JPH0745630A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0745630A
JPH0745630A JP15895093A JP15895093A JPH0745630A JP H0745630 A JPH0745630 A JP H0745630A JP 15895093 A JP15895093 A JP 15895093A JP 15895093 A JP15895093 A JP 15895093A JP H0745630 A JPH0745630 A JP H0745630A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
type
semiconductor device
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15895093A
Other languages
Japanese (ja)
Inventor
Kiyoshi Nemoto
清志 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP15895093A priority Critical patent/JPH0745630A/en
Publication of JPH0745630A publication Critical patent/JPH0745630A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To form a third semiconductor layer of a semiconductor device at a high speed without increasing the number of processes. CONSTITUTION:In a semiconductor device manufacturing method by which a semiconductor device having a P-type base layer 32 an N-type collector layer 31 and N-type emitter layers 35 and 36 in the layer 32 can be manufactured, the emitter layers 35 and 36 are formed by respectively introducing two kinds of impurities of a first conductivity into the base layer 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、特にバイポーラトランジスタの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a bipolar transistor.

【0002】[0002]

【従来の技術】バイポーラトランジスタのエミッタ,ベ
ース接合に逆バイアスを印加すると、電界によりキャリ
アがホットになり、接合付近の酸化膜中にトラップさ
れ、バイポーラトランジスタの電流増幅率(hFE)が劣
化する。この現象を緩和するには、エミッタ・ベース接
合での電界を弱めることが得策である。この方策が、特
開平2−283032号,特開平2−148849号,
特開平3−149833号,特開平3−225950
号,特開平4−75348号,特開平4−159721
号に開示されている。これらは、図2(A),(B)又
は図3(A),(B)に示すように製造される。
2. Description of the Related Art When a reverse bias is applied to the emitter / base junction of a bipolar transistor, the electric field causes carriers to become hot and trapped in an oxide film near the junction, degrading the current amplification factor (h FE ) of the bipolar transistor. . To alleviate this phenomenon, it is a good idea to weaken the electric field at the emitter-base junction. This measure is disclosed in JP-A-2-283032, JP-A-2-148849,
JP-A-3-149833, JP-A-3-225950
JP-A-4-75348, JP-A-4-159721
No. These are manufactured as shown in FIG. 2 (A), (B) or FIG. 3 (A), (B).

【0003】図2(A),(B)の従来例では、次のよ
うに製造される。まず、基板(図示せず)の表面にN型
のコレクタ層1を形成し、更にこのコレクタ層1表面に
P型のベース層2を形成した後、絶縁膜3を形成する。
次に、この絶縁膜3にエミッタ窓を開口する。つづい
て、前記絶縁膜3をマスクとしてN- 型のエミッタ層4
を形成した後、露出するエミッタ層4表面に薄い酸化膜
5を形成する(図2(A)参照)。次いで、前記開口部
の側壁に多結晶シリコンからなるサイドウォール(側
壁)6を形成する。ここで、この側壁6の形成時に酸化
膜5の一部はエッチングされ、N+ エミッタ形成用の窓
が開口される。ひきつづき、N+ 型の多結晶シリコン層
7を形成し、拡散することによりN+ 型のエミッタ層8
を形成する(図2(B)参照)。
The conventional example shown in FIGS. 2A and 2B is manufactured as follows. First, an N-type collector layer 1 is formed on the surface of a substrate (not shown), a P-type base layer 2 is further formed on the surface of the collector layer 1, and then an insulating film 3 is formed.
Next, an emitter window is opened in this insulating film 3. Next, using the insulating film 3 as a mask, the N type emitter layer 4 is formed.
Then, a thin oxide film 5 is formed on the exposed surface of the emitter layer 4 (see FIG. 2A). Next, a side wall (side wall) 6 made of polycrystalline silicon is formed on the side wall of the opening. Here, when the side wall 6 is formed, part of the oxide film 5 is etched, and a window for forming the N + emitter is opened. Subsequently, an N + -type polycrystalline silicon layer 7 is formed and diffused to form an N + -type emitter layer 8
Are formed (see FIG. 2B).

【0004】図3(A),(B)の従来例では、次のよ
うに製造される。まず、基板(図示せず)の表面にN型
のコレクタ層1を形成し、更にこのコレクタ層1表面に
P型のベース層2を形成する。次に、レジスト11をマス
クとしてN- 型のエミッタ層4を形成する(図3(A)
参照)。つづいて、レジスト12をマスクとしてN+ 型の
エミッタ層8を形成する(図3(B)参照)。
The conventional example shown in FIGS. 3A and 3B is manufactured as follows. First, an N type collector layer 1 is formed on the surface of a substrate (not shown), and a P type base layer 2 is further formed on the surface of the collector layer 1. Then, N the resist 11 as a mask - -type emitter layer 4 (FIG. 3 (A)
reference). Subsequently, the N + type emitter layer 8 is formed using the resist 12 as a mask (see FIG. 3B).

