JPH07506773A - Medium temperature diffusion bonding - Google Patents

Medium temperature diffusion bonding

Info

Publication number
JPH07506773A
JPH07506773A JP6517068A JP51706894A JPH07506773A JP H07506773 A JPH07506773 A JP H07506773A JP 6517068 A JP6517068 A JP 6517068A JP 51706894 A JP51706894 A JP 51706894A JP H07506773 A JPH07506773 A JP H07506773A
Authority
JP
Japan
Prior art keywords
nickel
layer
gold
providing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6517068A
Other languages
Japanese (ja)
Inventor
ウイリアムス、ロナルド・エル
タイラ、ジョゼフ・ビー
Original Assignee
ヒューズ・エアクラフト・カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヒューズ・エアクラフト・カンパニー filed Critical ヒューズ・エアクラフト・カンパニー
Publication of JPH07506773A publication Critical patent/JPH07506773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • H01L27/1465Infrared imagers of the hybrid type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/27444Manufacturing methods by blanket deposition of the material of the layer connector in gaseous form
    • H01L2224/2745Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29169Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/8383Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 中間温度拡散接合 至咀a!亘 本発明は、物品の接合及び結合に係り、特には、拡散接合(diffusion  welding)方法に関する。[Detailed description of the invention] Medium temperature diffusion bonding To Tsui a! Wataru TECHNICAL FIELD The present invention relates to joining and bonding articles, and more particularly to diffusion bonding. (welding) method.

物品又は部材・部品同士を機械的、電気的又は熱的に接合する必要性は、非常に 広範な状況で生じ、多くの技術が開発されている。例えばマイクロ電子デバイス の製造において。There is a great need to mechanically, electrically or thermally connect articles or parts/components to each other. It occurs in a wide range of situations and many techniques have been developed. e.g. microelectronic devices In the manufacture of.

端子同士を機械的及び/又は電気的に接合したり、サブストラフチャ(subs tructure)同士を機械的に接合することがしばしば必要である。接合は 、既に存在しているマイクロ電子デバイスを損傷させることなく行わなければな らない。Connect terminals mechanically and/or electrically, or It is often necessary to mechanically join the structures. The joining is , must be done without damaging already existing microelectronic devices. No.

マイクロ電子デバイスにおけるそのような接合についての要求に対する最も普通 のアプローチは、部品同士を半田付けすることである。半田付けにおいては、融 点の低い純金属又は合金を接合すべき場所に提供する。鉛−スズ、鉛−インジウ ム及びインジウム半田が広く用いられている。鉛−スズ半田は、ハードウェアス トアーで入手可能ななじみのある半田であり、他の半田はより特殊な用途のため に作られたものである。接合すべき半田及び取り巻く領域を半田を溶融させるに 十分な温度に加熱し、これを接合すべき表面上を流動させる。加熱を止め、部品 を冷却する。部品が冷却するにつれ、半田が固化して部品同士を接合する。The most common requirements for such junctions in microelectronic devices The approach is to solder the parts together. In soldering, fusion Provide a pure metal or alloy with a low point at the location to be joined. Lead-tin, lead-indium aluminum and indium solders are widely used. Lead-tin solder is a hardware Familiar solders available at Tor; other solders are for more specialized applications. It was made in. Melt the solder and surrounding area to be joined. It is heated to a sufficient temperature and allowed to flow over the surfaces to be joined. Stop heating and remove parts. to cool down. As the parts cool, the solder solidifies and joins the parts together.

半田付けは広く用いられているが、い(つかの用途において欠点を有する。半田 を濡らし、接合すべき表面上を流動させるようにするために、半田が溶融する前 に接合すべき表面を清浄化するフラックスを用いることが通常必要である。フラ ックスは、しばしば、表面を清浄にする腐食性組成物であるが、また、マイクロ 電子部品に長期の損傷を引き起こし得る残渣を残す、また、接合すべき表面への 半田の付着を改善するために、半田付けを始める前に当該表面を酸でエツチング することも必要となり得る。エツチングに使用する酸は、同様に、マイクロ電子 デバイスの損傷をもたらし得る。さらに、接合後に高い強度を有する、マイクロ 電子用途に好適な低温半田は、知られていない。良好な半田接合を達成するため に、正確な温度及び雰囲気条件の使用を含む注意深いプロセス制御が要求される 。i&後に、半田の注意深い選択、接合すべき部品の適切な表面準備、及び精密 なプロセス制御をもってしても、強度を大幅に低下させるギャップやホールが最 終半田接合部に存在し得る。Although soldering is widely used, it has drawbacks in some applications. before the solder melts to wet it and allow it to flow over the surfaces to be joined. It is usually necessary to use a flux to clean the surfaces to be bonded. Hula Oxides are often corrosive compositions that clean surfaces, but they also clean micro- Leaves residues that can cause long-term damage to electronic components and does not damage surfaces to be joined. Etch the surface with acid before starting soldering to improve solder adhesion. It may also be necessary to The acid used for etching is similarly May result in damage to the device. In addition, the micro- Low temperature solders suitable for electronic applications are unknown. To achieve good solder joints requires careful process control, including the use of precise temperature and atmospheric conditions. . After careful selection of solder, proper surface preparation of the parts to be joined, and precision Even with advanced process controls, gaps and holes that significantly reduce strength are May be present at the final solder joint.

