JPS5952031B2 - Cold welding method - Google Patents

Cold welding method

Info

Publication number
JPS5952031B2
JPS5952031B2 JP4547881A JP4547881A JPS5952031B2 JP S5952031 B2 JPS5952031 B2 JP S5952031B2 JP 4547881 A JP4547881 A JP 4547881A JP 4547881 A JP4547881 A JP 4547881A JP S5952031 B2 JPS5952031 B2 JP S5952031B2
Authority
JP
Japan
Prior art keywords
cold
welded
welding
objects
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4547881A
Other languages
Japanese (ja)
Other versions
JPS57160584A (en
Inventor
俊夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4547881A priority Critical patent/JPS5952031B2/en
Priority to GB8208921A priority patent/GB2097298B/en
Priority to DE19823211499 priority patent/DE3211499C2/en
Publication of JPS57160584A publication Critical patent/JPS57160584A/en
Publication of JPS5952031B2 publication Critical patent/JPS5952031B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は圧接性が向上する冷間圧接方法に関する。[Detailed description of the invention] The present invention relates to a cold pressure welding method that improves pressure welding properties.

従来、重ね冷間圧接では被圧接物を直接重ねて圧接を行
なつていた。
Conventionally, in lap cold welding, the objects to be welded are directly overlapped and welded together.

この場合、圧接部分における被圧接物表面の酸化被覆が
圧接性を害するため、圧接前にワイヤブラッシングなど
によつて上記酸化被覆を機械的に除去していた。しかし
、ワイヤブラッシングにより酸化被覆を除去しても再び
酸化被覆が形成されたり、酸化被覆除去処理が不完全で
あるため圧接部分における加工率を極度に大きく (た
とえば60%以上)しなければ満足すべき接合を得るこ
とはできない。のみならず、このように高い加工率のも
とでは加工部分の機械的強度が著しく低下するという欠
点が生じる。本発明は上記事情を参酌してなされたもの
で、あらかじめ圧接部分に被圧接物を構成する金属より
延性の小さい金属を介在して冷間圧接を行ない、小さい
加工率で満足な接合を得ることのでき・る冷間圧接方法
を提供することを目的とする。以下、本発明を図面を参
照し半導体の外装の一実施例に基づいて詳述する。冷間
圧接される被圧接物1を第1図AおよびBに示す。
In this case, since the oxidized coating on the surface of the object to be pressed at the pressure welding portion impairs the pressability, the oxidized coating is mechanically removed by wire brushing or the like before the pressure welding. However, even if the oxide coating is removed by wire brushing, the oxide coating may be re-formed, or the oxide coating removal process may be incomplete, so the processing rate at the press-welded area must be extremely high (for example, 60% or more) to be satisfied. It is not possible to obtain an exponent junction. Moreover, under such a high processing rate, there is a drawback that the mechanical strength of the processed portion is significantly reduced. The present invention has been made in consideration of the above-mentioned circumstances, and it is an object of the present invention to perform cold welding by interposing a metal having lower ductility than the metal constituting the object to be welded in advance in the welding part, thereby obtaining a satisfactory joint with a small processing rate. The purpose of the present invention is to provide a cold welding method that enables the following. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on an embodiment of a semiconductor exterior with reference to the drawings. A press-welded object 1 to be cold-welded is shown in FIGS. 1A and 1B.

この図に示すごとく、被圧接物1は円盤・状の互いに重
ね合わされる同一形状の2枚の銅製板体2a、2bから
なつていて、各板体2a、2bの中央部分には円盤状の
凹部3a3bが形成されていて、これら板体2a、2b
を上記凹部3a、3bを対向させて重ね合わせたとき、
たとえjば半導体などを収納する収納空間4が形成され
るようになつている。半導体素子を収納する場合収納空
間4は外気に対する密封性が要求されるので、冷間圧接
による圧接部分5は凹部3a、3bを包囲する円環状を
なしている。このように外装部材の製作はまず、たとえ
ばワット民俗などのニッケルめつき装置により板体2a
、2b表面にニッケルを5μm〜20μmの厚さにメツ
キし、ニツケルの薄膜を作る。
As shown in this figure, the pressurized object 1 consists of two disk-shaped copper plates 2a and 2b of the same shape that are stacked on top of each other. A recess 3a3b is formed, and these plate bodies 2a, 2b
When the above-mentioned recesses 3a and 3b are overlapped with each other facing each other,
For example, a storage space 4 is formed to store semiconductors and the like. When storing semiconductor elements, the storage space 4 is required to be sealed against the outside air, so the cold welded portion 5 has an annular shape surrounding the recesses 3a and 3b. In this way, the exterior members are first manufactured using a nickel plating machine such as Wat Folk.
, 2b surface is plated with nickel to a thickness of 5 μm to 20 μm to form a thin nickel film.

