JP3585467B2 - Method and apparatus for measuring position and swing amount of ultrasonic probe - Google Patents

Method and apparatus for measuring position and swing amount of ultrasonic probe Download PDF

Info

Publication number
JP3585467B2
JP3585467B2 JP2002029015A JP2002029015A JP3585467B2 JP 3585467 B2 JP3585467 B2 JP 3585467B2 JP 2002029015 A JP2002029015 A JP 2002029015A JP 2002029015 A JP2002029015 A JP 2002029015A JP 3585467 B2 JP3585467 B2 JP 3585467B2
Authority
JP
Japan
Prior art keywords
ultrasonic probe
probe
sensor
sensors
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002029015A
Other languages
Japanese (ja)
Other versions
JP2003232783A (en
Inventor
敬 古川
弘志 米山
Original Assignee
財団法人発電設備技術検査協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人発電設備技術検査協会 filed Critical 財団法人発電設備技術検査協会
Priority to JP2002029015A priority Critical patent/JP3585467B2/en
Publication of JP2003232783A publication Critical patent/JP2003232783A/en
Application granted granted Critical
Publication of JP3585467B2 publication Critical patent/JP3585467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波探触子の位置および首振り量を測定する方法ならびに装置に関するものである。
【0002】
【従来の技術】
超音波探傷試験において、探傷結果を解析し、反射源の位置を特定し、探傷結果を画像化するためには、超音波探触子の位置データ(基準点からの移動量)が必要になる。また、探触子の首振り走査については、手動探傷で主に用いられているが、従来の探傷方法では定量的に首振り量を検出することが困難であった。
【0003】
【発明が解決しようとする課題】
超音波探触子の位置を検出する方法の1つに、スケール(物差し)等を用いて直接測定する方法がある。これは、主に手動探傷試験で使用されている方法で、試験の効率化、精度、再現性等に問題があった。また、センサを用いて検出する方法には、探触子と検出センサとを一体化した検出方法と、探触子をセンサから分離した(すなわち、外部センサを利用する)検出方法とがある。
【0004】
前者の一体型検出方法は、(1)コンピュータのマウスに類似したものに探触子を組み込み、マウス内の球と試験体とが接触し、探触子が移動すると球が回転する方式がある。この球の回転量を、球に接触した2個のエンコーダで検出し、縦方向および横方向の移動量を検出する。この一体型検出方法には、さらに、(2)試験体表面にバーコードを付着し、バーコードのセンサで移動量を検出する方式がある。
【0005】
しかし、この一体型検出方法においける(1)の方式では、接触媒質があると、試験体とマウスの球との接触部、またはマウスの球とエンコーダとの接触部に接触媒質が入り込み、摩擦係数が低下して球が空滑りし、移動量が検出できなくなる。また、(2)の方式では、試験体表面にバーコードがあると表面状態が変化し、探傷試験結果に影響を与えるので、バーコードを付着した部分を試験することができない。また、試験体表面にバーコードを付着させる必要があるため、バーコードを付着した場所以外の任意の場所に適用できない。バーコードの特性上、一次元の移動量のみしか測定できない。上記(1)、(2)のいずれの方式も探触子の首振り量を検出できない。
【0006】
一方、後者の分離型(外部センサ利用)検出方法は、次の5つの方式がある。(1)探触子を外部から制御して走査し、移動量検出用のセンサも外部に配置する (主に自動探傷)方式。探触子の移動量を間接的に測定する。
(2)探触子の位置をスケール(物差し)で測定する(手動探傷)方式。
(3)探触子にLED等のマークを付し、外部に配置した複数のカメラで探触子の位置を三角測量の原理にもとづいて計算し、移動量を検出する方式。
(4)音波を用いて(3)と同様の原理で探触子の位置を測定する方式。
(5)ワイヤ式エンコーダを2個用いて探触子の移動量を検出する方式(特開平9−274024号公報)。
【0007】