半田付けは、多くの用途にとって生き残れる接合技術であると期待される。他の 用途では、これらの欠点は、この技術を満足できないようなものにしている。そ のような用途において半田付けに取って代ることのできる改善された接合技術に 対するニーズがある0本発明は、このニーズを満たし、さらに関連する利点を提 供しようとするものである。Soldering is expected to be a viable joining technique for many applications. other In applications, these drawbacks make this technology unsatisfactory. So Improved joining techniques that can replace soldering in applications such as The present invention satisfies this need and also provides related advantages. This is what we are trying to provide.

i咀Q監翌 本発明は、2つの部材・部品同士を接合するための接合技術を提供するものであ る。この技術は、マイクロ電子産業において特に関心のあるものであるが、より 幅広い適用性を有する0本方法は、全体的に固体状態のものであり、部品・部材 も接合材料もプロセス中に溶融されることがない、接合過程において、表面エツ チングもフラックスも必要としない。Supervised by i Tsui Q The present invention provides a joining technology for joining two members/components. Ru. This technology is of particular interest in the microelectronic industry, but more The 0-piece method, which has wide applicability, is entirely in a solid state and can be used for parts and materials. During the bonding process, neither the bonding material nor the bonding material is melted during the process. No ching or flux required.

プロセス制御は、温度制御のみを要求するものであり、これは、普通、非常に正 確に行えるものである。好ましい最大プロセス温度は、高すぎる温度に熱せられ るとそれ自体ダメージを受ける多くのマイクロ電子デバイスにとって許容できる 加熱範囲にある。最終接合は、引張り及びクリープにおいて。Process control requires only temperature control, which is usually very accurate. It is certainly possible. The preferred maximum process temperature is is acceptable for many microelectronic devices that are themselves damaged by It's in the heating range. The final bond is in tension and creep.

従来の接合過程中に溶融される低温半田によって達成されるものよりもはるかに 強い。本発明の方法は、接合すべき表面同士をプレスする能力を必要とし、その 適用性は、プレスが可能であり許容されるような状況に制限される。much more than that achieved by low temperature solder that is melted during the traditional bonding process. strong. The method of the invention requires the ability to press the surfaces to be joined; Applicability is limited to situations where pressing is possible and permissible.

本発明によれば、2つの部材同士を接合するための方法は、接合すべき第1の部 材上に第1の接合表面を提供する工程を含む。この第1の接合表面は、第1の材 料の第1の領域、及び第1の材料の第1の領域上に形成(overlying  )され、第1の材料と異なる組成を有する第2の材料の第1の層を包含する。第 2の材料は、第1の材料上に接着性のコーティングを形成し、約125°Cない し約250°Cの温度で酸化に耐えるものである。この第2の材料は、約125 ℃未満の温度において第1の材料中への無視し得る固溶性を有し、約125°C を超える温度において第1の材料中への増加する有限の固溶性を有する。第2の 材料は、第1の材料と第2の材料とを互いに接合するに十分な第1の材料中への 相互拡散(interdiffusion)を約125°Cないし約250°C の温度で達成する。本発明の方法は、さらに、接合すべき第2の部材上に第2の 接合表面を提供することを含む、この第2の接合表面は、約125°Cないし約 250°Cの温度で酸化に耐える第3の材料で作られる。この第3の材料は、第 2の材料と第3の材料とを互いに接合するに十分な第2の材料中への相互拡散を 約125°Cないし約250 ’Cの温度で達成する。2つの接合表面を約12 5°Cないし約250°C1好ましくは約200°Cの温度で、第1及び第2の 接合表面が相互拡散するに十分な時間プレスする。第2の材料及び第3の材料は 、同一の材料であることが好ましいが、必ずしも必要なことではない。プレス時 間は、望ましくは、せいぜい約1時間である。According to the invention, the method for joining two parts includes a first part to be joined; providing a first bonding surface on the material. This first bonding surface is connected to the first material. a first region of the material; and overlying the first region of the first material. ) and includes a first layer of a second material having a different composition than the first material. No. The second material forms an adhesive coating on the first material and is heated to about 125°C. It is resistant to oxidation at temperatures of about 250°C. This second material is about 125 with negligible solid solubility in the first material at temperatures below about 125°C has an increasing finite solid solubility in the first material at temperatures above . second The material includes a sufficient amount of material in the first material to bond the first material and the second material together. Interdiffusion from about 125°C to about 250°C Achieved at a temperature of The method of the present invention further includes applying a second the second bonding surface including providing a bonding surface at a temperature of about 125°C to about Made of a third material that resists oxidation at temperatures of 250°C. This third material is interdiffusion into the second material sufficient to bond the two materials and the third material together; Achieved at a temperature of about 125°C to about 250'C. Approximately 12 at a temperature of 5°C to about 250°C, preferably about 200°C Press for sufficient time to interdiffuse the bonded surfaces. The second material and the third material are , are preferably, but not necessarily, made of the same material. When pressing The time period is preferably at most about 1 hour.

多くの異なる系が拡散接合の要求を満たすものとして確認されている。最も好ま しい組合せは、第1の材料としてのニッケル、及び第2、第3の材料としての金 である。使用できる組合せの他の例において、ニッケルを第1の材料とし、スズ を第2及び第3の材料とすることができ;ゲルマニウムを第1の材料とし、スズ を第2及び第3の材料とすることができ;ベリリウムを第1の材料とし、スズを 第2及び第3の材料とすることができ;さらに、金を第1の材料とし、白金を第 2及び第3の材料とすることができる。これらの例は、例示のものであり、限定 的なものではない。Many different systems have been identified as meeting the requirements of diffusion bonding. most preferred A new combination is nickel as the first material and gold as the second and third materials. It is. In another example of a combination that may be used, nickel is the first material and tin is the first material. can be the second and third materials; germanium can be the first material and tin can be the second and third materials; can be the second and third materials; beryllium can be the first material and tin can be the second and third materials; gold can be the second and third materials; further, gold can be the first material and platinum can be the second material; 2 and 3 materials. These examples are illustrative and not limiting. It's not a typical thing.