しかして、第2図に示すごとく、板体2a,2bを重ね
合わせる。このとき圧接界面7を境界としてめつき層8
a,8bは単に密接した状態である。つぎに、冷間圧接
装置を用いて冷間圧接を行なう。すなわち、第3図およ
び゛第4図に示すごとく、冷間圧接の進行とともにくさ
び状のダイス6a,6bはそれぞれ矢印A,B方向に板
体2a,2bに塑性変形を起させながら侵入する。この
結果、冷間圧接の進行とともにめつき層8a,8bは圧
接部分5にて分断し、板体2a,2bの冷間圧接による
塑性流動とともに矢印C,D方向に圧接界面7に沿つて
移動する。これは板体2a,2bの構成金属の銅の方が
めつき層8a,8bの構成金属のニツケルより延性に富
むため(換言すると、ニツケルの方が銅よりも破断強度
が小さいので)、冷間圧接による板体2a,2bの塑性
流動にめつき層8a,8bが追従できず圧接を完了する
以前に破断点に達してしまうためである。その結果、め
つき層8a,8bが分断して移動した後は各板体2a,
2bの酸化膜がない清浄な二つの新生面が密接し、これ
ら新生面は冷間圧接により完全に接合する。また仮にめ
つき層8a,8bと板体2a,2bとの間に薄い酸化膜
が介在していてもこのような酸化膜はめつき層8a,8
bの分断に追従して移動し上記同様清浄な新生面があら
れれて両板体2a,2bを完全に接合することができる
。第5図は上記したことを実際に示す冷間圧接後の被圧
接物1の圧接部分5の断面を示す金属顕微鏡写真である
。写真中央における白色線状のめつ.き層は分断して圧
接界面に沿つて移動しており、また、めつき層が移動し
た圧着界面においては両金属が完全に接合していること
がわかる。上記新生面は冷間圧着過程においてはじめて
現出するので、外気により酸化被膜が形成されることが
な.い。したがつて、加工率を極度に高くしな<ても十
分満足に冷間圧接が達成できる。第6図はこのことを示
すものである。すなわち、第3図および゛第4図に示す
実質的に完全に冷間圧接された圧接部分5を横切る半径
方向の接合長さLと加工率と関係をワイヤブラツシング
後冷間圧接した場合およびニツケルめつきした場合につ
いてプロツトしている。ここで加工率は被圧接物1の厚
さの変化を%表示したものである。この図かられかるよ
うに、ワイヤブラツシングしただけでは被圧接物1表面
の酸化被膜は完全に除去されず、しかもブラツシング後
も依然として外気にさらされるため表面には相当量の酸
化被覆が残存している。この酸化被覆は冷間圧接による
圧接界面7における板体2a,2bの金属結合を阻止す
るように作用する。第7図は圧着界面にめつき層を介在
させずに冷間圧接加工した被圧接物1の圧接部分5断面
の金属顕微鏡写真である。第5図の場合より加工率が高
いにもかかわらず接合は不完全で、このことを示す圧着
界面の黒いすじが圧接部分5中央付近にも残存している
。したがつて、同一の接合長さLを得るには、ワイヤブ
ラツシングして冷間圧接する場合は、ニツケルめつきし
て冷間圧接する場合よりも加工率を増加させねばならな
い。たとえば、0.3mmの接合長さLを達成するのに
、ワイヤブラツシングの場合はほぼ70%の加工率を要
するのに反して、ニツケルめつきの場合ははぽ40%の
加工率でよい。以上のように、本発明の冷間圧接方法は
冷間圧接される被圧接物表面をあらかじめ薄膜状の金属
で被覆させしかるのち冷間圧接を行なうようにしたもの
で、加工率を極度に高くして被圧接物全体としての機械
的特性を劣化させることなく適度の加工率で十分満足な
冷間圧接接合を得ることができる。
As shown in FIG. 2, the plates 2a and 2b are then overlapped. At this time, the plating layer 8 is
a and 8b are simply in close contact. Next, cold pressure welding is performed using a cold pressure welding device. That is, as shown in FIGS. 3 and 4, as the cold welding progresses, the wedge-shaped dies 6a and 6b enter the plates 2a and 2b in the directions of arrows A and B, respectively, causing plastic deformation. As a result, as the cold welding progresses, the plated layers 8a and 8b are separated at the welded portion 5, and move along the welded interface 7 in the directions of arrows C and D with the plastic flow caused by the cold welding of the plates 2a and 2b. do. This is because copper, which is the constituent metal of the plates 2a and 2b, is more ductile than nickel, which is the constituent metal of the plating layers 8a and 8b (in other words, nickel has a lower breaking strength than copper), so cold This is because the plated layers 8a, 8b cannot follow the plastic flow of the plates 2a, 2b due to pressure welding, and reach a breaking point before the pressure welding is completed. As a result, after the plating layers 8a, 8b are separated and moved, each plate 2a,
The two new surfaces 2b, which are clean and free of oxide films, come into close contact with each other, and these new surfaces are completely joined by cold pressure welding. Furthermore, even if a thin oxide film is interposed between the plating layers 8a, 8b and the plate bodies 2a, 2b, such an oxide film will cause the plating layers 8a, 8