これらの方式はいずれもマウスと超音波探触子とが一体でないので、構造が複雑になり、直接の測定ができない。
したがって、本発明の目的は、試験体に非接触で、探触子の相対的な位置(または移動量)および探触子の首振り量を測定する方法および装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の超音波探触子の位置・首振り量の測定方法は、超音波探触子に所定の間隔をあけて少なくとも1対の光学式非接触面内変位センサを設けること、試験体表面上において前記探触子の移動基準位置を定めること、前記各センサの移動位置をXY直角座標で記録すること、および前記各センサの座標位置の関数として前記探触子の位置および首振り量を算出することからなる。
【0009】
前記各センサの座標位置の関数は、下記の式によって定める。
X方向位置=δXa−m・sinθ
Y方向位置=δYa+m・cosθ
首振り量θ=sin-1{(δXa−δXb)/L}
ただし、Lは1対のセンサ間距離、
mは一方のセンサから試験体表面入射点までの距離、
δXaは一方のセンサのX方向移動距離、
δXbは他方のセンサのX方向移動距離、
δYaは一方のセンサのY方向移動距離である。
【0010】
本発明の超音波探触子の位置・首振り量の測定装置は、超音波探触子と、探触子に所定の間隔をあけて取り付けられた少なくとも1対の光学式非接触面内変位センサと、試験体表面上において探触子の移動基準位置を定める始動スイッチと、位置信号を出力する出力端子と、探傷信号を出力する出力端子とからなる。
【0011】
センサは、超音波探触子の前後側面または左右側面に取り付けられることが好ましい。さらに、センサが超音波探触子の前後側面の一方と左右側面の一方とに取り付けられてもよく、センサが超音波探触子の前後側面および左右側面にそれぞれ1対ずつ取り付けられてもよく、センサが超音波探触子の前後側面に1対および左右側面に2対それぞれ取り付けられていもよい。
【0012】
【発明の実施の形態】
図1−6を参照して、本発明の超音波探触子の位置・首振り量の測定方法および装置の実施例について説明する。
【0013】
本発明の超音波探触子の位置・首振り量の測定装置は、図1−4に示すように、
超音波探触子1と、その探触子1に所定の間隔をあけて取り付けられた少なくとも1対の光学式非接触面内変位センサ2a、2bと、試験体3の表面上において探触子1の移動基準位置を定める始動スイッチ4と、位置信号を出力する出力端子5と、探傷信号を出力する出力端子6とからなる。ここで、面内変位とは、平面または曲面にそった変位をいう。
【0014】
図1に示すように、出力端子5はコンピュータ7に接続され、また、出力端子6は超音波探傷機8に接続される。コンピュータ7は超音波探傷機8に接続されていて、相互に信号のやりとりをする。超音波探傷機1の内部には、振動子11が設けられている。
【0015】
超音波探傷試験を行うときに、超音波探触子1に付けたスイッチ4によって特定の位置を基準位置として指定し、出力端子5を通じてスイッチ4の信号をコンピュータ7に出力する。このとき、センサ2a、2bの出力を初期値に戻す。センサ2a、2bから出力される変位はセンサの移動量を示し、出力端子5を通じて電気信号としてコンピュータ7に出力する。センサ2a、2bは、超音波探触子1の上下面を除く周囲の側面に固定される。図1に示す例では、センサ2a、2bは超音波探触子1の前後側面に固定されており、それぞれ所定の距離Lだけ離間して配置される。
【0016】
図4は、本発明にもとづく超音波探触子1の各種変更例を示す平面図である。センサ2a、2bは、超音波探触子1の前後面に固定されるか(図4の(A))、左右側面に固定されるか(図4の(B)または(D))、前後側面のうちの一方と左右側面のうちの一方に固定されるか(図4の(C)または(E))、前後側面および左右側面にそれぞれ1対ずつ固定されるか(図4の(F)または(G))、前後側面に1対および左右側面に2対それぞれ固定されてもよい(図4の(H))。
【0017】
本発明の超音波探触子の位置・首振り量の測定方法は、超音波探触子1に所定の間隔Lをあけて少なくとも1対の光学式非接触面内変位センサ2a、2bを設けること、試験体3の表面上において探触子1の移動基準位置を定めること、各センサ2a、2bの移動位置をXY直角座標で記録すること、各センサ2a、2bの座標位置の関数として探触子1の位置および首振り量を算出することからなる。
【0018】
コンピュータ7は、センサ2a、2bから出力端子5をかいして出力された電気信号を受け、本発明の方法にもとづいて、超音波探触子1の位置および首振り量を次のように計算する。
【0019】
図4、5を参照して、本発明にもとづく超音波探触子1の位置および首振り量の測定方法を説明する。以下の計算では、一例としてセンサ2a、2bは探触子1の前後側面に取り付け、センサ2a、2b間の距離をLとし、センサ2aから試験体3の表面上入射点までの距離をmとする。また、首振り角度は時計回りを正とする。なお、センサの配置が変わる場合についても、同様の原理で計算できる。
【0020】
特定の位置(例えば、測定開始点、始動開始点等)を基準位置と定め、基準位置から各センサ2a、2bが移動した量のX、Y成分を、センサ2aについてはδXa、δYaとし、センサ2bについてはδXb、δYbとする。
【0021】