【0005】[0005]

【発明が解決しようとする課題】ところで、図2,図3
の従来例では、N+ 型のエミッタ層8の周囲にN- 型の
エミッタ層4を形成しているため、エミッタ・ベース逆
バイアス時の電界が弱められ、hFEの劣化が緩和され
る。しかしながら、このような構造を得るために図2で
示した製造方法ではN- 型のエミッタ層4を形成する工
程と側壁6を形成する工程が必要となり、工程数が増加
する。また、酸化膜5の膜厚が薄いため、エミッタ・ベ
ース間の容量が増大し、高速化の妨げとなる。
[Problems to be Solved by the Invention]
In the conventional example, since the N type emitter layer 4 is formed around the N + type emitter layer 8, the electric field at the emitter-base reverse bias is weakened and the deterioration of h FE is alleviated. However, in order to obtain such a structure, the manufacturing method shown in FIG. 2 requires a step of forming the N type emitter layer 4 and a step of forming the side wall 6, which increases the number of steps. Further, since the oxide film 5 is thin, the capacitance between the emitter and the base increases, which hinders the speedup.

【0006】図3の製造方法では、N- 型のエミッタ層
4とN+ 型のエミッタ層8をそれぞれレジスト11,12を
マスクとして形成しているため、合わせ余裕が必要とな
り、図3のxの領域が大きくなり、エミッタサイズを小
さくできず、高速化の妨げとなるという問題点を有す
る。
In the manufacturing method of FIG. 3, the N -type emitter layer 4 and the N + -type emitter layer 8 are formed using the resists 11 and 12 as masks, respectively. However, there is a problem that the area becomes large and the emitter size cannot be reduced, which hinders speeding up.

【0007】この発明はこうした事情を考慮してなされ
たもので、第1導電型の第3半導体層を工程数を増加す
ることなく形成できるとともに、高速化が可能な半導体
装置の製造方法を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and provides a method of manufacturing a semiconductor device capable of forming a third semiconductor layer of the first conductivity type without increasing the number of steps and capable of speeding up. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】この発明は、第1導電型
の第1半導体層に第2導電型の第2半導体層を形成し、
前記第2半導体層に第1導電型の第3半導体層を形成し
た半導体装置の製造方法において、前記第3半導体層が
2種類の第1導電型の不純物を第2半導体層に導入する
ことにより形成することを特徴とする半導体装置の製造
方法である。
According to the present invention, a second conductivity type second semiconductor layer is formed on a first conductivity type first semiconductor layer,
A method of manufacturing a semiconductor device, wherein a third semiconductor layer of the first conductivity type is formed on the second semiconductor layer, wherein the third semiconductor layer introduces two kinds of impurities of the first conductivity type into the second semiconductor layer. It is a method of manufacturing a semiconductor device, which is characterized in that the semiconductor device is formed.

【0009】この発明において、半導体装置としては、
前記第1半導体層がコレクタ、前記第2半導体層がベー
ス、前記第3半導体層がエミッタであるバイポーラトラ
ンジスタが挙げられる。
In the present invention, as the semiconductor device,
There is a bipolar transistor in which the first semiconductor layer is a collector, the second semiconductor layer is a base, and the third semiconductor layer is an emitter.

【0010】この発明において、前記第3半導体層を形
成する2種類の第1導電型の不純物としては、拡散係数
が互いに異なる不純物が挙げられる。ここで、2種類の
第1導電型の不純物としては、例えばヒ素とリン、ある
いはボロンとアルミニウムが挙げられる。
In the present invention, the two types of first conductivity type impurities forming the third semiconductor layer include impurities having different diffusion coefficients. Here, examples of the two types of impurities of the first conductivity type include arsenic and phosphorus, or boron and aluminum.

【0011】[0011]

【作用】この発明によれば、第1導電型の第3半導体層
を工程数を増加することなく形成できるとともに、高速
化を実現できる。
According to the present invention, the third semiconductor layer of the first conductivity type can be formed without increasing the number of steps, and at the same time, high speed can be realized.

