JPH0746157B2 - 放熱容器補助冷却系 - Google Patents

放熱容器補助冷却系

Info

Publication number
JPH0746157B2
JPH0746157B2 JP61275530A JP27553086A JPH0746157B2 JP H0746157 B2 JPH0746157 B2 JP H0746157B2 JP 61275530 A JP61275530 A JP 61275530A JP 27553086 A JP27553086 A JP 27553086A JP H0746157 B2 JPH0746157 B2 JP H0746157B2
Authority
JP
Japan
Prior art keywords
containment vessel
cooling system
heat
reactor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61275530A
Other languages
English (en)
Other versions
JPS62265597A (ja
Inventor
ジョン・ハルパート・ガーマー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS62265597A publication Critical patent/JPS62265597A/ja
Publication of JPH0746157B2 publication Critical patent/JPH0746157B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】 米国政府は契約第DE-AT03-83SF11699号(24-BR-04577
内)および第DE-AT03-76SF700030号(24-BR-04817内)
により本発明の諸権利を有する。
発明の背景 発明の分野 本発明は、クレイグ(Craig)等の米国特許第4508677号
に開示された型のような液体金属冷却式プール型モジュ
ラ原子炉用の改良放熱容器冷却系に関する。
ナトリムまたはナトリウム・カリウム冷却式原子力発電
所の運転中の非常時に時々必要なことは、炉心の核分裂
反応を停止することである。この停止を達成するため、
制御棒が中性子を吸収するように炉心内の燃料集合体の
燃料棒間に十分に挿入される。しかし、かなりの量の熱
が核分裂生成物によって発生し続ける。原子炉を囲む構
造体は、いかなる構造的損傷も引き起こさずにこのよう
な残熱を消散させうる必要がある。冷却材と構造全体の
熱容量は残熱の消散を助ける。周囲構造体を構成する材
料は高温に安全に耐え得ないおそれがある。例えば、厚
いコンクリート壁は、通例、原子炉の格納ハウジングの
一部として使われる。しかし、コンクリートは高温に耐
えうるものと信頼することはできない。なぜなら、コン
クリートは高温状態で膨張と割れを起こし始めるからで
ある。運転停止中に原子炉構造体から熱を安全に除く補
助冷却系が必要である。
関連技術の説明 従来の原子炉は熱を原子炉から消散させるためにエネル
ギーによって駆動される様様な精巧な冷却装置を利用し
てきた。運転停止を要する事態の多くにおいて、エネル
ギー供給により冷却系自体は故障を起こしやすくなる。
例えば、炉心を冷却するポンプと通気装置が故障するお
それがある。さらに、運転者の介入が必要な場合、運転
者が適切な処理を講じえない幾つかの事態を予見しう
る。最も信頼性が高く望ましい冷却系は、運転停止後に
発生する残熱を連続的に除きうる完全に受動的な系であ
る。
出力が200-500メガワット(熱出力)の、米国特許第450
8677号に開示された型のような液体金属冷却式モジュラ
原子炉では、ナトリウムまたはナトリウム・カリウムを
冷却材として利用することにより数数の利点が得られ
る。水冷原子炉は水の沸騰点近傍で運転され、温度が幾
分上がると蒸気が発生しそして圧力が高まる。これに対
し、ナトリウムまたはナトリウム・カリウムの沸騰点は
極めて高く、1気圧で1800゜F程度である。原子炉の正常
な運転温度は900゜F程度である。液体金属は沸騰点が高
いので、水冷原子炉に伴う圧力問題と蒸気の発生は無く
なる。液体金属の熱容量により、ナトリウムまたはナト
リウム・カリウムは原子炉内の材料損傷のおそれなしに
