Explanation of symbols]

1・2 信号発生器 3 ミキサ 4 信号光源 5・8・13・15 偏波制御器 6 DUT 7 パルス光源 9・16 光カプラ 10 非線形光学素子 11 光電気変換器 12 表示部 14 局発光源 17 バンドパスフィルタ 18 2乗器 20 光フィルタ 1.2 Signal generator 3 Mixer 4 Signal light source 5/8 13/15 Polarization controller 6 DUT 7 Pulse light source 9/16 Optical coupler 10 Non-linear optical element 11 Photoelectric converter 12 Display section 14 Local light source 17 Band Pass filter 18 Squarer 20 Optical filter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/152 10/142 10/04 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical indication H04B 10/152 10/142 10/04 10/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 繰り返し周波数f0[Hz]の電気信号を発生
する第1の信号発生器1と、 繰り返し周波数Δf[Hz]の電気信号を発生する第2の信
号発生器2と、 第1の信号発生器1と第2の信号発生器2の出力を入力
とし、繰り返し周波数f0 −Δf[Hz]の電気信号を生成
するミキサ3と、 第1の信号発生器1の出力を入力とし、繰り返し周波数
0 [Hz]の光信号を出射する発振周波数νS [Hz]の信号
光源4と、 信号光源4の出射光信号を入力とし、偏波状態を制御し
て被測定物6に入力する第1の偏波制御器5と、 ミキサ3の出力を入力とし、繰り返し周波数f0 −Δf
[Hz]の光パルス信号を出射する発振周波数νP [Hz]のパ
ルス光源7と、 パルス光源7の出射光パルス信号を入力とし、偏波状態
を制御する第2の偏波制御器8と、 被測定物6からの出力光信号と第2の偏波制御器8から
の出射光パルス信号を合波する第1の光カプラ9と、 第1の光カプラ9の合波光信号を入力とし、入力合波光
信号の一部を発振周波数2νP −νS [Hz]、2νS −ν
P [Hz]の4光波混合光に変換し、入力合波光信号の大部
分と4光波混合光を出力する非線形光学素子10と、 非線形光学素子10の出力光を入力とし、偏波状態を制
御する第3の偏波制御器13と、 非線形光学素子10の出力光より発振周波数2νP −ν
S [Hz]の4光波混合光のみを入力し、光強度を電気信号
に変換する光電気変換器11と、 第2の信号発生器2の出力信号をトリガとして光電気変
換器11の出力電気信号を測定表示する表示部12を備
える光波形測定装置において、 発振周波数νL =2νP −νS +δ[Hz]の局発光源14
と、 局発光源14の出射光を入力し、偏波状態を制御する第
4の偏波制御器15と、 第3の偏波制御器13と第4の偏波制御器14の出力光
を合波し、光電気変換器11に出力する第2の光カプラ
16と、 光電気変換器11の出力電気信号からδ[Hz]帯の電気信
号を検波するバンドパスフィルタ17と、 バンドパスフィルタ17の出力電気信号を2乗し、表示
部12に出力する2乗器18を備えることを特徴とする
光波形測定装置。
1. A first signal generator 1 for generating an electric signal of a repetition frequency f 0 [Hz], a second signal generator 2 for generating an electric signal of a repetition frequency Δf [Hz], and a first signal generator 1. Of the signal generator 1 and the second signal generator 2 as inputs, and a mixer 3 for generating an electric signal having a repetition frequency f 0 -Δf [Hz] and an output of the first signal generator 1 as inputs. , The signal light source 4 having an oscillation frequency ν S [Hz] that emits an optical signal having a repetition frequency f 0 [Hz], and the optical signal emitted from the signal light source 4 are input, and the polarization state is controlled to the DUT 6. The first polarization controller 5 to be input and the output of the mixer 3 are input, and the repetition frequency f 0 −Δf
A pulsed light source 7 having an oscillation frequency ν P [Hz] that emits an optical pulse signal of [Hz], and a second polarization controller 8 that receives the emitted optical pulse signal of the pulsed light source 7 and controls the polarization state. , A first optical coupler 9 for multiplexing the output optical signal from the device under test 6 and the output optical pulse signal from the second polarization controller 8, and the combined optical signal of the first optical coupler 9 as input , Oscillation frequency 2ν P −ν S [Hz], 2ν S −ν
Non-linear optical element 10 that converts the four-wave mixed light of P [Hz] and outputs the most of the input combined optical signal and the four-wave mixed light, and controls the polarization state by using the output light of the non-linear optical element 10 as input From the output light of the third polarization controller 13 and the nonlinear optical element 10, the oscillation frequency 2ν P −ν
The opto-electric converter 11 that inputs only the four-wave mixed light of S [Hz] and converts the light intensity into an electric signal, and the output signal of the opto-electric converter 11 using the output signal of the second signal generator 2 as a trigger In an optical waveform measuring device including a display unit 12 for measuring and displaying a signal, a local light source 14 having an oscillation frequency ν L = 2ν P −ν S + δ [Hz]
And the output light of the third polarization controller 13 and the fourth polarization controller 14 for inputting the light emitted from the local light source 14 and controlling the polarization state. A second optical coupler 16 that combines and outputs to the photoelectric converter 11, a bandpass filter 17 that detects an electrical signal in the δ [Hz] band from an electrical signal output from the photoelectric converter 11, and a bandpass filter An optical waveform measuring device comprising a squarer 18 that squares the output electric signal of 17 and outputs the squared output to the display unit 12.
JP6338582A 1994-12-28 1994-12-28 Light waveform measuring equipment Pending JPH08184502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6338582A JPH08184502A (en) 1994-12-28 1994-12-28 Light waveform measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6338582A JPH08184502A (en) 1994-12-28 1994-12-28 Light waveform measuring equipment

Publications (1)

Publication Number Publication Date
JPH08184502A true JPH08184502A (en) 1996-07-16

Family

ID=18319537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6338582A Pending JPH08184502A (en) 1994-12-28 1994-12-28 Light waveform measuring equipment

Country Status (1)

Country Link
JP (1) JPH08184502A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1681542A1 (en) * 2005-01-17 2006-07-19 Fujitsu Limited Optical waveform measuring apparatus and optical waveform measuring method
JP2010171549A (en) * 2009-01-20 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical receiver, optical communication system, and heterodyne detection method
WO2010100745A1 (en) * 2009-03-05 2010-09-10 オリンパス株式会社 Photodetector device and photodetection method, and microscope and endoscope
US7848647B2 (en) * 2004-09-01 2010-12-07 Fujitsu Limited Optical switch and optical waveform monitoring device utilizing optical switch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848647B2 (en) * 2004-09-01 2010-12-07 Fujitsu Limited Optical switch and optical waveform monitoring device utilizing optical switch
US8311410B2 (en) 2004-09-01 2012-11-13 Fujitsu Limited Optical switch and optical waveform monitoring device utilizing optical switch
EP1681542A1 (en) * 2005-01-17 2006-07-19 Fujitsu Limited Optical waveform measuring apparatus and optical waveform measuring method
US7835643B2 (en) 2005-01-17 2010-11-16 Fujitsu Limited Optical waveform measuring apparatus and optical waveform measuring method
JP2010171549A (en) * 2009-01-20 2010-08-05 Nippon Telegr & Teleph Corp <Ntt> Optical receiver, optical communication system, and heterodyne detection method
WO2010100745A1 (en) * 2009-03-05 2010-09-10 オリンパス株式会社 Photodetector device and photodetection method, and microscope and endoscope
EP2253945A1 (en) * 2009-03-05 2010-11-24 Olympus Corporation Photodetector device and photodetection method, and microscope and endoscope
EP2253945A4 (en) * 2009-03-05 2012-04-11 Olympus Corp Photodetector device and photodetection method, and microscope and endoscope
JPWO2010100745A1 (en) * 2009-03-05 2012-09-06 オリンパス株式会社 Photodetection device and photodetection method, and microscope and endoscope
US8471193B2 (en) 2009-03-05 2013-06-25 Olympus Corporation Photodetection device for detecting low temporal coherence light, photodetection method, microscope and endoscope

Similar Documents

Publication Publication Date Title
US4708471A (en) Optical time-domain reflectometer using heterodyne reception
JP3391341B2 (en) Optical transmission line monitoring system, its monitoring device and its monitoring method
JP3481494B2 (en) Optical fiber characteristics measurement device
JP3306819B2 (en) Optical pulse tester
JPH0674867A (en) Optical network analyzer
JPH10115846A (en) Laser beam width measuring instrument using induction brillouin scattering
JPH08184502A (en) Light waveform measuring equipment
JP3239925B2 (en) Optical sampling optical waveform measurement device
JP3236661B2 (en) Optical pulse tester
JP3408789B2 (en) Method and apparatus for measuring backscattered light
JP3088031B2 (en) Optical pulse tester
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JPS6221035A (en) Tester for optical fiber
JP2731320B2 (en) Optical pulse tester
JP2008209214A (en) Light sampling apparatus
EP0325480A2 (en) Method and apparatus for optical signal analysis using a gated modulation source and an optical delay circuit to achieve a self-homodyne receiver
JP3196881B2 (en) Optical sampling optical waveform measurement method
JP2515018B2 (en) Backscattered light measurement method and device
JPH09133585A (en) Optical pulse train measuring method
JPH06268591A (en) Optical coherent communications equipment
JP3078632B2 (en) Optical pulse tester
JP3327416B2 (en) Optical pulse tester
JP3354630B2 (en) Optical transmission characteristics measurement device
JP2022032961A (en) Line monitoring system having heterodyne coherent detection
JPH07113722A (en) Wavelength dispersion measuring device for optical fiber