【0012】[0012]

【実施例】以下、この発明の一実施例に係るバイポーラ
トランジスタの製造方法を工程順に図1(A)〜(C)
を参照して説明する。 (1) まず、基板(図示せず)の表面にN型のコレクタ層
31を形成した後、このコレクタ層31表面にP型のベース
層32を形成した(図1(A)参照)。次に、全面に絶縁
膜33を形成した後、この絶縁膜33を選択的にエッチング
してエミッタ窓33aを形成した。更に、厚み100〜5
00nmの多結晶シリコン層34を形成した後、ヒ素(A
s)を加速電圧50〜150KeV,ドーズ量1×10
15〜1×1016 cm -2をイオン注入し、ひきつづきリン
を50〜150KeV,ドーズ量1×1013〜1×10
16cm-2でイオン注入した(図1(B)参照)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a bipolar transistor according to an embodiment of the present invention will be described below in the order of steps with reference to FIGS.
Will be described with reference to. (1) First, an N-type collector layer is formed on the surface of a substrate (not shown).
After forming 31, the P-type base layer 32 was formed on the surface of the collector layer 31 (see FIG. 1A). Next, after forming an insulating film 33 on the entire surface, this insulating film 33 was selectively etched to form an emitter window 33a. Furthermore, thickness 100 to 5
After forming the 00 nm polycrystalline silicon layer 34, arsenic (A
s) is an acceleration voltage of 50 to 150 KeV, a dose amount of 1 × 10
Ion implantation of 15 to 1 × 10 16 cm −2 is performed, phosphorus is continuously added at 50 to 150 KeV, and dose is 1 × 10 13 to 1 × 10.
Ion implantation was performed at 16 cm -2 (see FIG. 1B).

【0013】(2) 次に、As,リンをイオン注入した多
結晶シリコン層34をエッチングした後、900〜100
0℃,10〜60分アニール処理を施した。これによ
り、多結晶シリコン層34より前記P型のベース層32に不
純物が拡散し、浅いN+ 型のエミッタ層35,深いN-
のエミッタ層36が形成された(図1(C)参照)。な
お、前記エミッタ層35は拡散係数の小さいAsにより形
成され、他方の前記エミッタ層36は拡散係数の大きいリ
ンにより形成される。
(2) Next, after etching the polycrystalline silicon layer 34 into which As and phosphorus have been ion-implanted, 900 to 100
Annealing treatment was performed at 0 ° C. for 10 to 60 minutes. As a result, impurities are diffused from the polycrystalline silicon layer 34 to the P type base layer 32, and a shallow N + type emitter layer 35 and a deep N type emitter layer 36 are formed (see FIG. 1C). ). The emitter layer 35 is formed of As having a small diffusion coefficient, and the other emitter layer 36 is formed of phosphorus having a large diffusion coefficient.

【0014】上記実施例によれば、拡散係数の異なる2
種類の不純物(As,P)により浅いN+ 型のエミッタ
層35,深いN- 型のエミッタ層36を同時に形成するた
め、工程の増加することなく、エミッタ・ベース逆バイ
アス時のhFE劣化の小さいエミッタ層を形成できる。ま
た、N+ 型のエミッタ層35,深いN- 型のエミッタ層36
は多結晶シリコン層34からの拡散により同時に形成でき
るため、エミッタサイズを縮小でき、高速化の可能なエ
ミッタ層を形成できる。
According to the above-mentioned embodiment, two different diffusion coefficients are used.
Since the shallow N + -type emitter layer 35 and the deep N -type emitter layer 36 are simultaneously formed by the kinds of impurities (As, P), h FE deterioration at the time of reverse bias of the emitter-base is prevented without increasing the number of processes. A small emitter layer can be formed. Further, the N + type emitter layer 35 and the deep N type emitter layer 36
Can be simultaneously formed by diffusion from the polycrystalline silicon layer 34, so that the emitter size can be reduced and an emitter layer capable of speeding up can be formed.

【0015】なお、上記実施例では、2種類の不純物と
して、n型導電型としての不純物つまりAsとPを用い
た場合について述べたが、これに限らず、p型導電型と
しての不純物つまりボロンとAl、あるいはその他の拡
散係数が異なる2種類の不純物を用いることができる。
更に、上記実施例では、バイポーラとランジスタについ
て述べたが、これに限らず、他の半導体装置に適用して
もよい。
In the above embodiment, the n-type conductivity type impurities, that is, As and P are used as the two types of impurities, but the present invention is not limited to this, and the p-type conductivity type impurity, ie, boron. And Al, or other two kinds of impurities having different diffusion coefficients can be used.
Further, in the above-mentioned embodiment, the bipolar and the transistor are described, but the present invention is not limited to this and may be applied to other semiconductor devices.

【0016】[0016]

【発明の効果】以上詳述した如くこの発明によれば、エ
ミッタ層等の第1導電型の第3半導体層を工程数を増加
することなく形成できるとともに、低濃度と高濃度の第
3半導体層を微細に形成してエミッタ・ベース逆バイア
ス時のhFE劣化を緩和でき、更に高速化が可能なバイポ
ーラトランジスタ等の半導体装置を製造する方法を提供
できる。
As described above in detail, according to the present invention, the first conductive type third semiconductor layer such as the emitter layer can be formed without increasing the number of steps, and the low concentration and high concentration third semiconductor layers can be formed. It is possible to provide a method for manufacturing a semiconductor device such as a bipolar transistor which can form a fine layer and can alleviate h FE deterioration at the time of reverse bias of an emitter / base, and can further speed up.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係るバイポーラトランジ
スタの製造方法を工程順に示す断面図。
FIG. 1 is a sectional view showing a method of manufacturing a bipolar transistor according to an embodiment of the present invention in the order of steps.