数百゜Fに加熱されうる。
プール型液体金属冷却原子炉の原子炉容器は、容器壁の
一体性を損なういかなる穴ももたない本質的に滑らかな
密封カップ状容器である。この密封は1次容器からの液
体金属の漏れの防止に重要である。容器表面はまた、安
全状必要な厳密な検査のために接近可能でなければなら
ない。
代表的なナトリウム冷却原子炉では、2つのレベルのナ
トリウムループが使われ、通常、単一の1次ループと2
つ以上の2次ループが使われる。1次ループは、燃料棒
によって加熱される放射性の非常に高いナトリウムを収
容する。1次ループは熱交換器を貫通して非放射性2次
ナトリウムループの一つと熱を交換する。一般に、ナト
リウム冷却原子炉は一つのループの故障に備えて余剰2
次ループを組み込むように設計される。
制御棒を十分に挿入することによって原子炉を停止する
と、残熱の発生と、設備の熱容量に従って消散が続く。
原子炉を長期間全出力で運転したと仮定すると、停止後
の最初の1時間に、平均して全出力の約2%の熱が発生
し続ける。この発生残熱は時間と共に衰える。
発明の要約 液体金属冷却式モジュラ原子炉の停止中に生ずる残熱
は、原子炉容器と格納容器の周囲に設けた銅内で受動的
に消散する。胴壁から半径方向内方に向けた複数の長手
方向フィンにより完全に受働的な除熱系が完成する。胴
のフィンは格納容器表面から放射する熱の捕集に役立つ
表面積を拡張する。周囲空気が、格納容器とフィン付き
胴との間隙を通る胴内の通気路を通って上方に自然循環
する。フィンは熱を循環空気に伝え、こうして、胴とフ
ィンを冷却する。この伝熱の結果、格納容器と胴との温
度差が増加する。この温度差は格納容器から胴への放熱
を増す。なぜなら、放熱は格納容器が比較的低温の物体
と対面する限り継続するからである。事実上、この温度
差は、原子炉容器から残熱を消散させる過程における駆
動力である。
原子炉停止の場合、制御棒を十分挿入した後、燃料棒に
よって生じた熱は、主として熱放射によって原子炉容器
を通り不活性ガス間隙域を横切って周囲の格納容器に伝
達され、上記の熱の小部分は収容された不活性ガスにお
ける伝導と対流によって伝達される。原子炉容器の外側
と格納容器の内側に設けた放熱性の高い表面が熱伝達の
効率を高める。
次いで、熱は、部分的に熱放射により、また部分的に格
納容器と遮蔽胴間の通路内の循環空気への直接伝熱によ
って格納容器の外面から除かれる。モジュラ原子炉容器
は従来の原子炉容器に比べて直径が約3分の1そして高
さがほぼ同じである。モジュラ原子炉では、表面積対出
力の比は従来の大きな原子炉の表面積対出力の比より約
3倍大きい。これは残熱を受動的に消散させうる十分な
表面積をもたらす。格納容器の伝達性の高い外面も熱伝
達を増大させる。従って、本発明は余剰2次ナトリウム
ループを不要にする。単一の2次ループが代替冷却機構
としての受動的補助冷却系と共に安全に機能しうる。
実施の態様の詳細な説明 プール型液体金属冷却式モジュラ原子炉は原子炉停止中
の残熱の消散を許容するのに十分な表面積をもつ。全体
的に、原子炉装置は熱容量が比較的小さい。残存してい
る問題は、格納構造体を実質的に損傷せずに残熱を消散
させることである。完全に受動的な冷却系を設けると、
エネルギーにより駆動されるポンプとファンに依存しな
いですみ、また運転者の介入も不要になる。同時に、格
納容器自体は、モジュラ原子炉に寸法上の拘束があるこ
とと、応力蓄積のおそれのある箇所をなくするために滑
らかな無孔カップ状構造体でなければならないことか
ら、改造は禁物である。また、検査要件が厳しいので、
格納容器はその製造と建設中の検査が簡単である必要が
ある。
第1図はプール型ナトリウム冷却式モジュラ増殖炉のハ
ウジング1における補助冷却系の構成を示す概略図であ
る。燃料棒と炉心2は概して球形端部をもつ筒形原子炉
容器4によって完全に格納されている。理想的な場合、
原子炉容器4はその頂部にだけ貫通部をもつ簡単なカッ
プ状容器である。容器4の一体性を損ねると、放射性冷
却材5、通例液体ナトリウムが漏れるおそれがある。
冷却材が漏れた場合、それを受け入れるため、原子炉容
器4はそれより幾分大径の格納容器6により少なくとも
冷却材の液面まで囲まれる。原子炉容器と同様に、格納
容器構造体は冷却材が逃げるおそれのある漏流路となる
オリフィスのない連続的な容器である。原子炉容器4と