探触子1が首振り走査をしない場合には、δXa=δXb、δYa=δYbとなる。そのときの探触子1の移動量は各成分についてそれぞれδXa、δYaとなる。
【0022】
一方、探触子1が首振り走査(首振り角度θ)をした場合には、δXa≠δXbまたはδYa≠δYbとなる。首振り量θは、sin-1{(δXa−δXb)/L}またはcos -1 [{L−(δYa−δYb)} / L]となる。首振りがあるときの探触子1の移動量はX成分がδXa−m・sinθ、Y成分がδYa+m・cosθとなる。
【0023】
以上の結果を整理して、探触子の位置および首振り量の測定フローチャートを図5に示す。
本発明においては、センサの取付け位置は図4に示すように各種変更例が考えられるが、いずれの例においても基本的には上述した計算式が適用されうる。
【0024】
本発明は、金属材料、金属の溶接部の超音波探傷試験、セラミックス、複合材料等の超音波探傷試験に適用できる。
【0025】
【発明の効果】
本発明によれば、下記の効果が得られる。
(1)超音波探傷試験において、首振り量の定量測定が可能となり、傾斜した欠陥の検出ならびに定量的な評価が可能となる。
(2)手動探傷において、従来スケール(ものさし)で測定していた探触子の位置を、スケールを使わずに測定できるようになり、探傷作業の効率化、精度、信頼性、再現性を向上できる。
(3)手動探傷において、探傷結果の記録性が向上し、自動UTが困難な部位においても探傷結果を画像化できるようになり、探傷結果の記録性、再現性、信頼性が向上する。
(4)曲面や三次元的な形状を有する部位においても、表面形状にそって探触子の移動量を直接計測することができ、探傷結果の記録性、再現性が向上できる。
(5)非接触の光学センサを用いることにより、試験体表面に接触媒質が付着していても探触子の移動量が測定可能となり、探傷結果の記録性、再現性が向上できる。
(6)試験体表面にバーコード状の模様を付着するなどの処理が不用になり、探傷結果の信頼性、記録性、再現性が向上できる。
【図面の簡単な説明】
【図1】本発明の超音波探触子の正面図である。
【図2】図1に示す超音波探触子の一方の端面側から見た斜視図である。
【図3】図1に示す超音波探触子の底面側から見た斜視図である。
【図4】本発明にもとづく超音波探触子の各種変更例を示す平面図である。
【図5】本発明にもとづく超音波探触子の移動量および首振り量の測定原理を示す説明図である。
【図6】本発明にもとづく超音波探触子の移動量および首振り量の計算手順を示すフローチャートである。
【符号の説明】
1:超音波探触子、 2a、2b:センサ、 3試験体、 4始動スイッチ、
5:出力端子、 6出力端子、 7:コンピュータ、 8:超音波探傷機。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a position and a swing amount of an ultrasonic probe.
[0002]
[Prior art]
In ultrasonic testing, in order to analyze the test results, identify the position of the reflection source, and image the test results, the position data of the ultrasonic probe (the amount of movement from the reference point) is required. . Further, the swinging scanning of the probe is mainly used in manual flaw detection, but it is difficult to quantitatively detect the swinging amount by the conventional flaw detection method.
[0003]
[Problems to be solved by the invention]
One of the methods for detecting the position of the ultrasonic probe is a method of directly measuring using a scale (a ruler) or the like. This is a method mainly used in a manual flaw detection test, and has problems in efficiency, accuracy, reproducibility and the like of the test. In addition, the detection method using a sensor includes a detection method in which the probe and the detection sensor are integrated, and a detection method in which the probe is separated from the sensor (that is, using an external sensor).
