JPH0749954B2 - Non-contact inner diameter measuring tool - Google Patents

Non-contact inner diameter measuring tool

Info

Publication number
JPH0749954B2
JPH0749954B2 JP25517790A JP25517790A JPH0749954B2 JP H0749954 B2 JPH0749954 B2 JP H0749954B2 JP 25517790 A JP25517790 A JP 25517790A JP 25517790 A JP25517790 A JP 25517790A JP H0749954 B2 JPH0749954 B2 JP H0749954B2
Authority
JP
Japan
Prior art keywords
probe
measured
inner diameter
distance
measuring tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25517790A
Other languages
Japanese (ja)
Other versions
JPH04134205A (en
Inventor
卓博 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP25517790A priority Critical patent/JPH0749954B2/en
Publication of JPH04134205A publication Critical patent/JPH04134205A/en
Publication of JPH0749954B2 publication Critical patent/JPH0749954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えばシリンダ等の円筒状の被測定物の内径
を測定するために利用される非接触式内径測定用具に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of use) The present invention relates to a non-contact type inner diameter measuring tool used for measuring the inner diameter of a cylindrical object such as a cylinder. .

(従来の技術) 従来、円筒体の内径を測定するには、作業員がハンデー
操作で行うノギスや隙間ゲージなどの計測具が使用され
る。これら計測具はいずれも円筒体内に差し込んで、そ
の内面の対向面部に触子を押し当て、その対向面部間の
距離を直接目盛りで読みとって該円筒体の内径を測定す
るようにしている。
(Prior Art) Conventionally, in order to measure the inner diameter of a cylindrical body, a measuring tool such as a caliper or a gap gauge used by a worker by a handy operation is used. Each of these measuring tools is inserted into a cylindrical body, and a tentacle is pressed against the facing surface portion of the inner surface thereof, and the distance between the facing surface portions is directly read on a scale to measure the inner diameter of the cylindrical body.

(発明が解決しようとする課題) ところで、従来のノギスや隙間ゲージなどの計測具は、
いずれも円筒体の内面の対向面部に触子を直接押し当て
ることにより計測する接触式であるので、構成が簡単で
取り扱えも楽であるが、しかしながら熟練者であって
も、円筒体の内面の中心線と直交する線上の対向面部に
接触子を適確に接触させることがなかなか困難で、円筒
体の内面の中心線からずれた線上の対向面部間を測定し
てしまうことがあって、真の内径(直径)をいっぱつで
正確に測定することが難しく、数箇所に渡って繰り返し
測定する必要があるなど、作業能率が悪いと共に正確さ
に欠け、またその測定作業中に円筒体の内面を触子によ
り傷付けてしまう心配があった。
(Problems to be solved by the invention) By the way, conventional measuring tools such as calipers and gap gauges are
All of them are contact-type measurement, in which the contactor is directly pressed against the inner surface of the inner surface of the cylindrical body, so the configuration is simple and easy to handle. It is quite difficult to bring the contactor into proper contact with the facing surface on a line orthogonal to the center line, and it may happen that the distance between the facing surfaces on a line deviated from the center line of the inner surface of the cylinder is measured. It is difficult to accurately measure the inner diameter (diameter) of all of them, and it is necessary to repeat the measurement at several points, so the work efficiency is poor and the accuracy is poor, and the inner surface of the cylindrical body during the measurement work I was worried that my tentacles would scratch me.

本発明は前記事情に鑑みなされ、その第1の目的とする
ところは、円筒体などの円筒状の被測定物内に差し込む
だけで、しかも被測定物内の中心からずれて差し込まれ
ても、該被測定物の内径を簡便に且つ高能率的にしかも
非接触で傷付ける心配もなく正確に測定することができ
るようになる非接触式内径測定具を提供することにあ
る。
The present invention has been made in view of the above circumstances, and a first object thereof is to simply insert into a cylindrical object to be measured, such as a cylindrical body, and even if the object is inserted out of the center of the object to be measured, It is an object of the present invention to provide a non-contact type inner diameter measuring tool which can measure the inner diameter of an object to be measured easily and efficiently without contact and scratching.