格納容器6との間の間隙域7は全域にわたって真空にさ
れた後不活性ガスで満たされる。不活性ガスはナトリウ
ム火災を起こす漏れたナトリウムと酸素との反応を防止
する。胴8が循環空気空間9によって格納容器6から隔
てられ、この胴はハウジング1の下端に空気入口10を持
つとともにハウジング1の上端近くに空気出口12を持っ
ている。第3図について述べると、胴8は内側表面積拡
張手段を有し、この手段は、好適実施例では、周方向に
相隔たり半径方向に延在する複数の長手方向フィン14で
ある。胴8の周囲には他の比較的狭い空気間隙15が設け
られ、それに続いて1層の絶縁材料16と、他の狭い空気
間隙17と、厚いコンクリート壁18が存する。
第2図は第1図の該略図と並び、ナトリウム温度を原子
炉容器に沿う高さの関数として示すグラフである。曲線
Gは正常な運転状態を示す。
正常運転中、「クール」なナトリウムは約610゜Fであ
る。曲線Gについて述べると、クールなナトリウムが炉
心によって加熱されると、その温度は875゜Fまで上が
る。この加熱されたナトリウムは、第1図に矢印Nで示
すように容器ナトリウムループに沿って上昇し、熱交換
器(図示せず)を通る。熱交換器は1次ナトリウムルー
プから2次ループへ熱を交換し、1次冷却材を875゜Fか
ら約610゜Fまで冷却する。
運転停止が起こると、制御棒は十分に挿入され、中性子
の大部分を吸収する。約1時間、平均して出力の約2%
が発生し続ける。これは核分裂生成物の崩壊が減少する
につれて衰退し続ける。装置の全熱容量により残熱の一
部が吸収され、ナトリウムが温められる。全ポンプが完
全に故障したと仮定すると、自然対流がプール内のナト
リウムを循環させる。約1080゜Fで、曲線Hの変化が始ま
る。ナトリウムは、炉心を通るにつれ、約1140゜Fまで加
熱される。このナトリウムは上昇し、原子炉容器と格納
容器と胴とを経る熱交換によって原子炉容器の内面上で
冷却して約1080゜Fに戻る。曲線H内の面積は誘起された
対流の自然ポンプ作用を表す。
冷却系の好適実施例のさらに詳細な図解を第3図の断面
図に示す。運転停止中の原子炉容器4からの熱の流路は
ハウジング1の諸層を通るように図解されている。熱伝
達の効率を最高にするため、原子炉容器4の外面と、格
納容器6の内面19と、その外面20と、内側フィン面14
と、胴8の内面22には伝熱性および(または)吸熱性の
高い表面を設けると仮定する。
炉心の核分裂生成物によって生ずる熱Qは、矢印Aで示
すように、ナトリウム冷却材5から原子炉容器壁4を経
て伝導される。原子炉容器壁の外面から熱が、矢印Bで
示すように、主として格納容器6の内面19への放射によ
り、空気空間9を横切って伝達される。もしナトリウム
が空気空間9内に漏れたとすると、そのナトリウムは格
納容器6への伝導的熱伝達を良くするであろう。次い
で、この熱は格納容器壁の厚さを経て格納容器外壁面20
に伝導される。自然循環空気が格納容器壁面20と接しな
がら移動し、吸収した熱の多くを対流によって放散す
る。これを矢印Cで示してある。格納容器外壁面20はま
た、矢印Dで示すように、胴8の低温内面およびそれと
関連する長手方向フィン14に熱を放射する。次いで、フ
ィン14は、矢印Eで示すように、循環空気に伝熱する。
表面積拡張手段としてのフィン14は、放射された熱を吸
収し、そして残熱を循環周囲空気に対流によって伝えう
る追加的な表面積を有する。この対流によってフィン14
が冷却されるので、格納容器6から胴8への熱の放射が
続く。最後に、極めて少量の熱(矢印F)が胴壁8を経
て絶縁材16へ伝導され補助冷却間隙17内の空気に放散さ
れてコンクリート壁18の加熱を防ぐ。
表面積拡張手段としてのフィンの代替実施例を第4図と
第5図の断面図に示す。第4図では、胴8は単に、格納
容器6を囲む滑らかな壁をもつ円筒である。胴8には複
数の長手方向の表面積拡張体が取り付けられている。こ
れらの表面積拡張体は概してV形の溝形帯片24であり、
これらの溝形帯片はそれぞれの頂部に平らな中央部をも
ち、これにより取付具26が溝形帯片24を胴8に固定す
る。
第5図は波形挿入体28が表面積拡張手段として作用する
実施例を示す。波形挿入体28は格納容器6と胴8との間
に設置されたアコーデオン形ひだ付き帯片であり、二つ
の別々の空気流、すなわち、内側空気流30と外側空気流