[0004]
In the former integrated detection method, there is a method of (1) incorporating a probe into a device similar to a computer mouse, a ball in the mouse comes into contact with a test object, and the ball is rotated when the probe moves. . The amount of rotation of the sphere is detected by two encoders in contact with the sphere, and the amount of movement in the vertical and horizontal directions is detected. The integrated detection method further includes (2) a method in which a barcode is attached to the surface of a test sample and the amount of movement is detected by a barcode sensor.
[0005]
However, in the method of (1) in this integrated detection method, if there is a couplant, the couplant enters the contact portion between the test sample and the mouse sphere or the contact portion between the mouse sphere and the encoder, The friction coefficient decreases, the ball slips, and the amount of movement cannot be detected. In the method (2), if a bar code is present on the surface of the test body, the surface state changes, which affects the flaw detection test result. In addition, since it is necessary to attach a barcode to the surface of the test specimen, the method cannot be applied to any place other than the place where the barcode is attached. Due to the characteristics of barcodes, only one-dimensional movement can be measured. Neither of the methods (1) and (2) can detect the swing amount of the probe.
[0006]
On the other hand, the latter separation type (using an external sensor) detection method includes the following five methods. (1) A method in which the probe is controlled and scanned from outside, and a sensor for detecting the amount of movement is also provided outside (mainly automatic flaw detection). The amount of movement of the probe is measured indirectly.
(2) A method of measuring the position of the probe with a scale (manual rule) (manual flaw detection).
(3) A method in which a mark such as an LED is attached to the probe, the position of the probe is calculated by a plurality of externally arranged cameras based on the principle of triangulation, and the amount of movement is detected.
(4) A method of measuring the position of the probe using sound waves according to the same principle as (3).
(5) A method of detecting the movement amount of a probe using two wire encoders (Japanese Patent Application Laid-Open No. 9-274024).
[0007]
In any of these methods, since the mouse and the ultrasonic probe are not integrated, the structure becomes complicated and direct measurement cannot be performed.
Accordingly, an object of the present invention is to provide a method and an apparatus for measuring the relative position (or the amount of movement) of a probe and the amount of swing of the probe without contacting a test object.
[0008]
[Means for Solving the Problems]
The method for measuring the position and swing amount of an ultrasonic probe according to the present invention includes providing at least one pair of optical non-contact in-plane displacement sensors at predetermined intervals on the ultrasonic probe, Determining the movement reference position of the probe above, recording the movement position of each sensor in XY rectangular coordinates, and calculating the position and swing amount of the probe as a function of the coordinate position of each sensor. Calculation.
[0009]
The function of the coordinate position of each sensor is determined by the following equation.
X direction position = δXa-m · sin θ
Y direction position = δYa + m · cos θ
Swing amount θ = sin −1 {(δXa−δXb) / L}
Where L is the distance between a pair of sensors,
m is the distance from one sensor to the point of incidence on the specimen surface,
δXa is the moving distance of one sensor in the X direction,
δXb is the moving distance of the other sensor in the X direction,
δYa is the movement distance of one sensor in the Y direction.
[0010]
An apparatus for measuring the position and swing amount of an ultrasonic probe according to the present invention includes an ultrasonic probe and at least one pair of optical non-contact in-plane displacements attached to the probe at a predetermined interval. The sensor includes a sensor, a start switch for determining a movement reference position of the probe on the surface of the test piece, an output terminal for outputting a position signal, and an output terminal for outputting a flaw detection signal.
[0011]
The sensors are preferably mounted on the front and rear sides or the left and right sides of the ultrasonic probe. Further, the sensors may be attached to one of the front and rear sides and one of the left and right sides of the ultrasonic probe, and the sensors may be attached to the front and rear sides and the left and right sides of the ultrasonic probe, respectively. Alternatively, one pair of sensors may be attached to the front and rear sides of the ultrasonic probe and two pairs of sensors may be attached to the left and right sides.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
With reference to FIGS. 1-6, a description will be given of an embodiment of a method and an apparatus for measuring the position and swing amount of an ultrasonic probe according to the present invention.
[0013]
As shown in FIGS. 1-4, the measuring device for measuring the position and swing amount of the ultrasonic probe according to the present invention includes:
An ultrasonic probe 1, at least one pair of optical non-contact in-plane displacement sensors 2 a and 2 b attached to the probe 1 at a predetermined interval, and a probe on the surface of the test piece 3 A start switch 4 for determining a movement reference position, an output terminal 5 for outputting a position signal, and an output terminal 6 for outputting a flaw detection signal. Here, the in-plane displacement refers to a displacement along a plane or a curved surface.