本発明の第2の目的とするところは、円筒状の被測定物
内に差し込むだけで、しかも被測定物内の中心からずれ
たり傾いて差し込まれても、該被測定物の内径を簡便に
且つ高能率的にしかも非接触で傷付ける心配もなく正確
に測定することができるようになるハンデー操作に有利
な非接触式内径測定具を提供することにある。
A second object of the present invention is to simply insert the inner diameter of the object to be measured into the cylindrical object to be measured, and even if the object to be measured is inserted while being displaced or inclined from the center of the object to be measured. Another object of the present invention is to provide a non-contact type inner diameter measuring tool which is highly efficient and can be accurately measured in a non-contact manner without damaging it, which is advantageous for a handy operation.

〔考案の構成〕[Constitution of device]

(課題を解決するための手段とその作用) この第1の発明の非接触式内径測定具は、前記第1の目
的を達成するために、円筒状の被測定物内に挿入される
プローブと、このプローブに周方向に90度ずつ向きを異
にして配設され且つ各々の指向する該被測定物内面部ま
での距離を検知する4個の距離センサーとを備えたこと
を特徴とする。
(Means for Solving the Problem and Its Action) The non-contact type inner diameter measuring tool of the first invention is a probe inserted into a cylindrical object to be measured in order to achieve the first object. The probe is provided with four distance sensors that are arranged in different directions by 90 degrees in the circumferential direction and that detect the distances to the inner surface of the object to be measured, which are respectively directed.

こうした構成の非接触式内径測定具であれば、プローブ
を支持して円筒状の被測定物内に差し込む。この際にプ
ローブが被測定物内の中心からずれていてもかまわな
い。その差し込み状態で該プローブに周方向に90度ずつ
向きを異にして配する4個の距離センサーでもって、各
々の距離センサーが指向する該被測定物の内面部までの
距離を検知する。これで被測定物の内周面上の前記プロ
ーブを中心として周方向に90度ずつずれた4方向の点
と、その4点のプローブの中心からの各距離とが解るこ
とから、それらを基にして所定の算式によりパーソナル
コンピュータ等の演算器で演算処理して該被測定物の内
径を求めるようにする。
With the non-contact type inner diameter measuring tool having such a configuration, the probe is supported and inserted into the cylindrical object to be measured. At this time, the probe may be displaced from the center of the object to be measured. With the four distance sensors arranged in the probe in different directions by 90 degrees in the circumferential direction in the inserted state, the distance to the inner surface of the measured object pointed by each distance sensor is detected. With this, it is possible to know four points on the inner peripheral surface of the object to be measured, which are deviated by 90 degrees in the circumferential direction from the probe, and the respective distances from the center of the probe at the four points. Then, the inner diameter of the object to be measured is obtained by performing arithmetic processing with an arithmetic unit such as a personal computer according to a predetermined arithmetic expression.

第2の発明の非接触式内径測定具は、前記第2の目的を
達成するために、円筒状の被測定物内に挿入されるプロ
ーブと、このプローブの所定の間隔を存した2段箇所
に、その両段箇所ともに等しく、それぞれ周方向に90度
ずつ向きを異にして配設され且つ各々の指向する該被測
定物内面部までの距離を検知する4個ずつの距離センサ
ーとを備えたことを特徴とする。
A non-contact type inner diameter measuring tool of a second invention is, in order to achieve the second object, a probe to be inserted into a cylindrical object to be measured and a two-stage location in which a predetermined interval of this probe exists. In addition, both of the two steps are equal, and are provided with four distance sensors, which are arranged in different directions by 90 degrees in the circumferential direction and detect the distance to the inner surface of the DUT that each direction points. It is characterized by that.