32とを形成し、両流に波形挿入体28から熱が伝えられ対
流によって消散しうる。
以上、本発明の好適実施例を十分かつ完全に開示した
が、様々な改変と代替構造と等価物を本発明の範囲内で
採用しうる。従って、以上の説明と図示は本発明の範囲
を限定するものではない。
【図面の簡単な説明】
第1図は原子炉容器と格納容器と胴の概略図、第2図は
ナトリウムの温度分布を原子炉の高さの関数として示す
グラフ、第3図は原子炉容器と格納容器と胴を経る熱伝
達路を示す断面略図、第4図は取付可能な表面積拡張体
の断面図、第5図は波形表面積拡張挿入体の断面図であ
る。 4:原子炉容器、6:格納容器、7:間隙域、8:胴、9:循環空
気空間、10:空気入口、12:空気出口、14:フィン、24:溝
形帯片、28:波形挿入体。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】原子炉容器と、不活性ガスを収容する第1
    間隙域を形成するように前記原子炉容器から離隔してそ
    れを囲む格納容器とを有する液体金属プール型モジュラ
    原子炉用の放熱容器受動冷却系において、 循環空気通路をなす第2間隙域を形成するように前記格
    納容器から離隔してそれを囲む胴を設け、前記循環空気
    通路は第1位置にある空気入口と、前記第1位置より垂
    直方向に高い第2位置にある空気出口とを有し、前記第
    2間隙域は前記胴と前記格納容器との間に存し、 また、前記格納容器からの放射熱を受けるべく前記胴か
    ら前記格納容器に向けて前記第2間隙域内に長手方向に
    存し前記格納容器の外面から離隔するように前記胴内に
    表面積拡張手段を設け、これにより、前記格納容器から
    放射された熱は、前記表面積拡張手段により受け止めら
    れ、前記循環空気通路内の空気へ対流、伝導及び放射さ
    れる、ことを特徴とする放熱容器受動冷却系。
  2. 【請求項2】前記表面積拡張手段は、前記胴の内面に沿
    って配置されるとともに前記格納容器に向けて半径方向
    内方に延在する複数の長手方向フィンからなる、特許請
    求の範囲第(1)項記載の冷却系。
  3. 【請求項3】前記表面積拡張手段は、断面が概してV形
    で前記胴の内壁に沿って長手方向に取り付けられた複数
    の溝形帯片からなり、これらの溝形帯片は前記格納容器
    に向かって伸延している、特許請求の範囲第(1)項記
    載の冷却系。
  4. 【請求項4】前記表面積拡張手段は、前記胴内にそれと
    熱的に接触して長手方向に設置されたひだ付き帯片によ
    って形成された波形挿入体からなり、これらの波形挿入
    体は前記格納容器に向かって伸延している、特許請求の
    範囲第(1)項記載の冷却系。
  5. 【請求項5】1次容器と、不活性ガスを満たした第1間
    隙域を形成するように前記1次容器から離隔してそれを
    囲む2次格納容器とを有するナトリウムまたはナトリウ
    ム・カリウム冷却式プール型モジュラ原子炉用の受動冷
    却系において、 前記格納容器と前記胴との間に第2間隙域を形成するよ
    うに前記格納容器から離隔してそれを囲む胴を設け、こ
    の胴は第1位置にある空気入口と、前記第1位置より垂
    直方向に高い第2位置にある空気出口とを備え、また、
    前記格納容器からの放射熱を受ける拡張面を形成すべく
    前記格納容器に向けて前記第2間隙域内に突出するよう
    に前記胴の内面に沿って相隔たり半径方向内方に延在す
    る複数の長手方向フィンを設け、これにより、前記格納
    容器から放射された熱は、前記複数のフィンにより受け
    止められ、前記第2間隙域内の空気へ対流、伝導及び放
    射されることを特徴とする受動冷却系。
JP61275530A 1985-12-02 1986-11-20 放熱容器補助冷却系 Expired - Lifetime JPH0746157B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/803,353 US4678626A (en) 1985-12-02 1985-12-02 Radiant vessel auxiliary cooling system
US803353 1985-12-02