It moves following the division of b, and as above, a clean new surface is scoured, and both plates 2a and 2b can be completely joined. FIG. 5 is a metallurgical microscope photograph showing a cross section of the press-welded portion 5 of the object 1 to be press-welded after cold press-welding, which actually illustrates the above-mentioned situation. White linear eyelid in the center of the photo. It can be seen that the plated layer is separated and moved along the pressure-bonded interface, and that the two metals are completely joined at the pressure-bonded interface where the plated layer has moved. Since the above-mentioned new surface appears for the first time during the cold press bonding process, an oxide film is not formed by the outside air. stomach. Therefore, satisfactory cold pressure welding can be achieved without extremely high processing rates. FIG. 6 shows this. That is, the relationship between the welding length L in the radial direction across the welded part 5 that has been substantially completely cold welded and the processing rate shown in FIGS. 3 and 4 is the case when cold welding is performed after wire brushing. The plot also shows the case of nickel plating. Here, the processing rate is the change in the thickness of the object 1 to be pressed, expressed as a percentage. As can be seen from this figure, the oxide film on the surface of the pressurized object 1 is not completely removed just by wire brushing, and even after brushing, it is still exposed to the outside air, so a considerable amount of oxide film remains on the surface. are doing. This oxide coating acts to prevent metal bonding between the plates 2a and 2b at the welding interface 7 due to cold welding. FIG. 7 is a metallurgical micrograph of a cross-section of the press-welded portion 5 of the press-welded object 1 which was subjected to cold pressure welding without intervening a plating layer at the press-bond interface. Although the processing rate is higher than in the case of FIG. 5, the bonding is incomplete, and a black streak at the crimped interface indicating this fact remains near the center of the crimped portion 5. Therefore, in order to obtain the same bonding length L, the processing rate must be increased when wire brushing and cold pressure welding is performed compared to when nickel plating and cold pressure welding is performed. For example, to achieve a bond length L of 0.3 mm, wire brushing requires a processing rate of approximately 70%, while nickel plating requires a processing rate of approximately 40%. . As described above, in the cold welding method of the present invention, the surface of the object to be cold welded is coated in advance with a thin film of metal, and then cold welding is performed, and the processing rate is extremely high. As a result, it is possible to obtain a sufficiently satisfactory cold welded joint at a moderate processing rate without deteriorating the mechanical properties of the entire object to be welded.