[0014]
As shown in FIG. 1, the output terminal 5 is connected to a computer 7, and the output terminal 6 is connected to an ultrasonic flaw detector 8. The computer 7 is connected to the ultrasonic flaw detector 8 and exchanges signals with each other. A vibrator 11 is provided inside the ultrasonic flaw detector 1.
[0015]
When performing an ultrasonic test, a specific position is designated as a reference position by a switch 4 attached to the ultrasonic probe 1, and a signal of the switch 4 is output to a computer 7 through an output terminal 5. At this time, the outputs of the sensors 2a and 2b are returned to the initial values. The displacement output from the sensors 2a and 2b indicates the amount of movement of the sensor, and is output to the computer 7 as an electric signal through the output terminal 5. The sensors 2a and 2b are fixed to peripheral side surfaces excluding the upper and lower surfaces of the ultrasonic probe 1. In the example shown in FIG. 1, the sensors 2a and 2b are fixed to the front and rear side surfaces of the ultrasonic probe 1, and are disposed apart from each other by a predetermined distance L.
[0016]
FIG. 4 is a plan view showing various modified examples of the ultrasonic probe 1 based on the present invention. The sensors 2a and 2b are fixed to the front and rear surfaces of the ultrasonic probe 1 ((A) in FIG. 4), fixed to the left and right side surfaces ((B) or (D) in FIG. 4), and Whether it is fixed to one of the side surfaces and one of the left and right side surfaces ((C) or (E) of FIG. 4), or is fixed to each of the front and rear side surfaces and the left and right side surfaces in pairs (FIG. ) Or (G)), one pair on the front and rear sides and two pairs on the left and right sides, respectively (FIG. 4H).
[0017]
In the method for measuring the position and the amount of swing of the ultrasonic probe according to the present invention, at least a pair of optical non-contact in-plane displacement sensors 2a and 2b are provided on the ultrasonic probe 1 at a predetermined interval L. Determining the movement reference position of the probe 1 on the surface of the test body 3, recording the movement position of each sensor 2a, 2b in XY rectangular coordinates, and searching as a function of the coordinate position of each sensor 2a, 2b. It consists of calculating the position of the tentacle 1 and the amount of swing.
[0018]
The computer 7 receives the electric signal output from the sensors 2a and 2b via the output terminal 5, and calculates the position and the swing amount of the ultrasonic probe 1 as follows based on the method of the present invention. I do.
[0019]
With reference to FIGS. 4 and 5, a method of measuring the position and the swing amount of the ultrasonic probe 1 according to the present invention will be described. In the following calculation, as an example, the sensors 2a and 2b are attached to the front and rear side surfaces of the probe 1, the distance between the sensors 2a and 2b is L, and the distance from the sensor 2a to the incident point on the surface of the specimen 3 is m. I do. The swing angle is positive in the clockwise direction. Note that the same principle can be used to calculate the case where the arrangement of the sensors changes.
[0020]
A specific position (e.g., a measurement start point, a start start point, etc.) is determined as a reference position, and the X and Y components of the amount by which the sensors 2a and 2b have moved from the reference position are δXa and δYa for the sensor 2a. 2b is δXb and δYb.
[0021]
When the probe 1 does not perform swiveling scanning, δXa = δXb and δYa = δYb. The amount of movement of the probe 1 at that time is δXa and δYa for each component.
[0022]
On the other hand, when the probe 1 performs head swing scanning (head swing angle θ), δXa ≠ δXb or δYa ≠ δYb. The swing amount θ is sin −1 {(δXa−δXb) / L} or cos −1 [{L− (δYa−δYb)} / L] . When the head 1 is swung, the moving amount of the probe 1 is δXa−m · sin θ for the X component and δYa + m · cos θ for the Y component.
[0023]
FIG. 5 shows a flowchart of the measurement of the position of the probe and the amount of swinging, summarizing the above results.
In the present invention, the sensor mounting position may be variously modified as shown in FIG. 4, but in any of the examples, the above-described calculation formula can be basically applied.
[0024]
INDUSTRIAL APPLICABILITY The present invention can be applied to an ultrasonic inspection test for a metal material, a welded portion of a metal, and an ultrasonic inspection test for a ceramic, a composite material, and the like.