Publications (2)

Publication Number Publication Date
JPS62265597A JPS62265597A (ja) 1987-11-18
JPH0746157B2 true JPH0746157B2 (ja) 1995-05-17

Family

ID=25186320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275530A Expired - Lifetime JPH0746157B2 (ja) 1985-12-02 1986-11-20 放熱容器補助冷却系

Country Status (5)

Country Link
US (1) US4678626A (ja)
JP (1) JPH0746157B2 (ja)
DE (1) DE3640774A1 (ja)
FR (1) FR2591019B1 (ja)
GB (1) GB2183894B (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950009881B1 (ko) * 1986-09-19 1995-09-01 가부시기가이샤 히다찌세이사꾸쇼 원자로 설비
US4767594A (en) * 1987-05-19 1988-08-30 General Electric Company Control of reactor coolant flow path during reactor decay heat removal
US4976913A (en) * 1989-04-24 1990-12-11 Schoessow Glen J Nuclear energy system using pelletized fuel in a boiling liquid reactor
US4959193A (en) * 1989-05-11 1990-09-25 General Electric Company Indirect passive cooling system for liquid metal cooled nuclear reactors
US5043135A (en) * 1989-05-18 1991-08-27 General Electric Company Method for passive cooling liquid metal cooled nuclear reactors, and system thereof
US5021211A (en) * 1989-07-25 1991-06-04 General Electric Company Liquid metal cooled nuclear reactors with passive cooling system
US5043136A (en) * 1990-06-21 1991-08-27 General Electric Company Passive cooling safety system for liquid metal cooled nuclear reactors
US5047204A (en) * 1990-11-21 1991-09-10 The Babcock & Wilcox Company Nuclear fuel element for a particle bed reactor
US5223210A (en) * 1991-08-16 1993-06-29 General Electric Company Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
US5158741A (en) * 1991-08-16 1992-10-27 General Electric Company Passive cooling system for top entry liquid metal cooled nuclear reactors
US5190720A (en) * 1991-08-16 1993-03-02 General Electric Company Liquid metal cooled nuclear reactor plant system
DE4136347A1 (de) * 1991-11-05 1993-05-06 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De Containment eines kernreaktors
US5267281A (en) * 1991-11-08 1993-11-30 Westinghouse Electric Corp. Heat exchanger and water tank arrangement for passive cooling system
FR2693309B1 (fr) * 1992-07-01 1994-09-23 Framatome Sa Procédé et dispositif d'évacuation de la puissance résiduelle d'un réacteur nucléaire à neurton rapides à l'arrêt.
US5339340A (en) * 1993-07-16 1994-08-16 General Electric Company Liquid metal reactor air cooling baffle
IT1275709B1 (it) * 1995-03-30 1997-10-17 Finmeccanica Spa Impianto per lo smaltimento del calore dall'interno di una struttura di contenimento di un reattore nucleare
US6519308B1 (en) * 1999-06-11 2003-02-11 General Electric Company Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
CA2430219A1 (en) * 2002-05-28 2003-11-28 Gordon Latos Radiant heat pump
FI20040387A0 (fi) * 2004-03-11 2004-03-11 Sulo Toivo Luomala Paineastia
US9984777B2 (en) 2007-11-15 2018-05-29 Nuscale Power, Llc Passive emergency feedwater system
US9803510B2 (en) 2011-04-18 2017-10-31 Holtec International Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials, and method of the same
US11569001B2 (en) 2008-04-29 2023-01-31 Holtec International Autonomous self-powered system for removing thermal energy from pools of liquid heated by radioactive materials
US11504814B2 (en) 2011-04-25 2022-11-22 Holtec International Air cooled condenser and related methods
WO2012149057A1 (en) 2011-04-25 2012-11-01 Holtec International, Inc. Air-cooled heat exchanger and system and method of using the same to remove waste thermal energy from radioactive materials