好ましい態様において、より具体的には、2つの部材を互いに接合するための方 法は、接合すべき第1の部材上に金コートされたニッケル接合表面を提供し、接 合すべき第2の部材上に全接合表面を提供し、これら2つの接合表面同士を、約 125°Cないし約250°Cの温度で5両接合表面が相互拡散するに十分な時 間プレスする各工程を包含する。好ましい接合温度は、約200°Cである。In a preferred embodiment, more specifically, a method for joining two members to each other is provided. The method involves providing a gold-coated nickel bonding surface on the first member to be bonded; providing a full mating surface on the second member to be mated, and connecting the two mating surfaces together by approximately When the temperature of 125°C to about 250°C is sufficient for interdiffusion of the 5 bonding surfaces. Includes each process of inter-pressing. A preferred bonding temperature is about 200°C.

接合の温度は、少な(とも約125°Cでなければならない。The temperature of the bond should be low (approximately 125°C).

より低い温度では、ニッケル又は他の第1の材料中における金又は他の第2の材 料の固溶性がほぼゼロであるからである。At lower temperatures, gold or other second material in nickel or other first material This is because the solid solubility of the material is almost zero.

相互拡散は、溶解性がなければ生じ得ない、実験により、充分な相互拡散と拡散 接合効果は、250℃以下の温度で達成され、従って、より高い温度で拡散接合 を行う必要がないということが立証された。さらに、より高い温度は、プロセス の完了後、接合部及び接合される部材中の増大した熱及び残留応力をもたらし、 従って、これを避けるべきである0本発明を現在の好ましい用途であるマイクロ 電子デバイス接合用に用いる場合、デバイスを250°Cを超える温度に供する と、増大した相互拡散によりマイクロ電子デバイスに劣化をもたらす。したがっ て、本発明の拡散接合範囲は、約125 ’Cないし約250°Cという中間温 度範囲である。しかしながら、材料のいずれかが250°C未満の温度で溶融す るならば、拡散接合中の最大温度はその溶融温度を超えるべきでない。Interdiffusion cannot occur without solubility; experiments have shown that there is sufficient interdiffusion and diffusion. The bonding effect is achieved at temperatures below 250 °C, therefore diffusion bonding at higher temperatures It has been proven that there is no need to do so. In addition, higher temperatures allow the process after completion of the process, resulting in increased heat and residual stresses in the joint and the parts being joined, Therefore, this should be avoided.This invention should be avoided in its current preferred application. When used for electronic device bonding, the device is subjected to temperatures exceeding 250°C. and increased interdiffusion leading to degradation of microelectronic devices. Therefore Therefore, the diffusion bonding range of the present invention is an intermediate temperature of about 125'C to about 250°C. degree range. However, if any of the materials melt at temperatures below 250°C If so, the maximum temperature during diffusion bonding should not exceed its melting temperature.

本発明の最も好ましい態様において、2つの部材を互いに接合するための方法は 、接合すべき第1の部材上にニッケル層を提供し、第1の部材のニッケル層を、 金層により、存在する金の量が存在するニッケルの量の約0.5%以下となるよ うな厚さでコートする工程を含む。接合すべき第2の部材上にニッケル層を提供 し、第2の部材のニッケル層を、金層により、存在する金の量が存在するニッケ ルの量の約0. 5%以下となるような厚さでコートすることによって、第2の 部材を同様に処理する。第1の部材及び第2の部材の各金層を接触させるように 置く。第1の部材及び第2の部材を、約125°Cないし約250°Cの温度で 、第1の部材及び第2の部材が相互拡散するに充分な時間プレスする。In a most preferred embodiment of the invention, the method for joining two members to each other comprises: , providing a nickel layer on the first member to be joined; the nickel layer of the first member; The gold layer ensures that the amount of gold present is approximately 0.5% or less of the amount of nickel present. It includes a process of coating to a very thick layer. Provide a nickel layer on the second component to be joined The amount of gold present is of the amount of 0. By coating with a thickness of 5% or less, the second Treat the parts in the same way. so that the gold layers of the first member and the second member are in contact with each other. put. the first member and the second member at a temperature of about 125°C to about 250°C; , pressing the first member and the second member for a sufficient period of time to interdiffuse the first member and the second member.

本発明の好ましい態様は、ニッケル又は他の第1の材料を酸化から保護し、約1 25°Cないし約250’Cの温度範囲内でニッケル又は他の第1の材料と相互 拡散するという金又は他の第2の材料の薄い金層の能力によって実施可能である ところの完全固体状態拡散接合もしくはウェルディングである。A preferred embodiment of the invention protects the nickel or other first material from oxidation and provides about 1 nickel or other first material within a temperature range of 25°C to about 250'C. Possible due to the ability of a thin gold layer of gold or other second material to diffuse However, it is completely solid-state diffusion bonding or welding.

ニッケルは、そのように低い温度及び穏やかな圧力ではニッケルに圧力接合する ことがない、ニッケルは1通常、その表面に酸化ニッケルを形成し、これが相互 拡散に対する拡散バリヤーとして作用し、また、そのような温度ではニッケルの 自己拡散速度が低いがらである。ニッケルの表面上への金の薄層の被着(デボジ シゴン)は、ニッケルを酸化に対して保護し、またニッケルー金相関係の特性に より増加した相互拡散速度を産み出す。Nickel will pressure bond to nickel at such low temperatures and mild pressures. Nickel normally forms nickel oxide on its surface, which interacts with each other. It acts as a diffusion barrier to diffusion and also inhibits nickel at such temperatures. Although the self-diffusion rate is low. Deposition of a thin layer of gold on the surface of nickel Sigon) protects nickel against oxidation and also improves the properties of the nickel-gold phase relationship. yields increased interdiffusion rates.

好ましい態様において、接合すべき表面の少なくとも一方は、ニッケル上に被着 された金の薄層を含まなければならない、ニッケルは、下地構造の構成材料であ り得るが、下地構造上に被着されたニッケル層の形態にあり得る。接合すべき他 方の表面は、対面する表面上のニッケルー金構造と相互拡散するために、表面に 金を有しなければならない。これは、また、ニッケル上の薄い金層の形態にあり 得る。In a preferred embodiment, at least one of the surfaces to be joined is coated on nickel. nickel is a constituent material of the underlying structure. It can be in the form of a nickel layer deposited on the underlying structure. Others to join one surface has a nickel-gold structure on the opposite surface to interdiffuse with the nickel-gold structure on the facing surface. Must have money. It is also in the form of a thin gold layer on nickel. obtain.