なお、上記実施例においては圧接部分は円環状であるが
、これに拘泥することなく、線状あるいは点状の圧接部
分についても本発明の冷間圧接方法は適用できる。
In the above embodiments, the welded portion is annular, but the cold welding method of the present invention is not limited to this, and the cold welding method of the present invention can also be applied to linear or dotted welded portions.

また、上記実施例においてはダイス6a,6bにより両
側から被圧接物を挟圧するごとくして冷間圧接している
が、これに限ることなく、片側だけからのダイスによる
冷間圧接に対しても有効である。また、本発明は上記実
施例におけるごとく常温における冷間圧接のみならず、
400℃程度以下の圧接に対して適用できる。さらに、
上記実施例においては、めつき層としてニツケルを使用
したがたとえばクロムなどのように銅より延性が小さい
金属であれば何でもよい。さらにまた、上記実施例にお
いて例示した銅の冷間圧接のみならず、たとえばアルミ
ニウム(又はアルミニウム合金)などの他の非鉄金属間
の冷間圧接、鉄系金属間の冷間圧接およびこれらの組合
せによる異種材料の冷間圧接に対しても適用できる。ま
た、上記実施例においては一対被圧接物のそれぞれの圧
接面に被圧接物を構成する金属より延性の小さい金属を
被着させたが、一方の被圧接物の圧接面にのみ金属を被
着させてもよい。すなわち金属を被着していない片側の
被圧接物が表面に酸化物を形成しないたとえば金などの
ような場合にはそれぞれの圧接面に被着した場合と同様
の効果を奏するし、金属を被着していない片側の被圧接
物が酸化性のものであつても両方の圧接面に金属を被着
した場合に比べて、接合強度は若干劣るが、それでも実
用上使用に耐えるものとすることができる。さらに、上
記実施例において金属被覆はめつき法によつたが、これ
に限ることなく、たとえば、真空蒸着法や金属溶射法に
より金属被膜を形成してもよい。その他、本発明の要旨
を逸脱しない範囲で種々変更自在である。
In addition, in the above embodiment, cold welding is performed by pinching the objects to be welded from both sides with the dies 6a and 6b, but the invention is not limited to this, and cold welding with dies from only one side can also be performed. It is valid. In addition, the present invention is not limited to cold welding at room temperature as in the above embodiments, but also
Applicable to pressure welding at temperatures below about 400°C. moreover,
In the above embodiment, nickel was used as the plating layer, but any metal having lower ductility than copper, such as chromium, may be used. Furthermore, in addition to the cold welding of copper as exemplified in the above embodiments, cold welding between other non-ferrous metals such as aluminum (or aluminum alloy), cold welding between ferrous metals, and combinations thereof are also possible. It can also be applied to cold welding of dissimilar materials. In addition, in the above embodiment, a metal having lower ductility than the metal constituting the objects is coated on the pressure contact surface of each of the pair of objects to be welded, but metal is coated only on the pressure contact surface of one of the objects to be welded. You may let them. In other words, if the material to be pressed on one side that is not coated with metal does not form an oxide on its surface, such as gold, the same effect will be achieved as if it were coated on each pressure contact surface, and Even if the material to be welded on one side that is not bonded is oxidizing, the bonding strength will be slightly lower than if metal is bonded to both surfaces, but it should still be able to withstand practical use. I can do it. Furthermore, although the metal coating method was used in the above embodiments, the metal coating is not limited to this, and the metal coating may be formed by, for example, a vacuum evaporation method or a metal spraying method. In addition, various changes can be made without departing from the gist of the present invention.

【図面の簡単な説明】 第1図AおよびBはそれぞれ本発明の一実施例において
用いる被圧接物の平面図およびX−X線断面図、第2図
ないし第4図は本発明の一実施例における冷間圧接方法
を説明するための要部断面図、第5図は圧接界面にめつ
き層が介在する場合の冷間圧接後の被圧接物の圧接部分
の断面を示す顕微鏡写真、第6図は冷間圧接における加
工率と接合長さとの関係を示す図、第7図は圧接界面に
めつき層が介在しない場合の冷間圧接後の被圧接物の圧
接部分の断面を示す顕微鏡写真である。 1:被圧接物、5:圧接部分、8a,8b:めつき層。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1A and 1B are a plan view and a sectional view taken along line X-X of a pressurized object used in an embodiment of the present invention, and FIGS. 2 to 4 are an embodiment of the present invention. FIG. 5 is a sectional view of a main part for explaining the cold pressure welding method in the example, and FIG. Figure 6 is a diagram showing the relationship between processing rate and joining length in cold welding, and Figure 7 is a microscope showing a cross section of the welded part of the welded object after cold welding when no plating layer is interposed at the welding interface. It's a photo. 1: Pressure contact object, 5: Pressure contact portion, 8a, 8b: Plating layer.

Claims (1)

【特許請求の範囲】 1 冷間圧接される第1及び第2の被圧接物の少なくと
も各圧接面に前記被圧接物を構成する金属より延性の小
さい金属層を被着する工程と、上記被圧接物の上記延性
の小さい金属層を対面させる工程と、上記第1及び第2
の被圧接物の各圧接面に同時に上記延性の小さい金属層
が分断して移動する圧力をかけ第1及び第2の被圧接物
を冷間圧接する工程とを具備してなることを特徴とする
冷間圧接方法。 2 第1及び第2の被圧接物は半導体などを収容する収
納容器である特許請求の範囲第1項記載の冷間圧接方法
。 3 延性の小さい金属層は厚さが5μm乃至20μmで
ある特許請求の範囲第1項記載の冷間圧接方法。 4 冷間圧接はダイスを第1及び第2の被圧接物が塑性
変形を起させながら侵入する如く圧力をかけて行うもの
である特許請求の範囲第1項記載の冷間圧接方法。
[Scope of Claims] 1. A step of depositing a metal layer having lower ductility than the metal constituting the welded objects on at least each pressure welding surface of the first and second objects to be cold-welded; a step of bringing the low ductility metal layers of the press-welded object to face each other;
cold welding the first and second objects to be welded by simultaneously applying pressure to separate and move the metal layer with low ductility on each pressure welding surface of the objects to be welded. Cold pressure welding method. 2. The cold pressure welding method according to claim 1, wherein the first and second objects to be welded are storage containers for accommodating semiconductors or the like. 3. The cold pressure welding method according to claim 1, wherein the metal layer with low ductility has a thickness of 5 μm to 20 μm. 4. The cold welding method according to claim 1, wherein cold welding is performed by applying pressure to a die so that the first and second objects to be welded enter the die while causing plastic deformation.
JP4547881A 1981-03-30 1981-03-30 Cold welding method Expired JPS5952031B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4547881A JPS5952031B2 (en) 1981-03-30 1981-03-30 Cold welding method
GB8208921A GB2097298B (en) 1981-03-30 1982-03-26 Jointing by cold pressing
DE19823211499 DE3211499C2 (en) 1981-03-30 1982-03-29 Process for joining metal disks by cold pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4547881A JPS5952031B2 (en) 1981-03-30 1981-03-30 Cold welding method

Publications (2)

Publication Number Publication Date
JPS57160584A JPS57160584A (en) 1982-10-02
JPS5952031B2 true JPS5952031B2 (en) 1984-12-17

Family

ID=12720500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4547881A Expired JPS5952031B2 (en) 1981-03-30 1981-03-30 Cold welding method

Country Status (3)

Country Link
JP (1) JPS5952031B2 (en)
DE (1) DE3211499C2 (en)
GB (1) GB2097298B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077305A1 (en) 2010-12-10 2012-06-14 パナソニック株式会社 Conducting path, semiconductor device using conducting path, and method for producing conducting path and semiconductor device
US9013029B2 (en) 2011-08-25 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Joined body having an anti-corrosion film formed around a junction portion, and a semiconductor device having the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016100470A1 (en) * 2016-01-13 2017-07-13 Faurecia Emissions Control Technologies, Germany Gmbh Assembly with at least two components of an exhaust system and method of joining
CN106271404B (en) * 2016-08-15 2018-08-24 鞍钢重型机械有限责任公司 A kind of production method of large size Water distribution circular pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077305A1 (en) 2010-12-10 2012-06-14 パナソニック株式会社 Conducting path, semiconductor device using conducting path, and method for producing conducting path and semiconductor device
US9013029B2 (en) 2011-08-25 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Joined body having an anti-corrosion film formed around a junction portion, and a semiconductor device having the same

Also Published As

Publication number Publication date
DE3211499C2 (en) 1986-08-21
GB2097298A (en) 1982-11-03
JPS57160584A (en) 1982-10-02
DE3211499A1 (en) 1982-10-21
GB2097298B (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US4746055A (en) Method and connecting material for the metallic joining of parts
JPS6071579A (en) Method of bonding alumina and metal
JPS61204953A (en) Hermetic sealing cover and manufacture thereof
CA2099049A1 (en) Permanent Metallic Bonding Method
JPH03230552A (en) Joint material for packaging semiconductor device
US3382052A (en) Ceramic brazing means
JPS60242653A (en) Composite material for lead frame
JPS5952031B2 (en) Cold welding method
JPH07506773A (en) Medium temperature diffusion bonding
US3585711A (en) Gold-silicon bonding process
JP2000068396A (en) Cover for hermetic seal
US4863090A (en) Room temperature attachment method employing a mercury-gold amalgam
JPH02177463A (en) Manufacture of ceramic-metal composite board
JP2002292474A (en) Method for bonding titanium material or titanium alloy material
JPH0225287A (en) Cold press welding method
JPH1197618A (en) Bonding of silicon wafer
JPS6320189A (en) Aluminum-iron-nickel alloy-solder clad material and production of ic device using said material
JPS61181136A (en) Die bonding
US3964093A (en) Bonding of dissimilar workpieces to a substrate
JPH0632869B2 (en) Brazing method for ceramics and metal
JPS63130258A (en) Junction structure
JPS61206245A (en) Hermetic seal cover and manufacture thereof
JPS61103684A (en) Joining method of metal
JPH0424154B2 (en)
JPH08124973A (en) Ultrasonic wire bonding method