US20130272474A1 (en) * 2012-04-12 2013-10-17 Westinghouse Electric Company Llc Passive containment air cooling for nuclear power plants
CN103377733B (zh) * 2012-04-27 2016-01-27 上海核工程研究设计院 大型压水堆核电站事故后堆芯非能动余热排出系统
US9589685B2 (en) 2012-05-21 2017-03-07 Smr Inventec, Llc Passive reactor cooling system
WO2013177196A1 (en) * 2012-05-21 2013-11-28 Holtec International, Inc. Passive reactor containment protection system
US11901088B2 (en) 2012-05-04 2024-02-13 Smr Inventec, Llc Method of heating primary coolant outside of primary coolant loop during a reactor startup operation
US9786394B2 (en) * 2012-05-21 2017-10-10 Smr Inventec, Llc Component cooling water system for nuclear power plant
US11935663B2 (en) 2012-05-21 2024-03-19 Smr Inventec, Llc Control rod drive system for nuclear reactor
US10096389B2 (en) 2012-05-21 2018-10-09 Smr Inventec, Llc Loss-of-coolant accident reactor cooling system
CN105026087A (zh) 2012-12-03 2015-11-04 霍尔泰克国际股份有限公司 钎焊组合物及其用途
CN104810066A (zh) * 2014-01-26 2015-07-29 上海核工程研究设计院 外壁面带有翅片的压力容器
CN104810067A (zh) * 2014-01-26 2015-07-29 上海核工程研究设计院 外壁面带条纹的压力容器
CN104810069A (zh) * 2014-01-26 2015-07-29 上海核工程研究设计院 一种外壁面带条纹的压力容器
CN104867526B (zh) * 2015-05-20 2017-09-22 华北电力大学 一种具有热管导液装置的非能动安全壳冷却系统
WO2017205706A1 (en) * 2016-05-26 2017-11-30 Elysium Industries Ltd. Heat removal system for a molten salt reactor system
CN108682461B (zh) * 2018-05-15 2023-08-15 中国核电工程有限公司 一种用于小型堆的安全壳非能动空气冷却系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB351725A (en) * 1929-06-13 1931-07-02 Gen Electric Improved means for increasing the effective heat radiation from corrugated and other surfaces
GB1169885A (en) * 1965-10-28 1969-11-05 Servotomic Ltd Combined Radiator and Liquid Heater
FR1526536A (fr) * 1967-06-08 1968-05-24 Cuve de réacteur sous pression en béton précontraint isolée thermiquement
US4061534A (en) * 1969-02-17 1977-12-06 United Kingdom Atomic Energy Authority Nuclear reactors
GB1412764A (en) * 1972-09-28 1975-11-05 Nuclear Power Co Whetstone Ltd Nuclear reactors
FR2269022A1 (en) * 1974-04-25 1975-11-21 Kraftwerk Union Ag Hot fluid ducts with clad internal insulation - ceramic pellets between metal liners keep pressure walls cool
GB2031577B (en) * 1978-07-11 1982-09-29 Johnson C Insulated heat shield and convector unit
GB2048450B (en) * 1979-04-07 1983-08-24 Cooke M J Increasing heat tranfer area of central heating radiators
FR2495815B1 (fr) * 1980-12-09 1986-09-19 Commissariat Energie Atomique Reacteur nucleaire refroidi par un metal liquide contenu dans une cuve obturee par des fermetures superieures
FR2506063B1 (fr) * 1981-05-14 1987-09-04 Commissariat Energie Atomique Reacteur nucleaire comportant un refroidissement des structures peripheriques par convection naturelle d'air
JPS57201890A (en) * 1981-06-08 1982-12-10 Nippon Atomic Ind Group Co Thermal shielding body for reactor
GB2115545B (en) * 1982-02-19 1984-10-17 Malcolm John Siddall Heat reflecting panel
DE3306940A1 (de) * 1982-03-05 1983-09-15 British Nuclear Fuels Ltd., Risley, Warrington, Cheshire Kernbrennstoff-transportbehaelter
US4508677A (en) * 1983-02-09 1985-04-02 General Electric Company Modular nuclear reactor for a land-based power plant and method for the fabrication, installation and operation thereof
EP0162956A3 (en) * 1984-02-21 1988-01-07 Stone & Webster Engineering Corporation Modular liquid metal nuclear reactor
GB2157880B (en) * 1984-04-19 1988-02-10 Westinghouse Electric Corp An improved nuclear reactor plant construction