この方法により形成される接合は、エッチ又はフラックスを使用することなく、 穏やかな温度及び印加接合圧力の下で達成される。本発明の方法は、接合すべき 構造がこれら接合条件を許容する場合に使用できる。最終の接合は、引張り及び クリープにおいて非常に強く、低温半田で形成される半田接合のそれよりも優れ た機械的性質を生じる0本発明の他の特徴及び利点は、本発明の原理を例により 説明する添付の図面とともに考慮したとき、以下のより詳細な説明から明らかと なるであろう。Bonds formed by this method can be formed without the use of etch or flux. This is accomplished under mild temperatures and applied bonding pressures. The method of the invention applies to Can be used if the structure allows these bonding conditions. The final bond is tension and Very strong against creep, superior to that of solder joints formed with low temperature solder Other features and advantages of the present invention which result in improved mechanical properties further illustrate the principles of the invention. As will be apparent from the more detailed description below when considered in conjunction with the accompanying drawings that illustrate: It will be.

図面の簡単な説明 図1は、本発明の好ましい態様を実施するための方法の流れ図。Brief description of the drawing FIG. 1 is a flowchart of a method for implementing a preferred embodiment of the invention.

図2は、接合の開始直前における好ましい接合形態を示す側面図、及び 図3は、接合部位の概略を組成を指摘して示す正面図。FIG. 2 is a side view showing a preferred joining form just before starting joining, and FIG. 3 is a front view schematically showing the joint portion with the composition indicated.

III 17 を看゛日 図1は、本発明の好ましい方法における工程を示し、図2〜図3は、好ましい態 様について、接合前後双方における接合する部材の構造を示している。図1及び 図2を参照すると。III 17th day FIG. 1 shows steps in a preferred method of the invention, and FIGS. 2-3 show a preferred embodiment. The structure of the members to be joined is shown both before and after joining. Figure 1 and Referring to FIG.

まず、ニッケル層40が第1の部材42に適用される(符号20)、ここで用い られている「ニッケルjは、純ニッケルと他の合金元素を含有するニッケル合金 との双方を含む、相互拡散中に脆化相が生成しない限り、合金は許容できる。例 えば、鉛と金は相互拡散すると脆弱相を形成するので、ニッケル合金中には、鉛 は、はとんど又は全く存在すべきでない。First, a nickel layer 40 is applied to a first member 42 (20), as used herein. Nickel J is a nickel alloy containing pure nickel and other alloying elements. The alloy is acceptable as long as no brittle phases are formed during interdiffusion, including both. example For example, when lead and gold interdiffuse, they form a brittle phase. should rarely or never be present.

第1の部材42は、それ自体、ニッケルで作られていてもよく、その場合、その ニッケルからなる部材の上部分は層40とみなされる。ニッケル層40は、金層 44でコートされる(符号22)。層40は、純金であってもよいし、ニッケル 層40との相互拡散中に脆化相を形成することのない金合金であってもよい。The first member 42 may itself be made of nickel, in which case its The upper part of the member made of nickel is considered layer 40. The nickel layer 40 is a gold layer. 44 (reference numeral 22). Layer 40 may be pure gold or nickel. It may also be a gold alloy that does not form an embrittlement phase during interdiffusion with layer 40.

ニッケル層及び金層は、種々の厚さのものであり得る。しかしながら、金層44 中の金の合計量は、好ましくは、ニッケル層40中のニッケルの合計量の約0゜ 5%を超えない。The nickel and gold layers can be of various thicknesses. However, the gold layer 44 The total amount of gold in the nickel layer 40 is preferably about 0° of the total amount of nickel in the nickel layer 40. Do not exceed 5%.

金の量がこの値を超えると、後の処理で得られる相互拡散したニッケル・金層の 総組成(net composition)が、もはや、状態図の固溶領域に入 らなくなる。実際、総組成は、状態図の溶解度間隙(miscibility  gap)領域内にある。この関係は好ましいものではあるが、絶対要件ではない 。部分相互拡散又は溶解度間隙内の組成への相互拡散は、特に、使用中に印加さ れるいずれもの力が分配される充分に大きい領域が存在することを確保するため に比較的大きな接合表面積にわたって達成されるとき、許容される。If the amount of gold exceeds this value, the interdiffused nickel-gold layer obtained in subsequent processing will The net composition is now in the solid solution region of the phase diagram. It will disappear. In fact, the total composition is the solubility gap in the phase diagram. gap) area. Although this relationship is desirable, it is not an absolute requirement. . Partial interdiffusion or interdiffusion into compositions within the solubility gap is particularly important when applied during use. to ensure that there is a sufficiently large area over which any force applied is distributed. is acceptable when achieved over a relatively large bonding surface area.

好ましい態様において、ニッケル層40は純ニッケルであり、第1の部材42を メッキ基材として用いた電気メッキにより適用した。メッキニッケル層40は、 約0.004インチの厚さであった。メッキされた第1の部材42を真空被着装 置内に置き、ニッケルFJ40の表面をイオンクリーニングにより汚染質及び酸 化ニッケルを除去することによって清浄化した。金層44は純金であり、ニッケ ル層40の被着に続いてその場での(in−sicu)電子ビーム被着により形 成した。In a preferred embodiment, the nickel layer 40 is pure nickel and the first member 42 is It was applied by electroplating, which was used as a plating base material. The plated nickel layer 40 is It was approximately 0.004 inch thick. Vacuum deposition of the plated first member 42 The surface of the nickel FJ40 is removed from contaminants and acids by ion cleaning. Cleaned by removing nickel chloride. The gold layer 44 is pure gold and is made of nickel. Following the deposition of the metal layer 40, the shape is formed by in-situ electron beam deposition. accomplished.

金層44は約4000オングストローム(400ナノメートル)・の厚さであっ た。金層44の被着前にニッケルFi40が再汚染又は再酸化し得ないように、 イオンクリーニングと全被着との間で真空を破壊しなかった。Gold layer 44 is approximately 4000 angstroms (400 nanometers) thick. Ta. so that the nickel Fi 40 cannot be recontaminated or reoxidized prior to the deposition of the gold layer 44. Vacuum was not broken between ion cleaning and full deposition.

第1の部材42について今述べたものと同様の技術を用いて、第2の部材46に ニッケル層48 (図1中の符号24参照)及び金層50 (図1中の符号26 参照)を設けた。しかしながら、このこの手法を行う必要はない。第2の部材4 6上に金層50が存在し、又は第2の部材全体が金であれば、第2の部材46上 にニッケル層が提供されていな(でも、本接合方法は、うまく機能するからであ る。マイクロエレクトロニクスにおいて、コンタクトは、金からなり、あるいは 金層をもって行われる場合があり5本発明の方法は、そのような構造に使用可能 である。Using techniques similar to those just described for the first member 42, the second member 46 is Nickel layer 48 (see numeral 24 in FIG. 1) and gold layer 50 (see numeral 26 in FIG. 1) ) has been established. However, it is not necessary to perform this technique. Second member 4 If there is a gold layer 50 on 6 or the entire second member is gold, then on second member 46 The bonding method works well even if the nickel layer is not provided. Ru. In microelectronics, contacts are made of gold or The method of the present invention can be used for such structures. It is.

上記手法により第1及び第2の部材上に各層を被着した後。After depositing each layer on the first and second members by the above method.

金層44と50が対面するように第1の部材42と第2の部材46を接触して! < (符号28)。図2は、層44と50を接触させる直前のこの配量を図解し ている。これら部材42と46の接触は、真空中で行ったり、これら部材を真空 から取り出した後直ちに行ったりする必要はない、金層44及び50はすぐに酸 化したり、他のタイプの拡散バリヤーを形成したりすることがないからである。The first member 42 and the second member 46 are brought into contact so that the gold layers 44 and 50 face each other! < (code 28). FIG. 2 illustrates this dosage just before bringing layers 44 and 50 into contact. ing. These members 42 and 46 may be brought into contact in a vacuum, or these members may be brought into contact with each other in a vacuum. There is no need to immediately remove the gold layers 44 and 50 from the acid layer. This is because they do not become oxidized or form other types of diffusion barriers.

しかしながら、層44及び50の対面する表面がごみやグリース等の汚染質で汚 染されないようにすることは必要である。However, the facing surfaces of layers 44 and 50 become contaminated with contaminants such as dirt and grease. It is necessary to prevent it from being contaminated.

第1の部材42及び第2の部材46を高められた温度下で加熱しプレスする(符 号30)。この温度は、少なくとも約125°Cでなければならない。金及びニ ッケルは、その温度より低い温度では有意に相互拡散しないからである。従って 、ニッケル/金コートされた部材を相互拡散プロセス前に周囲温度(ambie nc temperature)で保管しても実質的な相互拡散は生じない。ま た、上記温度は約250°Cを超えるべきでない。より高い温度を使用すると熱 及び残留応力が経験され、より低い温度で充分な効果が達成され、接合しようと する部材に損傷を与える可能性があるからである。The first member 42 and the second member 46 are heated and pressed at an elevated temperature (not shown). No. 30). This temperature should be at least about 125°C. gold and d This is because nickels do not significantly interdiffuse at temperatures below that temperature. Therefore , the nickel/gold coated parts were kept at ambient temperature before the interdiffusion process. No substantial interdiffusion occurs even when stored at a low temperature (NC temperature). Ma Additionally, the temperature should not exceed about 250°C. Heat when using higher temperature and residual stresses are experienced, sufficient effectiveness is achieved at lower temperatures, and bonding is attempted. This is because there is a possibility that damage may be caused to the members being used.

各部材は、層44及び50の表面で妥当的に完全な界面接触を達成し、強い接合 を促進するに充分な力でプレスすべきである。接合の目的で小さな領域に印加力 を集中させる、バンブを用いた技術のような幾何学的技術により接合ラインにお ける印加力を拡大することが可能である。従って、有効な印加力は、接合される 領域の幾何学的形状に依存する。本接合現象は、主に、充分に高い温度の適用の 結果であり、圧力は、界面接触を促進することを除き、直接的な役目を果たさな い。従って、印加された圧力は、拡散接合操作において考慮すべき主要変数では ない。Each member achieves reasonably complete interfacial contact at the surfaces of layers 44 and 50 and has a strong bond. Press with sufficient force to promote Applying force to a small area for bonding purposes At the joining line, geometric techniques such as the bump technique concentrate the It is possible to expand the applied force. Therefore, the effective applied force is Depends on the geometry of the area. This bonding phenomenon is mainly due to the application of sufficiently high temperatures. pressure plays no direct role other than promoting interfacial contact. stomach. Therefore, applied pressure is not the primary variable to consider in diffusion bonding operations. do not have.

部材同士を接合するために要する時間は、接合温度に依存する。200°Cとい う好ましい接合温度では、接合は平方イン千当り約15,000ボンドの印加圧 力において60分以内に達成された。他の研究により、約5〜10分のオーダー のようなより短い時間も使用できることが示されている。1時間又はそれ以上と いった過度に長い時間を使用すべきでない。接合しようとする部材に拡散的損傷 が生じ得るからである。The time required to join members together depends on the joining temperature. 200°C At the preferred bonding temperature, the bond is applied at an applied pressure of about 15,000 bonds per 1,000 square inches. Achieved within 60 minutes at full power. Other studies have shown that on the order of about 5 to 10 minutes It has been shown that shorter times such as 1 hour or more Excessively long times should not be used. Diffuse damage to parts to be joined This is because it can occur.

図3は、ある程度の相互拡散後の接合領域近傍における組成のプロファイルを示 している。相互拡散中、その境界が初期には明確に画定されている層40.44 .48及び50は、層40からの金が層50からの金と相互拡散し、層50から の金が層48からのニッケルと相互拡散し、層44からの金が層40からのニッ ケルと相互拡散するにつれ、より明確には画定されなくなる6図3は、各層が初 めに物理的に位置していた場所を破線で示し、それらの層がもはや初めの組成の ものではないことを示している。ニッケル層40及び48は、主としてニッケル と金との混合物となり、金層44と50は、実質的なニッケル含有率を有する。Figure 3 shows the composition profile near the junction region after some degree of interdiffusion. are doing. During interdiffusion, layers whose boundaries are initially well defined 40.44 .. 48 and 50, gold from layer 40 interdiffuses with gold from layer 50; The gold from layer 44 interdiffuses with the nickel from layer 40, and the gold from layer 44 interdiffuses with the nickel from layer 40. Figure 3 shows that each layer becomes less clearly defined as it interdiffuses with Kel. The dashed lines indicate where the layers were physically located for the first time and indicate that those layers are no longer of their original composition. It shows that it is not a thing. Nickel layers 40 and 48 are primarily made of nickel. and gold, and the gold layers 44 and 50 have a substantial nickel content.

最終的に、金及びニッケルは、前に層40.44.50及び48であったところ を横断してより一層はぼ均一となるように相互拡散して接合操作を完結させる。Finally, the gold and nickel were previously layered in layers 40, 44, 50 and 48. The bonding operation is completed by mutually diffusing the particles more uniformly across the pores.

通常、ニッケル層40及び48がらのニッケルのそれぞれの部材42及び46中 への少量の相互拡散があり、これは、当該相互拡散層による部材42と46の接 着のさらなる助けとなる。Typically, the nickel layers 40 and 48 are made of nickel in the respective members 42 and 46. There is a small amount of interdiffusion into the contact between members 42 and 46 due to the interdiffusion layer. It will further help you get dressed.

本発明の実施において、第1の部材42は、厚さ約00004インチのニッケル 層40及び厚さ約4000オンダストロームの金層44を有するものであった。In the practice of the present invention, first member 42 is made of nickel approximately 00,004 inches thick. layer 40 and a gold layer 44 approximately 4000 angstroms thick.

第2の部材46は全体が金であった。接合は、平方インチ当り約15,000ボ ンドの印加圧力で、約200°Cで60分間で達成された。The second member 46 was entirely gold. The bond is approximately 15,000 volts per square inch. This was achieved in 60 minutes at approximately 200°C with an applied pressure of 100°C.

接合後、接合部から@2の部材46を除去しようと試みたところ、接合部ではな くニッケルにおいて破壊が生じた。他の測定において、ニッケル/金合金は、1 8,0OOp s i(平方インチ当りのボンド)を超える引張り強度を有する ことがわかった。ニッケル/金合金は、9000psi以上という予期されたク リープ強度を示した。典型的な鉛−スズ半田は、約5500ps iの引張り強 度及び300ps iのクリープ強度を有していた。本発明の接合は、おそらく その成分のより一層高い融点によるため、従来の半田接合よりがなり強い。After joining, when I tried to remove member @2 from the joint, it turned out that it was not at the joint. Destruction occurred in the nickel. In other measurements, the nickel/gold alloy is Has a tensile strength in excess of 8,0OOp s i (bond per square inch) I understand. The nickel/gold alloy has an expected pressure of over 9000 psi. Leap strength was shown. Typical lead-tin solder has a tensile strength of about 5500 ps It had a creep strength of 300 psi. The joining of the present invention is probably Due to the higher melting point of its components, it is stronger than traditional solder joints.

以上、例示の目的で本発明の具体的な態様を詳細に説明したが、本発明の精神及 び範囲を逸脱することなく種々の変更が可能である。したがって、本発明は、添 付の請求の範囲による以外は限定されるものではない。Although specific embodiments of the present invention have been described in detail for the purpose of illustration, the spirit of the present invention and Various modifications are possible without departing from the scope and scope of the invention. Therefore, the present invention There is no limitation except as in the appended claims.

寸 0 寸り 手続補正書 平成6年11月2日Size 0 Dimensions Procedural amendment November 2, 1994

Claims (17)