【図2】従来のバイポーラトランジスタの製造方法を工
程順に示す断面図。
FIG. 2 is a cross-sectional view showing a method of manufacturing a conventional bipolar transistor in the order of steps.

【図3】その他の従来のバイポーラトランジスタの製造
方法を工程順に示す断面図。
3A to 3D are cross-sectional views showing another conventional method for manufacturing a bipolar transistor in the order of steps.

【符号の説明】[Explanation of symbols]

31…N- 型のコレクタ層、32…P型のベース層、 33…
絶縁膜、33a…エミッタ窓、 34…多結晶シリコン
層、35…N+ 型のエミッタ層、36…N- 型のエミッタ
層。
31 ... N - type collector layer, 32 ... P type base layer, 33 ...
Insulating film, 33a ... Emitter window, 34 ... Polycrystalline silicon layer, 35 ... N + type emitter layer, 36 ... N -- type emitter layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の第1半導体層に第2導電型
の第2半導体層を形成し、前記第2半導体層に第1導電
型の第3半導体層を形成した半導体装置の製造方法にお
いて、前記第3半導体層が2種類の第1導電型の不純物
を第2半導体層に導入することにより形成することを特
徴とする半導体装置の製造方法。
1. A method of manufacturing a semiconductor device, wherein a second conductivity type second semiconductor layer is formed on a first conductivity type first semiconductor layer, and a first conductivity type third semiconductor layer is formed on the second semiconductor layer. In the method, the third semiconductor layer is formed by introducing two kinds of impurities of the first conductivity type into the second semiconductor layer.
【請求項2】 前記第1半導体層がコレクタ、前記第2
半導体層がベース、前記第3半導体層がエミッタである
請求項1記載の半導体装置の製造方法。
2. The first semiconductor layer is a collector, and the second semiconductor layer is a collector.
2. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor layer is a base and the third semiconductor layer is an emitter.
【請求項3】 前記第3半導体層を形成する2種類の第
1導電型の不純物の拡散係数が互いに異なる請求項1記
載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein two types of impurities of the first conductivity type forming the third semiconductor layer have different diffusion coefficients.
【請求項4】 前記第3半導体層を形成する2種類の第
1導電型の不純物がヒ素とリン、あるいはボロンとアル
ミニウムである請求項1記載の半導体装置の製造方法。
4. The method for manufacturing a semiconductor device according to claim 1, wherein the two types of first conductivity type impurities forming the third semiconductor layer are arsenic and phosphorus, or boron and aluminum.
【請求項5】 前記第3半導体層は、多結晶シリコンか
らの2種類の不純物の拡散により同時に形成する請求項
1記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the third semiconductor layer is simultaneously formed by diffusing two kinds of impurities from polycrystalline silicon.
JP15895093A 1993-06-29 1993-06-29 Manufacture of semiconductor device Withdrawn JPH0745630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15895093A JPH0745630A (en) 1993-06-29 1993-06-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15895093A JPH0745630A (en) 1993-06-29 1993-06-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0745630A true JPH0745630A (en) 1995-02-14

Family

ID=15682883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15895093A Withdrawn JPH0745630A (en) 1993-06-29 1993-06-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0745630A (en)

Similar Documents

Publication Publication Date Title
JPH05347383A (en) Manufacture of integrated circuit
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
EP0401786B1 (en) Method of manufacturing a lateral bipolar transistor
US4343080A (en) Method of producing a semiconductor device
US5480816A (en) Method of fabricating a bipolar transistor having a link base
EP0051534B1 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
US4298402A (en) Method of fabricating self-aligned lateral bipolar transistor utilizing special masking techniques
JPH0745630A (en) Manufacture of semiconductor device
EP0367293B1 (en) Methods of fabricating semiconductor devices having a bipolar transistor
JP3336734B2 (en) Method of forming element isolation region
JP3241150B2 (en) Manufacturing method of high-speed bipolar transistor
JPH04233737A (en) Manufacture of transistor
JPH04152531A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH05243249A (en) Manufacture of bipolar transistor
JPH02159035A (en) Integrated circuit device
JPH06188259A (en) Manufacture of semiconductor device
JPH036844A (en) Manufacture of semiconductor integrated circuit
JPH04360539A (en) Manufacture of semiconductor device
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPH05218059A (en) Semiconductor device and its manufacture
JPH0132669B2 (en)
JPH0550856B2 (en)
JPH0897226A (en) Pnp transistor, semiconductor integrated circuit, manufacture of semiconductor device, and manufacture of semiconductor integrated circuit
JPH06181215A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905