Also Published As

Publication number Publication date
DE3640774C2 (ja) 1989-12-14
FR2591019A1 (fr) 1987-06-05
FR2591019B1 (fr) 1990-06-01
GB2183894A (en) 1987-06-10
JPS62265597A (ja) 1987-11-18
GB2183894B (en) 1990-02-14
GB8627068D0 (en) 1986-12-10
US4678626A (en) 1987-07-07
DE3640774A1 (de) 1987-06-04

Similar Documents

Publication Publication Date Title
JPH0746157B2 (ja) 放熱容器補助冷却系
EP0528674B1 (en) Passive cooling system for liquid metal cooled nuclear reactors with backup coolant flow path
US5043136A (en) Passive cooling safety system for liquid metal cooled nuclear reactors
EP0398733B1 (en) Improved system for passive cooling of liquid metal cooled nuclear reactors
US11145424B2 (en) Direct heat exchanger for molten chloride fast reactor
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
US20150117589A1 (en) Molten Salt Reactor
US5406602A (en) Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability
US11636956B2 (en) Liquid metal-cooled nuclear reactor incorporating a completely passive residual power removal (DHR) system
US5021211A (en) Liquid metal cooled nuclear reactors with passive cooling system
US5442668A (en) Passive pressure tube light water cooled and moderated reactor
US3830695A (en) Nuclear reactor
US20230197301A1 (en) Nuclear reactor cooled by liquid metal incorporating a passive decay heat removal system with a phase change material thermal reservoir and a removable thermally-insulating layer around the phase change material reservoir
JP2023055218A (ja) モジュール式冷熱源を備えた完全に受動的な崩壊熱除去(dhr)システムを組み込む液体金属冷却式原子炉
JP2008122248A (ja) 高速炉
US3377993A (en) Radioisotope heat source with overheat protection
KR20190124537A (ko) 고체 노심 핵연료체 및 고체 노심을 갖는 소형 모듈형 원자로
JPH1184056A (ja) 原子炉格納容器の冷却設備
Dunckel Emergency heat removal system for a nuclear reactor
KR20170040552A (ko) 분산형 내부 덕트를 가진 한국형 액체금속냉각로 핵연료 집합체
JPH058996B2 (ja)
CN116130121A (zh) 基于热管导热的熔盐反应堆
JPS61268994A (ja) 中間熱交換器
JPS5940294A (ja) 原子炉容器のノズル構造
JPH06174884A (ja) 高速増殖炉

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term