【特許請求の範囲】[Claims] 1.接合すべき第1の部材上に第1の接合表面を提供する工程であつて、該第1 の接合表面は、 第1の材料の第1の領域、及び 該第1の材料の第1の領域上に形成され、該第1の材料と異なる組成を有する第 2の材料の第1の層を包含し、該第2の材料は、第1の材料上に、約125℃な いし約250℃の温度で酸化に耐える接着性のコーティングを形成し、該第2の 材料は、約125℃未満の温度において第1の材料中ヘの無視し得る固溶性を有 し、約125℃を超える温度において第1の材料中ヘの増加する有限の固溶性を 有し、該第2の材料は、該第1の材料と第2の材料とを接合するに十分な第1の 材料中ヘの相互拡散を約125℃ないし約250℃の温度で達成するものであり 、接合すべき第2の部材上に第2の接台表面を提供する工程であつて、該第2の 接合表面は、約125℃ないし約250℃の温度で酸化に耐える第3の材料で作 られ、該第3の材料は、該第2の材料と第3の材料とを接合するに十分な第2の 材料中ヘの相互拡散を約125℃ないし約250℃の温度で達成するものであり 、 該2つの接合表面を、約125℃ないし約250℃の温度で、該第1及び第2の 接合表面が相互拡散するに十分な時間ブレスする工程 を包含する、2つの部材を接合して単一品を製造するための方法。1. providing a first bonding surface on a first member to be bonded, the step of providing a first bonding surface on a first member to be bonded; The bonding surface of a first region of a first material; and a first material formed on a first region of the first material and having a composition different from that of the first material; a first layer of a second material, the second material being deposited on the first material at a temperature of about 125°C; forming an oxidation-resistant adhesive coating at a temperature of about 250°C; The material has negligible solid solubility in the first material at temperatures below about 125°C. and increasing finite solid solubility in the first material at temperatures above about 125°C. and the second material has a sufficient amount of the first material to bond the first material and the second material. Interdiffusion into the material is achieved at a temperature of about 125°C to about 250°C. , providing a second abutment surface on a second member to be joined, the step of: providing a second abutment surface on a second member to be joined; The bonding surface is made of a third material that resists oxidation at temperatures of about 125°C to about 250°C. and the third material has enough of the second material to bond the second material and the third material. Interdiffusion into the material is achieved at a temperature of about 125°C to about 250°C. , The first and second bonding surfaces are heated at a temperature of about 125°C to about 250°C. A process in which the bonding surfaces are pressed for a sufficient period of time to allow mutual diffusion. A method for joining two parts to produce a single item, including: 2.該第2の材料及び該第3の材料が、同種の材料である請求項1記載の方法。2. The method of claim 1, wherein the second material and the third material are the same type of material. 3.該第1の領域が、接合すべき部材上に被着された第1の材料の層である請求 項1記載の方法。3. Claims wherein the first region is a layer of a first material deposited on the members to be joined. The method described in Section 1. 4.該第3の材料が、接合すべき第2の部材の表面上の層として存在する請求項 1記載の方法。4. Claim in which the third material is present as a layer on the surface of the second member to be joined. The method described in 1. 5.ブレス工程における接合時間が約1時間以下である請求項1記載の方法。5. 2. The method of claim 1, wherein the bonding time in the pressing step is about 1 hour or less. 6.請求項1記載の方法によって得られた物品。6. An article obtained by the method according to claim 1. 7.接合すべき第1の部材上に金コートされたニッケル接合表面を提供し、 接合すべき第2の部材上に金接合表面を提供し、該2つの接合表面を約125℃ ないし約250℃の温度で、両接合表面が相互拡散するに十分な時間ブレスする 各工程を包含する、2つの部材を接合して単一品を製造するための方法。7. providing a gold-coated nickel bonding surface on a first member to be bonded; providing a gold bonding surface on a second member to be bonded, and heating the two bonding surfaces to about 125°C; or about 250°C for a sufficient time to allow interdiffusion of both bonded surfaces. A method for joining two parts to produce a single item, including each step. 8.該第2の部材上の接合表面が、金コートされたニッケルである請求項7記載 の方法。8. 8. The bonding surface on the second member is gold coated nickel. the method of. 9.ブレス工程中の温度が、約200℃である請求項7記載の方法。9. 8. The method of claim 7, wherein the temperature during the pressing step is about 200<0>C. 10.請求項7記載の方法によって得られた物品。10. An article obtained by the method according to claim 7. 11.接合すべき第1の部材上にニッケル層を提供し、該第1の部材のニッケル 層を、金層により、存在する金の量が存在するニッケルの量の約0.5%以下と なるような厚さでコートし、 接合すべき第2の部材上にニッケル層を提供し、該第2の部材のニッケル層を、 金層により、存在する金の量が存在するニッケルの量の約0.5%以下となるよ うな厚さでコートし、 第1の部材及び第2の部材の金層同士を接触させるように置き、 該第1の部材及び第2の部材を、約125℃ないし約250℃の温度で、該第1 の部材及び該第2の部材が相互拡散するに充分な時間ブレスする 各工程を包含する、2つの部材を接合して単一品を製造するための方法。11. providing a nickel layer on the first member to be joined; The gold layer is such that the amount of gold present is about 0.5% or less of the amount of nickel present. Coat it to the desired thickness, providing a nickel layer on a second member to be joined, the nickel layer of the second member comprising: The gold layer ensures that the amount of gold present is approximately 0.5% or less of the amount of nickel present. Coat it to a thick layer, Place the gold layers of the first member and the second member in contact with each other, The first member and the second member are heated at a temperature of about 125°C to about 250°C. and the second member for a sufficient time to interdiffuse. A method for joining two parts to produce a single item, including each step. 12.該第1の部材が、ニッケルで作られている請求項11記載の方法。12. 12. The method of claim 11, wherein the first member is made of nickel. 13.該第1の部材上にニッケル層を提供する工程が、第1の部材の表面上にニ ッケルの層を被着する工程を含む請求項11記載の方法。13. providing a nickel layer on the first member includes forming a nickel layer on the surface of the first member; 12. The method of claim 11, including the step of depositing a layer of nickel. 14.該第2の部材が、ニッケルで作られている請求項11記載の方法。14. 12. The method of claim 11, wherein the second member is made of nickel. 15.該第2の部材上にニッケル層を提供する工程が、第2の部材の表面上にニ ッケルの層を被着する工程を含む請求項11記載の方法。15. providing a nickel layer on the second member includes forming a nickel layer on the surface of the second member; 12. The method of claim 11, including the step of depositing a layer of nickel. 16.ブレス工程中の温度が、約200℃である請求項11記載の方法。16. 12. The method of claim 11, wherein the temperature during the pressing step is about 200<0>C. 17.請求項11記載の方法によって得られた物品。17. An article obtained by the method according to claim 11.
JP6517068A 1993-01-19 1994-01-10 Medium temperature diffusion bonding Pending JPH07506773A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US621293A 1993-01-19 1993-01-19
US006,212 1993-01-19
PCT/US1994/000364 WO1994017551A1 (en) 1993-01-19 1994-01-10 Intermediate-temperature diffusion welding

Publications (1)

Publication Number Publication Date
JPH07506773A true JPH07506773A (en) 1995-07-27