こうした構成の非接触式内径測定具であれば、プローブ
を手などで支持してハンデー操作などにより円筒状の被
測定物内に差し込む。この際にプローブが被測定物内の
中心からずれていたり傾いていてもかまわない。その差
し込み状態で該プローブの2段箇所にそれぞれ周方向に
90度ずつ向きを異にして配する4個ずつの距離センサー
でもって、各々の距離センサーが指向する該被測定物内
面部までの距離を検知する。これで、まず2段箇所の各
々同一方向に指向する距離センサー相互の距離検知値の
差と該2段箇所の間隔とによりプローブの傾き角度を求
め、その傾きによる修正を行って、被測定物の周面上の
前記プローブを中心として周方向に90度ずつずれた4方
向の点と、その4点のプローブの中心からの各距離とが
解ることから、それらを基にして所定の算式によりパー
ソナルコンピュータ等の演算器で演算処理して該被測定
物の内径を求めるようにする。
In the case of the non-contact type inner diameter measuring tool having such a configuration, the probe is supported by a hand or the like and inserted into the cylindrical object to be measured by a handy operation or the like. At this time, the probe may be displaced or tilted from the center of the object to be measured. In the inserted state, in each of the two stages of the probe,
The distances to the inner surface of the object to be measured, which are pointed by the respective distance sensors, are detected by the four distance sensors arranged in different directions by 90 degrees. With this, first, the inclination angle of the probe is obtained from the difference between the distance detection values of the distance sensors pointing in the same direction at each of the two steps and the distance between the two steps, and the inclination of the probe is corrected, and the object to be measured is corrected. Since the four points on the circumference surface of the probe which are deviated by 90 degrees in the circumferential direction about the probe and the distances from the center of the probe at the four points are known, a predetermined formula is used based on them. The inner diameter of the object to be measured is obtained by performing arithmetic processing with an arithmetic unit such as a personal computer.

(実施例) 以下本発明の一実施例を図面により説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

まず、第1図中1は円筒状の被測定物、2はその被測定
物1の内径φを測定するための非接触式内径測定具を示
している。その非接触式内径測定具2は、作業者が手で
基端部を持って被測定物1内に差し込み操作できる細長
いパイプ状のプローブ3と、このプローブ3の先端とこ
れより基端側方に所定の間隔Lを存した位置との2段箇
所にそれぞれ4個ずつ配設された距離センサー4a,4b,4
c,4d並びに5a,5b,5c,5dとから構成されている。なおこ
れら各距離センサー4a〜2d及び5a〜5dは光或いは超音波
を発振して各々が指向する被測定物までの距離を検知す
る光学式或いは超音波式の距離センサーである。
First, in FIG. 1, 1 is a cylindrical object to be measured, and 2 is a non-contact type inner diameter measuring tool for measuring the inner diameter φ of the object to be measured 1. The non-contact type inner diameter measuring tool 2 includes an elongated pipe-shaped probe 3 that an operator can manually insert into the DUT 1 by holding the proximal end portion, a distal end of this probe 3 and a lateral side of the proximal end thereof. The distance sensors 4a, 4b, 4 are arranged at four positions in two steps from the position at which the predetermined distance L exists.
It is composed of c, 4d and 5a, 5b, 5c, 5d. Each of the distance sensors 4a to 2d and 5a to 5d is an optical or ultrasonic distance sensor that oscillates light or ultrasonic waves to detect the distance to the object to be measured.

そのプローブ3の先端位置の1段目の4個の距離センサ
ー4a,4b、4c、4dは、該プローブ3の中心線と直角な同
一平面上にそれぞれ周方向に90度ずつ向きを異にして放
射状に周配されている。またプローブ3のやや基端側寄
り位置の2段目の4個の距離センサー5a,5b,5c,5dは、
前記1段目と全く同位相でもって該プローブ3の中心線
と直角な同一平面上にそれぞれ周方向に90度ずつ向きを
異にして放射状に周配されている。
The four distance sensors 4a, 4b, 4c, 4d at the first stage at the tip position of the probe 3 are arranged on the same plane perpendicular to the center line of the probe 3 by 90 degrees in the circumferential direction. It is arranged radially. Also, the four distance sensors 5a, 5b, 5c, 5d in the second stage, which are slightly closer to the base end side of the probe 3,
The probe 3 is radially arranged in the same plane as that of the first stage and on the same plane perpendicular to the center line of the probe 3 with their directions differing by 90 degrees in the circumferential direction.

こうした非接触式内径測定具2の各距離センサー4a〜4d
並びに5a〜5dはプローブ3内を通って導出された配線コ
ード6を介しパーソナルコンピュータ等の演算器7に電
気的に接続されている。そしてプローブ3をハンデー操
作などにより円筒状の被測定物1内に差し込み、その状
態で該プローブ3の2段箇所にそれぞれ周方向に90度ず
つ向きを異にして配する4個ずつの距離センサー4a〜4d
並びに5a〜5dでもって、各々の距離センサーが指向する
該被測定物1内面部までの距離を検知し、その各距離セ
ンサー4a〜4d並びに5a〜5dからの距離検知出力が増幅器
やA/D変換器等を介して演算器7の演算回路に送られて
所定の算式により演算処理されることで、該被測定物1
の内径が求められるようになっている。
Each of the distance sensors 4a to 4d of the non-contact type inner diameter measuring tool 2
Also, 5a to 5d are electrically connected to a computing unit 7 such as a personal computer via a wiring cord 6 led out through the inside of the probe 3. Then, the probe 3 is inserted into the cylindrical object to be measured 1 by handy operation or the like, and in that state, four distance sensors are arranged at the two stages of the probe 3 in different directions by 90 degrees in the circumferential direction. 4a-4d
And 5a to 5d, the distances to the inner surface of the DUT 1 detected by the respective distance sensors are detected, and the distance detection outputs from the distance sensors 4a to 4d and 5a to 5d are amplifiers and A / Ds. The DUT 1 is sent to the arithmetic circuit of the arithmetic unit 7 via a converter or the like and is subjected to arithmetic processing according to a predetermined arithmetic expression.
The inner diameter of is required.

その所定の算式を説明する。まず第2図に示す如く、プ
ローブ3が円筒状の被測定物1内に平行に差し込まれた
場合について述べと、この場合は2段箇所相互の対応配
置する距離センサー4aと5a、4bと5b、4cと5c、4dと5dが
同一距離検知出力を出すので、その一方の段の距離セン
サーからの検知出力を無視して考えれば良い。ここで第
3図に示す如く4個の距離センサーでもって各々の距離
センサーが指向する該被測定物1の内面部までの距離を
検知する。これで被測定物1の内周面上の前記プローブ
中心Sから周方向に90度ずつずれた4方向の点A,B,C,D
と、その4点A,B,C,Dのプローブ中心Sからの各距離a,
b,c,dとが解ることから、それら4点A,B,C,Dの座標から
被測定物1の内径φ=2rを以下の式で算出する。
The predetermined formula will be described. First, as shown in FIG. 2, the case where the probe 3 is inserted into the cylindrical object to be measured 1 in parallel will be described. In this case, the distance sensors 4a and 5a, 4b and 5b corresponding to each other at two stages are arranged. , 4c and 5c, and 4d and 5d output the same distance detection output, so it is sufficient to ignore the detection output from the distance sensor on one stage. Here, as shown in FIG. 3, four distance sensors detect the distance to the inner surface of the DUT 1 pointed by each distance sensor. As a result, points A, B, C, D on the inner peripheral surface of the DUT 1 in four directions deviated from the probe center S by 90 degrees in the circumferential direction.
And their respective distances a, B, C, D from the probe center S at the four points a,
Since b, c, and d are known, the inner diameter φ = 2r of the DUT 1 is calculated from the coordinates of these four points A, B, C, D by the following formula.

まず第3図の如く非測定物1の中心Oに対しプローブ中
心Sが(p,q)の座標点にあるとすれば、 である。それら各座標点から次の関係式が成り立つ。つ
まり、 これらの式から、 ab=r2−q2−p2=r2−(p2+q2) cd=r2−p2−q2=r2−(p2+q2) ∴ab=cdである。
First, assuming that the probe center S is at the (p, q) coordinate point with respect to the center O of the non-measurement object 1 as shown in FIG. Is. The following relational expression is established from these coordinate points. That is, From these equations, ab = r 2 −q 2 −p 2 = r 2 − (p 2 + q 2 ) cd = r 2 −p 2 −q 2 = r 2 − (p 2 + q 2 ) ∴ab = cd is there.

一方 4ab=4r2−b2+2ad−a2−d2+2cd−c2 4r2=a2+b2+c2+d2 と求められる。on the other hand 4ab = 4r 2 -b 2 + 2ad -a 2 -d 2 + 2cd-c 2 4r 2 = a 2 + b 2 + c 2 + d 2 Is required.

次に、第4図に示す如く、プローブ3が円筒状の被測定
物1内に斜めに差し込まれた場合について述べと、この
場合は2段箇所相互の対応配置する距離センサー4aと5
a、4bと5b、4cと5c、4dと5dが異なった距離検知出力を
出す。これにて各距離検知値a1とa2、b1とb2、c1とc2
d1とd2(図面では紙面に垂直な方向の距離検知値c1
c2、d1とd2は表示せず)が得られる。ここで、その2段
箇所の各々同一方向に指向する距離センサー相互の距離
検知値の差a1−a2、b1−b2、c1−c2、d1−d2と、該2段
箇所の間隔Lとにより,プローブ3の傾き角度θとθ
(図面では紙面に垂直な方向の傾き角度θは表示せ
ず)を求める。これでその傾き角度θとθにより修
正を行なって、第4図に破線で示す如く被測定物1の中
心線と直交した4方の内面部までの距離a,b,c,dを算出
する。つまり、 a=a1 cosθ b=b1 cosθ 但しtanθ=(a2−a1)/L c=c1 cosθ d=d1 cosθ 但しtanθ=(c2−c1)/L 以上で、前記第3図に示したと同様に、被測定物1の内
周面上の前記プローブ中心Sから周方向に90度ずつずれ
た4方向の点A,B,C,Dと、その4点A,B,C,Dのプローブ中
心Sからの各距離a,b,c,dとが解ることから、それら4
点A,B,C,Dの座標から前記同様の算式により被測定物1
の内径φ=2rが求められるようにある。
Next, as shown in FIG. 4, the case where the probe 3 is slantingly inserted into the DUT 1 having a cylindrical shape will be described. In this case, the distance sensors 4a and 5 arranged corresponding to each other at the two-stage positions will be described.
a, 4b and 5b, 4c and 5c, 4d and 5d output different distance detection outputs. With this, the distance detection values a 1 and a 2 , b 1 and b 2 , c 1 and c 2 ,
d 1 and d 2 (in the drawing, the distance detection value c 1 in the direction perpendicular to the paper surface
(c 2 , d 1 and d 2 are not displayed) is obtained. Here, the difference a 1 -a 2, b 1 -b 2, c 1 -c 2, d 1 -d 2 of the distance sensor mutual distance detection value directed to each the same direction of the two-stage position, the 2 The inclination angles θ 1 and θ of the probe 3 are determined by the distance L between the steps.
2 (in the drawing, the inclination angle θ 2 in the direction perpendicular to the paper surface is not displayed). Then, the inclination angles θ 1 and θ 2 are corrected, and the distances a, b, c, d to the four inner surface parts orthogonal to the center line of the DUT 1 are shown as shown by the broken line in FIG. calculate. That is, a = a 1 cos θ 1 b = b 1 cos θ 1 where tan θ 1 = (a 2 −a 1 ) / L c = c 1 cos θ 2 d = d 1 cos θ 2 where tan θ 2 = (c 2 −c 1 ). As described above with reference to FIG. 3, the points A, B, C, D in the four directions deviated from the probe center S on the inner peripheral surface of the DUT 1 by 90 degrees in the circumferential direction. , The distances a, b, c, d from the probe center S of the four points A, B, C, D are known.
DUT 1 from the coordinates of points A, B, C and D using the same formula as above
It seems that the inner diameter φ = 2r is required.

なお、前述した被測定物1の内径φを求める算式は、第
5図に図解したように幾何学的にも証明できる。つま
り、円筒状の被測定物1内のS点にプローブ3が差し込
まれたと仮定し、そのS点から4個の距離センサーが指
向する向きと平行で被測定物1内中心Oを通る2本の直
径線を引く。そして図示のように各距離センサーで検知
される内面部の4点A,B,C,D及び点Pをとると、 との関係式が成り立つ。また各距離センサーの距離検知
値a,b,c,dは、 a=▲▼,b=▲▼,c=▲▼,d=▲▼で
あるので、前記▲▼,▲▼を書き直すと、 ここで、∠ACD=∠ABD(弧ADの円周角) ∴△SAC∽△SDB となる。
The formula for obtaining the inner diameter φ of the DUT 1 described above can be proved geometrically as illustrated in FIG. That is, assuming that the probe 3 is inserted at the point S in the cylindrical object to be measured 2, two probes passing through the center O in the object to be measured 1 are parallel to the directions in which the four distance sensors point from the point S. Draw a diameter line. Then, as shown in the figure, when the four points A, B, C, D and the point P on the inner surface detected by each distance sensor are taken, The relational expression with Further, the distance detection values a, b, c, d of each distance sensor are a = ▲ ▼, b = ▲ ▼, c = ▲ ▼, d = ▲ ▼, so if the above ▲ ▼ and ▲ ▼ are rewritten, Where ∠ACD = ∠ABD (circumferential angle of arc AD) ∴ △ SAC∽ △ SDB Becomes

なお、前記実施例では、プローブ3の2段箇所に4個ず
つの距離センサーを設けて、ハンデー操作などにより被
測定物1内に斜めに差し込まれても対処できるようにし
たが、プローブ3を図示しないがロボット等の機械装置
で常に被測定物内に傾かずに差し込めるような場合は、
4個の距離センサーを1段箇所のみ設けて構成しても可
である。
In addition, in the above-described embodiment, four distance sensors are provided at two stages of the probe 3 so that it can be dealt with even if it is inserted obliquely into the DUT 1 by handy operation or the like. Although it is not shown in the figure, if you can always insert it into the DUT without tilting it with a mechanical device such as a robot,
It is also possible to provide four distance sensors only at one stage.

〔発明の効果〕〔The invention's effect〕

本発明の非接触式内径測定具は、前述の如く円筒状の被
測定物内に挿入されるプローブと、このプローブに周方
向に90度ずつ向きを異にして配設され且つ各々の指向す
る該被測定物内面部までの距離を検知する4個の距離セ
ンサーとを備えた構成としたことから、円筒状の被測定
物内に差し込むだけで、しかも被測定物内に中心からず
れて差し込まれても、該被測定物の内径を簡便に且つ高
能率的にしかも非接触で傷付ける心配もなく正確に測定
することができる非常に簡便なものとなる。
The non-contact type inner diameter measuring tool of the present invention is arranged such that the probe inserted into the cylindrical object to be measured as described above and the probe are arranged so as to face each other by 90 degrees in the circumferential direction, and each of them is oriented. Since the structure is provided with four distance sensors that detect the distance to the inner surface of the object to be measured, it can be inserted only into the cylindrical object to be measured, and can be inserted from the center into the object to be measured. Even in this case, the inner diameter of the object to be measured can be measured easily and efficiently, and in a non-contact manner, and without any fear of damage, it becomes very simple.

本発明の非接触式内径測定具は、前述の如く円筒状の被
測定物内に挿入されるプローブと、このプローブの所定
の間隔を存した2段箇所に、その両段箇所ともに等し
く、それぞれ周方向に90度ずつ向きを異にして配設され
且つ各々の指向する該被測定物内面部までの距離を検知
する4個ずつの距離センサーとを備えた構成としたこと
から、円筒体などの被測定物内に差し込むだけで、しか
も被測定物内の中心からずれたり傾いて差し込まれて
も、該被測定物の内径を簡便に且つ高能率的にしかも非
接触で傷付ける心配もなく正確に測定することができる
ハンデー操作に有利な実用上非常に簡便なものとなる。
The non-contact type inner diameter measuring tool of the present invention has a probe to be inserted into a cylindrical object to be measured as described above, and two step portions at a predetermined interval of this probe, both of which are equal to each other. A cylindrical body or the like, which is provided with four distance sensors that are arranged in different directions by 90 degrees in the circumferential direction and that detect the distance to the inner surface of the measured object, which is directed respectively. Just by inserting into the object to be measured, and even if it is inserted from the center of the object to be measured or tilted, the inner diameter of the object to be measured can be easily and efficiently and non-contactly and accurately It is very convenient and practical for handy operation that can be measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す一部ブロック化した斜
視図、第2図は被測定物内にプローブを真っ直ぐ差し込
んだ場合の距離検知状態の概略図、第3図は同じくその
状態の平面図、第4図は被測定物内にプローブを斜めに
差し込んだ場合の距離検知状態の概略図、第5図は直径
の算式を幾何学的に証明する説明図である。 1……被測定物、2……非接触式内径測定用具、3……
プローブ、4a,4b,4c,4d,5a,5b,5c,5d……距離センサ
ー。
FIG. 1 is a partially blocked perspective view showing an embodiment of the present invention, FIG. 2 is a schematic view of a distance detection state when a probe is inserted straight into an object to be measured, and FIG. 3 is the same state. 4 is a plan view of FIG. 4, FIG. 4 is a schematic view of a distance detection state when a probe is obliquely inserted into an object to be measured, and FIG. 5 is an explanatory view for geometrically proving the formula of the diameter. 1 ... Object to be measured, 2 ... Non-contact type inner diameter measuring tool, 3 ...
Probes, 4a, 4b, 4c, 4d, 5a, 5b, 5c, 5d ... Distance sensors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状の被測定物内に挿入されるプローブ
と、このプローブに周方向に90度ずつ向きを異にして配
設され且つ各々の指向する該被測定物内面部までの距離
を検知する4個の距離センサーとを備えてなる非接触式
内径測定用具。
1. A probe to be inserted into a cylindrical object to be measured, and a distance to the inner surface of the object to be measured, which is arranged on the probe in different directions by 90 degrees in the circumferential direction and is directed respectively. A non-contact type inner diameter measuring tool comprising four distance sensors for detecting the.
【請求項2】円筒状の被測定物内に挿入されるプローブ
と、このプローブの長手方向に所定の間隔を存した2段
箇所に、その両段箇所ともに等しく、それぞれ周方向に
90度ずつ向きを異にして配設され且つ各々の指向する該
被測定物内面部までの距離を検知する4個ずつの距離セ
ンサーとを備えてなる非接触式内径測定用具。
2. A probe to be inserted into a cylindrical object to be measured, and two steps at a predetermined interval in the longitudinal direction of the probe, both steps being equal to each other in the circumferential direction.
A non-contact type inner diameter measurement tool, which is provided with four distance sensors arranged in different directions by 90 degrees and each detecting a distance to the inner surface of the measured object.
JP25517790A 1990-09-27 1990-09-27 Non-contact inner diameter measuring tool Expired - Lifetime JPH0749954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25517790A JPH0749954B2 (en) 1990-09-27 1990-09-27 Non-contact inner diameter measuring tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25517790A JPH0749954B2 (en) 1990-09-27 1990-09-27 Non-contact inner diameter measuring tool