[0025]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) In the ultrasonic flaw detection test, the swing amount can be quantitatively measured, and a tilted defect can be detected and quantitatively evaluated.
(2) In manual flaw detection, the position of the probe, which was previously measured using a scale, can now be measured without using a scale, improving the efficiency of flaw detection work, improving accuracy, reliability, and reproducibility. it can.
(3) In manual flaw detection, the feasibility of recording flaw detection results is improved, and the flaw detection results can be imaged even in areas where automatic UT is difficult, so that the feasibility of recording flaw detection results, reproducibility, and reliability are improved.
(4) Even in a portion having a curved surface or a three-dimensional shape, the movement amount of the probe can be directly measured along the surface shape, and the recordability and reproducibility of the flaw detection result can be improved.
(5) By using a non-contact optical sensor, the amount of movement of the probe can be measured even if the couplant is attached to the surface of the test piece, and the recordability and reproducibility of the flaw detection result can be improved.
(6) A process such as attaching a bar-code-like pattern to the surface of the test body becomes unnecessary, and the reliability, recordability, and reproducibility of the flaw detection result can be improved.
[Brief description of the drawings]
FIG. 1 is a front view of an ultrasonic probe according to the present invention.
FIG. 2 is a perspective view of the ultrasonic probe shown in FIG. 1 as viewed from one end face side.
FIG. 3 is a perspective view of the ultrasonic probe shown in FIG. 1 as viewed from a bottom surface side.
FIG. 4 is a plan view showing various modifications of the ultrasonic probe according to the present invention.
FIG. 5 is an explanatory diagram showing the principle of measuring the moving amount and the swing amount of the ultrasonic probe according to the present invention.
FIG. 6 is a flowchart showing a procedure for calculating the amount of movement and the amount of swing of the ultrasonic probe according to the present invention.
[Explanation of symbols]
1: Ultrasonic probe, 2a, 2b: Sensor, 3 specimens, 4 Start switch,
5: output terminal, 6 output terminal, 7: computer, 8: ultrasonic flaw detector.

Claims (8)

超音波探触子に所定の間隔をあけて少なくとも1対の光学式非接触面内変位センサを設けること、試験体表面上において前記探触子の移動基準位置を定めること、前記各センサの移動位置をXY直角座標で記録すること、および前記各センサの座標位置の関数として前記探触子の位置および首振り量を算出することからなる、超音波探触子の位置・首振り量の測定方法。Providing at least one pair of optical non-contact in-plane displacement sensors at predetermined intervals on the ultrasonic probe; determining a movement reference position of the probe on the surface of a test object; moving each of the sensors Measuring the position and swing amount of the ultrasonic probe, comprising recording the position in XY rectangular coordinates, and calculating the position and swing amount of the probe as a function of the coordinate position of each sensor. Method. 前記各センサの座標位置の関数は、下記の式によって定める、請求項1に記載の測定方法。
X方向位置=δXa−m・sinθ
Y方向位置=δYa+m・cosθ
首振り量θ=sin-1{(δXa−δXb)/L}
ただし、Lは1対のセンサ間距離、
mは一方のセンサから試験体表面入射点までの距離、
δXaは一方のセンサのX方向移動距離、
δXbは他方のセンサのX方向移動距離、
δYaは一方のセンサのY方向移動距離である。
The measuring method according to claim 1, wherein the function of the coordinate position of each sensor is determined by the following equation.
X direction position = δXa-m · sin θ
Y direction position = δYa + m · cos θ
Swing amount θ = sin −1 {(δXa−δXb) / L}
Where L is the distance between a pair of sensors,
m is the distance from one sensor to the point of incidence on the specimen surface,
δXa is the moving distance of one sensor in the X direction,
δXb is the moving distance of the other sensor in the X direction,
δYa is the movement distance of one sensor in the Y direction.