Family

ID=21719814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6517068A Pending JPH07506773A (en) 1993-01-19 1994-01-10 Medium temperature diffusion bonding

Country Status (2)

Country Link
JP (1) JPH07506773A (en)
WO (1) WO1994017551A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524494A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces
JP2014161885A (en) * 2013-02-26 2014-09-08 Dainippon Printing Co Ltd Joining method of metal substrate and metal laminate
JP2014529899A (en) * 2011-08-30 2014-11-13 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Permanent wafer bonding method with connecting layer using solid phase diffusion or phase transformation
JP2014221492A (en) * 2014-06-19 2014-11-27 株式会社ムサシノエンジニアリング Atomic diffusion bonding method
KR20150060666A (en) * 2012-09-28 2015-06-03 에베 그룹 에. 탈너 게엠베하 Method for coating and bonding substrates
JP2016000428A (en) * 2014-05-21 2016-01-07 株式会社東芝 Conjugate and production method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136390B2 (en) * 1994-12-16 2001-02-19 株式会社日立製作所 Solder joining method and power semiconductor device
FR2767604B1 (en) 1997-08-19 2000-12-01 Commissariat Energie Atomique TREATMENT PROCESS FOR MOLECULAR GLUING AND TAKING OFF TWO STRUCTURES
FR2781925B1 (en) 1998-07-30 2001-11-23 Commissariat Energie Atomique SELECTIVE TRANSFER OF ELEMENTS FROM ONE MEDIUM TO ANOTHER MEDIUM
DE102015114086B4 (en) 2015-08-25 2022-01-27 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Device and method for manufacturing a device
CN110718524B (en) * 2019-08-30 2024-03-15 华为技术有限公司 Electronic component and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109051A (en) * 1978-02-16 1979-08-27 Ishikawajima Harima Heavy Ind Co Ltd Diffusion welding method for nickel base super alloy
JPS63112082A (en) * 1986-10-29 1988-05-17 Mitsubishi Electric Corp Preparation of rotary body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921885A (en) * 1973-06-28 1975-11-25 Rca Corp Method of bonding two bodies together
US4077558A (en) * 1976-12-06 1978-03-07 International Business Machines Corporation Diffusion bonding of crystals
DE3446780A1 (en) * 1984-12-21 1986-07-03 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD AND JOINING MATERIAL FOR METALLICALLY CONNECTING COMPONENTS
US4865245A (en) * 1987-09-24 1989-09-12 Santa Barbara Research Center Oxide removal from metallic contact bumps formed on semiconductor devices to improve hybridization cold-welds
US4863090A (en) * 1988-10-17 1989-09-05 Hughes Aircraft Company Room temperature attachment method employing a mercury-gold amalgam
US4930001A (en) * 1989-03-23 1990-05-29 Hughes Aircraft Company Alloy bonded indium bumps and methods of processing same
US5186379A (en) * 1991-06-17 1993-02-16 Hughes Aircraft Company Indium alloy cold weld bumps
US5234153A (en) * 1992-08-28 1993-08-10 At&T Bell Laboratories Permanent metallic bonding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109051A (en) * 1978-02-16 1979-08-27 Ishikawajima Harima Heavy Ind Co Ltd Diffusion welding method for nickel base super alloy
JPS63112082A (en) * 1986-10-29 1988-05-17 Mitsubishi Electric Corp Preparation of rotary body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524494A (en) * 2010-03-31 2013-06-17 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for permanently connecting two metal surfaces
JP2014529899A (en) * 2011-08-30 2014-11-13 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Permanent wafer bonding method with connecting layer using solid phase diffusion or phase transformation
US10163681B2 (en) 2011-08-30 2018-12-25 Ev Group E. Thallner Gmbh Method for permanently bonding wafers by a connecting layer by means of solid state diffusion or phase transformation
KR20150060666A (en) * 2012-09-28 2015-06-03 에베 그룹 에. 탈너 게엠베하 Method for coating and bonding substrates
JP2016500750A (en) * 2012-09-28 2016-01-14 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Method for coating substrates and method for bonding substrates
JP2014161885A (en) * 2013-02-26 2014-09-08 Dainippon Printing Co Ltd Joining method of metal substrate and metal laminate
JP2016000428A (en) * 2014-05-21 2016-01-07 株式会社東芝 Conjugate and production method thereof
JP2014221492A (en) * 2014-06-19 2014-11-27 株式会社ムサシノエンジニアリング Atomic diffusion bonding method

Also Published As

Publication number Publication date
WO1994017551A1 (en) 1994-08-04

Similar Documents

Publication Publication Date Title
US4746055A (en) Method and connecting material for the metallic joining of parts
JPH0644584B2 (en) Alloy-bonded indium bump and method for treating the same
JPH07506773A (en) Medium temperature diffusion bonding
US5361971A (en) Intermediate-temperature diffusion welding
JP2557268B2 (en) Device mounting method
JP2626001B2 (en) Fluxless joining method
JPH0867978A (en) Method for soldering target for sputtering
JPS63123594A (en) Alloy for low temperature joining
JPS61199575A (en) Connection method for conductor and backing material for connection
US4863090A (en) Room temperature attachment method employing a mercury-gold amalgam
JPH03241755A (en) Manufacture of electronic circuit device
US4921158A (en) Brazing material
JPS6281268A (en) Soldering method
JPH02152246A (en) Fluxless bonding
JPH02177463A (en) Manufacture of ceramic-metal composite board
JPH11307596A (en) Low temperature bonding method
JPH02303689A (en) Method for joining contact point material
US5592732A (en) Method of making super conducting bonds for thin film devices
JPS61181136A (en) Die bonding
JPH06128738A (en) Production of sputtering target
JPS5952031B2 (en) Cold welding method
JP2848373B2 (en) Semiconductor device
JPH07164165A (en) Joining method of metal
JPS61161682A (en) Joint of superconductor
JP5023633B2 (en) Optical communication apparatus and manufacturing method thereof