Publications (2)

Publication Number Publication Date
JPH04134205A JPH04134205A (en) 1992-05-08
JPH0749954B2 true JPH0749954B2 (en) 1995-05-31

Family

ID=17275111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25517790A Expired - Lifetime JPH0749954B2 (en) 1990-09-27 1990-09-27 Non-contact inner diameter measuring tool

Country Status (1)

Country Link
JP (1) JPH0749954B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791338B2 (en) * 2006-12-20 2011-10-12 学校法人大同学園 Optical measuring device
CN102016499B (en) * 2008-05-01 2012-12-05 株式会社普利司通 Device and method for measuring object to be measured having hollow circular cylindrical shape, and device for inspecting external appearance of tire
JP5252641B2 (en) * 2009-03-30 2013-07-31 学校法人大同学園 Hole shape measurement method

Also Published As

Publication number Publication date
JPH04134205A (en) 1992-05-08

Similar Documents

Publication Publication Date Title
CN105473981B (en) The calibration of contact type probe
JPH02302603A (en) Optical type probe and measurement therefor
US20080034601A1 (en) Measurement Probe For Use In Coordinate Measuring Machines
JPH0262162B2 (en)
JP2008026276A (en) Coordinate detector for measuring position degree, and position degree measuring system
US20020029485A1 (en) Device for determining the dimensions of three-dimensional objects
JPH05507145A (en) Device for determining surface shape
US4672750A (en) Thread measurement tool
US6175813B1 (en) Circumferential diameter measuring apparatus and method
JPH0749954B2 (en) Non-contact inner diameter measuring tool
ES2280476T3 (en) PROCEDURE AND DEVICE FOR THE THREE-DIMENSIONAL MEASUREMENT OF WORK PARTS IN A TOOL MACHINE.
CN103335578A (en) A three-point circle-measuring instrument
JPS57127805A (en) Device for measuring three-dimensional shape
TW200906537A (en) Rotary cutting tool and method of detecting reference position
CA2531183A1 (en) Method and arrangement for measuring the position of an end head of a roll
KR101857984B1 (en) End-effector for checking defect in composite material
JP2002039741A (en) Method and instrument for measuring unevenness of body surface
JPS59100809A (en) Device for measuring out-of-roundness
JPH07260425A (en) Apparatus for measuring run out of rotor
JP2001099641A (en) Surface shape measurement method
JP2579726B2 (en) Contact probe
JP2005257395A (en) Measuring head
JP3585467B2 (en) Method and apparatus for measuring position and swing amount of ultrasonic probe
CN217132075U (en) Auxiliary tool for inspecting size of explosive column hole
US11009485B2 (en) Method of identifying and removing surface irregularities before ultrasonic inspection and device for identifying surface irregularities