超音波探触子と、該探触子に所定の間隔をあけて取り付けられた少なくとも1対の光学式非接触面内変位センサと、試験体表面上において前記探触子の移動基準位置を定める始動スイッチと、位置信号を出力する出力端子と、探傷信号を出力する出力端子とからなる、超音波探触子の位置・首振り量の測定装置。An ultrasonic probe, at least one pair of optical non-contact in-plane displacement sensors attached to the probe at a predetermined interval, and defining a movement reference position of the probe on the surface of the test object An apparatus for measuring the position and swing amount of an ultrasonic probe, comprising a start switch, an output terminal for outputting a position signal, and an output terminal for outputting a flaw detection signal. 前記センサが前記超音波探触子の前後側面に取り付けられている、請求項3に記載の測定装置。The measuring device according to claim 3, wherein the sensor is attached to front and rear side surfaces of the ultrasonic probe. 前記センサが前記超音波探触子の左右側面に取り付けられている、請求項3に記載の測定装置。The measuring device according to claim 3, wherein the sensors are attached to left and right side surfaces of the ultrasonic probe. 前記センサが前記超音波探触子の前後側面の一方と左右側面の一方とに取り付けられている、請求項3に記載の測定装置。The measuring device according to claim 3, wherein the sensor is attached to one of front and rear side surfaces and one of left and right side surfaces of the ultrasonic probe. 前記センサが前記超音波探触子の前後側面および左右側面にそれぞれ1対ずつ取り付けられている、請求項3に記載の測定装置。The measuring device according to claim 3, wherein a pair of the sensors is attached to each of front and rear side surfaces and left and right side surfaces of the ultrasonic probe. 前記センサが前記超音波探触子の前後側面に1対および左右側面に2対それぞれ取り付けられている、請求項3に記載の測定装置。The measuring device according to claim 3, wherein one pair of the sensors is attached to front and rear sides of the ultrasonic probe and two pairs of sensors are attached to left and right sides of the ultrasonic probe.
JP2002029015A 2002-02-06 2002-02-06 Method and apparatus for measuring position and swing amount of ultrasonic probe Expired - Fee Related JP3585467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002029015A JP3585467B2 (en) 2002-02-06 2002-02-06 Method and apparatus for measuring position and swing amount of ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002029015A JP3585467B2 (en) 2002-02-06 2002-02-06 Method and apparatus for measuring position and swing amount of ultrasonic probe

Publications (2)

Publication Number Publication Date
JP2003232783A JP2003232783A (en) 2003-08-22
JP3585467B2 true JP3585467B2 (en) 2004-11-04

Family

ID=27773544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002029015A Expired - Fee Related JP3585467B2 (en) 2002-02-06 2002-02-06 Method and apparatus for measuring position and swing amount of ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3585467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200974A1 (en) 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Method and system for hand-held ultrasonic testing of a test object

Also Published As

Publication number Publication date
JP2003232783A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
US6382028B1 (en) Ultrasonic defect detection system
JP2017037082A (en) Sensor device and residual stress measurement system having the same
US20080034601A1 (en) Measurement Probe For Use In Coordinate Measuring Machines
CN104897064B (en) A kind of new smooth arm amplifying type high precision length sensor and measuring method
JP2007147525A (en) Method of evaluating lift-off amount between eddy current flaw detecting probe and inspected object, and evaluation device therefor, eddy current flaw detection method, and eddy current flaw detector
CN1057831C (en) Apparatus for measuring dimension of article and scale to be used in the same
RU2308029C1 (en) Device for testing weld of rail joint
JP5535095B2 (en) Work size measuring device
JP3585467B2 (en) Method and apparatus for measuring position and swing amount of ultrasonic probe
JP4864734B2 (en) Optical displacement sensor and displacement measuring apparatus using the same
JP2006234427A (en) Flatness measuring method and instrument
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JP2002039741A (en) Method and instrument for measuring unevenness of body surface
RU2740539C1 (en) Railway wheel profile measurement method and device for implementation thereof
WO2006103483A2 (en) Magnetic imaging equipment for non-destructive testing of magnetic and/or electrically conductive materials
TWI793693B (en) Ultrasonic inspection device and ultrasonic inspection method
KR101213277B1 (en) Device and method for ultrasonic inspection using profilometry data
JPH0131565B2 (en)
Bachnak et al. Non-destructive evaluation and flaw visualization using an eddy current probe
TWM545243U (en) Optical rotation axis multi-freedom degree error inspection device
JP2517966Y2 (en) Portable angle measuring device
JP2011117832A (en) Optical three-dimensional shape measuring instrument and optical three-dimensional shape measuring method
JPH05164667A (en) Surface crack progress measuring method
JPS6396551A (en) Ultrasonic flaw detector
TWI387722B (en) Method and system for detecting surface shape of laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees