JPH0744874B2 - How to operate a three-phase AC rotating electric machine - Google Patents
How to operate a three-phase AC rotating electric machineInfo
- Publication number
- JPH0744874B2 JPH0744874B2 JP60189911A JP18991185A JPH0744874B2 JP H0744874 B2 JPH0744874 B2 JP H0744874B2 JP 60189911 A JP60189911 A JP 60189911A JP 18991185 A JP18991185 A JP 18991185A JP H0744874 B2 JPH0744874 B2 JP H0744874B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- voltage
- balanced
- impedance
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Control Of Ac Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固定子の各相巻線として単層巻線が用いられた
三相交流回転電機において、特に各相インピーダンスの
不平衡による不平衡電流を強制的に平衡させて運転でき
るようにした三相交流回転電機の運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a three-phase AC rotating electric machine in which a single-layer winding is used as each phase winding of a stator. The present invention relates to a method of operating a three-phase AC rotating electric machine that can be operated by forcibly balancing currents.
近年、電動機の制御技術の発展は目覚ましく、従来から
速度制御が困難とされていた三相交流電動機に対しても
インバータやサイクロコンバータを用いて直流電動機と
同等な速度制御が可能となってきている。In recent years, the development of motor control technology has been remarkable, and it has become possible to control the speed of a three-phase AC motor, which has been conventionally difficult to control, by using an inverter or cycloconverter, which is equivalent to that of a DC motor. .
さて、鉄鋼産業に用いられる圧延機等のように運転の際
に速度とトルクの精度の良い制御を必要とする電動機に
おいては、専ら直流電動機が主力となっていたが、最近
では制御技術の発達により交流電動機を採用しようとす
る動きが出てきている。特にかご形誘導電動機は完全ブ
ラシレスであるため、メンテナンス上からも有利であ
り、また回転子構造は堅牢で、熱容量が大きく過負荷耐
量が大きいと言った点からも、繰返し過負荷が頻繁に加
わる圧延機等に適していると言える。By the way, in electric motors such as rolling mills used in the steel industry that require precise control of speed and torque during operation, DC motors have been the main force, but recently control technology has been developed. Therefore, there is a movement to adopt an AC electric motor. In particular, the squirrel-cage induction motor is completely brushless, which is advantageous from the standpoint of maintenance.The rotor structure is robust, and the heat capacity is large and the overload capacity is large. It can be said that it is suitable for rolling mills.
ところが、圧延主機ともなると低速度大容量で、電動機
本体重量は数百トンにも達しているため、電動機のメン
テナンス上及びクレーン容量等から固定子鉄心を含む二
分割構造とし、メンテナンス時には固定子の上半分を取
外せることが必要である。However, the main rolling machine has a low speed and large capacity, and the weight of the electric motor body has reached several hundred tons. It is necessary to be able to remove the upper half.
しかるに、直流電動機の場合には固定子を主極と補極で
構成しているため、固定子の二分割構成も容易である
が、三相誘導電動機は一般に二層巻線が用いられている
ため、固定子を第4図に示すように二分割構成とした場
合には鉄心分割部2を渡るコイルエンド部1a,1b,1c,1d,
1e,1fに対しても分割が必要となり、したがって、固定
子を二分割構造とすることは事実上困難である。However, in the case of a DC motor, since the stator is composed of the main pole and the auxiliary pole, it is easy to divide the stator into two parts, but a three-phase induction motor generally uses a two-layer winding. Therefore, when the stator is divided into two parts as shown in FIG. 4, the coil end parts 1a, 1b, 1c, 1d,
Splitting is also required for 1e and 1f, so it is practically difficult to make the stator into a bisection structure.
そこで、このような場合には固定子の各相コイルとして
単層巻線を用いれば、第5図に示すように鉄心分割部2a
を渡るコイルがないため、三相交流電動機に対しても固
定子を比較的容易に二分割構造とすることが可能とな
る。Therefore, in such a case, if a single layer winding is used as each phase coil of the stator, as shown in FIG.
Since there is no coil across the stator, the stator can be relatively easily divided into two parts even for a three-phase AC motor.
しかし、固定子に単層巻線を用いると第5図からも明ら
かなように各相のコイルエンド形状が異なるため、各相
インピーダンスが不平衡となり、この不平衡が大きい場
合には各相に不平衡電流が流れ、電動機トルクに電源周
波数の2倍の周波数を持つトルクリップルが発生する。
したがって、このような三相交流電動機が用いられた圧
延機において、大きなトルクリップルが生じると製品の
表面に光沢のむらを生じ、好ましくない。また、このト
ルクリップル周波数が軸形の固有振動数と一致すると共
振現象によりリップルが増大し、軸系からの強度面から
も問題がある。However, when a single-layer winding is used for the stator, as is clear from Fig. 5, the coil end shape of each phase is different, so the impedance of each phase becomes unbalanced. An unbalanced current flows, and a torque ripple having a frequency twice the power supply frequency is generated in the motor torque.
Therefore, in a rolling mill using such a three-phase AC electric motor, if a large torque ripple occurs, uneven luster occurs on the surface of the product, which is not preferable. Further, when the torque ripple frequency coincides with the natural frequency of the shaft type, the ripple increases due to the resonance phenomenon, and there is a problem in terms of strength from the shaft system.
本発明はかかる事情に鑑みてなされたもので、その目的
は固定子に単層巻線を用いた三相交流回転電機におい
て、各相インピーダンスに不平衡が生じた場合でも各相
電流を平衡させることができ、トルクリップルのない安
定した運転を行なうことができる三相交流回転電機の運
転方法を提供しようとするものである。The present invention has been made in view of the above circumstances, and an object thereof is to balance each phase current in a three-phase AC rotary electric machine using a single-layer winding for a stator even when an imbalance occurs in each phase impedance. It is intended to provide a method of operating a three-phase AC rotating electric machine capable of performing stable operation without torque ripple.
本発明では上記の目的を達成するため、次のような点に
立脚して成されたものである。In order to achieve the above object, the present invention is based on the following points.
まず、固定子に二層巻線を用いた三相交流回転電機の場
合、通常各相インピーダンスは平衡になっており、その
一相分の等価回路は第2図に示すようになる。First, in the case of a three-phase AC rotating electric machine using a two-layer winding for the stator, the impedance of each phase is normally balanced, and the equivalent circuit for one phase is as shown in FIG.
これに対して、固定子に単層巻線を用いた三相交流回転
電機の場合には前述した如く各相のコイルエンド形状が
異なるため、各相インピーダンスに不平衡を生じ、これ
はコイルエンド部の鎖交磁束が各相で異なることに起因
するものであり、その一相分の等価回路は第3図に示す
ようになる。On the other hand, in the case of a three-phase AC rotary electric machine that uses a single-layer winding for the stator, the coil end shape of each phase is different, as described above, causing an imbalance in the impedance of each phase. This is due to the fact that the interlinkage magnetic flux of each part is different for each phase, and the equivalent circuit for one phase is as shown in FIG.
したがって、単層巻線の場合には第3図からも明らかな
ように二層巻線の場合に比べて各相のコイルエンド形状
の違いがリアクタンス3として追加された形となり、こ
のリアクタンス3が各相で不平衡となるため、各相電流
は不平衡となり、結果としてトルクリップルを生じるこ
とになる。Therefore, in the case of the single-layer winding, as is apparent from FIG. 3, the difference in the coil end shape of each phase is added as the reactance 3 as compared with the case of the double-layer winding. Since each phase is unbalanced, each phase current is unbalanced, resulting in a torque ripple.
そこで、本発明では、単相巻線の各相コイルエンド形状
が異なることに起因するリアクタンス分の各相インピー
ダンスの不平衡を補償すべく、リアクタンス分の補正電
圧を複素計算により求め、この補正電圧に従って三相交
流電源から固定子の各相巻線に印加する各電圧を制御す
ることにより、各相電流を強制的に平衡させて運転する
ことを特徴とするものである。Therefore, in the present invention, in order to compensate the unbalance of the impedance of each phase component of the reactance due to the difference in the coil end shape of each phase of the single-phase winding, the correction voltage of the reactance component is obtained by complex calculation, and this correction voltage is calculated. By controlling each voltage applied from the three-phase AC power supply to each phase winding of the stator, the phase currents are forcibly balanced for operation.
以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明による三相交流回転電機の運転方法を説
明するための構成例として三相誘導電動機の電源回路の
ブロック図を示すものである。第1図において、4は固
定子に単層巻線を用いた三相誘導電動機で、この三相誘
導電動機4の各相インピーダンスは不平衡になってい
る。5はこの三相誘導電動機4が接続される交流電源
で、この交流電源5は通常電圧が平衡状態にある商用電
源が用いられる。6は三相誘導電動機4と交流電源5と
を結ぶ三相各相、つまりU,V,W相の電路にそれぞれ設け
られた電圧制御ユニットで、これら電圧制御ユニット6
は例えばマイクロコンピュータのような高速演算機能を
有しており、常に第4図でのリアクタンス3による電圧
降下分を補正すべき電圧を計算して各相コイルに印加さ
れる電源電圧を制御するものである。FIG. 1 is a block diagram of a power supply circuit of a three-phase induction motor as a configuration example for explaining a method of operating a three-phase AC rotating electric machine according to the present invention. In FIG. 1, 4 is a three-phase induction motor using a single-layer winding for a stator, and the impedance of each phase of this three-phase induction motor 4 is unbalanced. Reference numeral 5 is an AC power supply to which the three-phase induction motor 4 is connected. As the AC power supply 5, a commercial power supply whose voltage is normally balanced is used. Reference numeral 6 denotes a voltage control unit provided in each of the three-phase electric phases connecting the three-phase induction motor 4 and the AC power supply 5, that is, the U, V, and W-phase electric paths.
Has a high-speed arithmetic function such as a microcomputer, and always controls the power supply voltage applied to each phase coil by calculating the voltage for correcting the voltage drop due to the reactance 3 in FIG. Is.
次に上記のように構成された三相誘導電動機の電源回路
による作用について述べる。いま、一例としては、第1
図において、V相,W相のインピーダンスは平衡し、U相
のみのインピーダンスが大きくなった場合について考え
る。Next, the operation of the power supply circuit of the three-phase induction motor configured as described above will be described. Now, as an example, the first
In the figure, consider the case where the impedances of the V and W phases are balanced and the impedance of only the U phase becomes large.
この場合の各相の等価回路はV相,W相は第2図、U相は
第3図となる。すなわち、V相,W相に対し、U相のみリ
アクタンス3が追加された形となる。In this case, the equivalent circuit of each phase is V phase, W phase is shown in FIG. 2, and U phase is shown in FIG. That is, the reactance 3 is added only to the U phase with respect to the V phase and the W phase.
そこで、V相,W相の電圧をVmとすれば、U相の電圧はリ
アクタンス3による電圧を補正しなければならず、この
補正電圧をVcはリアクタンス3の値をL,電流をIとすれ
ば、Vc=jωLIとなる。ここで、jは単位複素数,ωは
運転角周波数である。したがって、U相電路に設けられ
た電圧制御ユニット6によりU相電圧VuをVu=Vm+Vcと
すべく演算を行なってU相電圧を制御すれば、各相電流
は平衡し、トルクリップルの生じない安定した運転を行
なうことができる。上記の説明はV相,W相に対してU相
のインピーダンスが大きくなった場合であるが、V相又
はW相のインピーダンスがW,U相又はU,V相に対して大き
くなった場合についても前述同様に電圧制御ユニット6
により演算を行なって電圧制御すれば良いことは言うま
でもない。Therefore, if the V-phase voltage and the W-phase voltage are Vm, the U-phase voltage must correct the voltage due to the reactance 3, and the corrected voltage is Vc, the value of the reactance 3 is L, and the current is I. For example, Vc = jωLI. Here, j is a unit complex number and ω is an operating angular frequency. Therefore, if the U-phase voltage Vu is controlled to Vu = Vm + Vc by the voltage control unit 6 provided in the U-phase electric circuit and the U-phase voltage is controlled, the respective phase currents are balanced and stable without torque ripple. You can perform the required driving. The above explanation is for the case where the impedance of the U phase is larger than that of the V phase and W phase, but when the impedance of the V phase or W phase is larger than that of the W, U phase or U, V phase. Also in the same manner as described above, the voltage control unit 6
It goes without saying that it is only necessary to perform the calculation by and control the voltage.
このように本実施例ではリアクタンス3による電圧降下
分を補正すべき電圧を計算して各相コイルに印加される
電源電圧を制御する際、補正電圧を複素計算により求め
ているため、補正電圧の位相をも制御することが可能と
なり、インバータ等で運転周波数を変えて速度制御する
場合でも、運転周波数全範囲において電流を平衡させる
ことが可能となり、安定した運転を行なうことができ
る。As described above, in this embodiment, when the voltage to be corrected for the voltage drop due to the reactance 3 is calculated and the power supply voltage applied to each phase coil is controlled, the correction voltage is obtained by complex calculation. It is also possible to control the phase, and even when the operating frequency is changed by an inverter or the like to control the speed, the current can be balanced in the entire operating frequency range, and stable operation can be performed.
以上述べたように本発明によれば、固定子の各相巻線と
して単相巻線が用いられた三相交流回転電機において、
単相巻線の各相コイルエンド形状が異なることに起因す
るリアクタンス分の各相インピーダンスの不平衡を補償
すべく、リアクタンス分の補正電圧を複素計算により求
め、この補正電圧に従って三相交流電源から固定子の各
相巻線に印加する各電圧を制御するようにしたので、各
相インピーダンスに不平衡が生じた場合でも各相電流を
平衡させることができ、かつ補正電位の位相をも制御す
ることが可能となり、運転周波数を変えて速度制御する
場合でも、運転周波数全範囲においてトルクリップルの
ない安定した運転ができる三相交流回転電機の運転方法
を提供できる。As described above, according to the present invention, in the three-phase AC rotating electric machine using the single-phase winding as each phase winding of the stator,
In order to compensate for the unbalance in the impedance of each phase of the reactance due to the difference in the coil end shape of each phase of the single-phase winding, the correction voltage for the reactance is calculated by complex calculation, and the three-phase AC power supply is used according to this correction voltage. Since each voltage applied to each phase winding of the stator is controlled, each phase current can be balanced even when an imbalance occurs in each phase impedance, and the phase of the correction potential is also controlled. Therefore, it is possible to provide a method of operating a three-phase AC rotating electric machine that enables stable operation without torque ripples over the entire operating frequency range, even when the operating frequency is changed to control the speed.
第1図は本発明による三相交流回転電機の運転方法を説
明するための一実施例を示す回路構成図、第2図は通常
の誘導電動機の等価回路図、第3図は固定子に単相巻線
を用いてインピーダンスに不平衡が生じた場合の等価回
路図、第4図は4極機二相巻線のコイルエンド部を示す
図、第5図は4極機単相巻線のコイルエンド部を示す図
である。 4……三相誘導電動機、5……交流電源、6,6a……電圧
制御ユニット、7……電流検出器。FIG. 1 is a circuit configuration diagram showing an embodiment for explaining a method of operating a three-phase AC rotary electric machine according to the present invention, FIG. 2 is an equivalent circuit diagram of a normal induction motor, and FIG. Equivalent circuit diagram when the impedance is unbalanced by using the phase winding, Fig. 4 shows the coil end of the two-phase winding of the four-pole machine, and Fig. 5 shows the single-phase winding of the four-pole machine. It is a figure which shows a coil end part. 4 ... Three-phase induction motor, 5 ... AC power supply, 6,6a ... Voltage control unit, 7 ... Current detector.
Claims (1)
れた三相交流回転電機において、 前記単相巻線の各相コイルエンド形状が異なることに起
因するリアクタンス分の各相インピーダンスの不平衡を
補償すべく、前記リアクタンス分の補正電圧を複素計算
により求め、この補正電圧に従って三相交流電源から前
記固定子の各相巻線に印加する各電圧を制御することに
より、各相電流を強制的に平衡させて運転することを特
徴とする三相交流回転電機の運転方法。1. A three-phase AC rotating electric machine using a single-phase winding as each phase winding of a stator, wherein each phase of reactance due to a difference in coil end shape of each phase of the single-phase winding. In order to compensate the impedance imbalance, the correction voltage for the reactance is obtained by complex calculation, and by controlling each voltage applied from the three-phase AC power supply to each phase winding of the stator according to this correction voltage, A method for operating a three-phase alternating current rotating electric machine, comprising forcibly balancing phase currents for operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60189911A JPH0744874B2 (en) | 1985-08-30 | 1985-08-30 | How to operate a three-phase AC rotating electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60189911A JPH0744874B2 (en) | 1985-08-30 | 1985-08-30 | How to operate a three-phase AC rotating electric machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6253191A JPS6253191A (en) | 1987-03-07 |
JPH0744874B2 true JPH0744874B2 (en) | 1995-05-15 |
Family
ID=16249269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60189911A Expired - Fee Related JPH0744874B2 (en) | 1985-08-30 | 1985-08-30 | How to operate a three-phase AC rotating electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0744874B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5911274B2 (en) * | 1976-08-23 | 1984-03-14 | 株式会社東芝 | Control device for commutatorless motor |
-
1985
- 1985-08-30 JP JP60189911A patent/JPH0744874B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6253191A (en) | 1987-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4503377A (en) | Variable speed rotary electric machine | |
EP1659681B1 (en) | Single-phase induction motor and method for reducing noise in the same | |
JP4629659B2 (en) | Synchronous electric machine having one stator and at least one rotor and related control device | |
JP2001231227A (en) | Composite motor | |
JP2006160030A (en) | Electric power steering device | |
JP3097610B2 (en) | Induction machine variable speed drive | |
JP3765437B2 (en) | Control system for synchronous motor for machine tool spindle drive | |
JP2515903B2 (en) | AC motor drive system and control method thereof | |
JP2006149146A (en) | Drive controller of connectionless motor and electric power steering system employing it | |
US4777414A (en) | Driving arrangement for a drive motor | |
CA1145390A (en) | Zero rotation and zero torque detector and method for an ac electric motor drive | |
JP4131861B2 (en) | Unbalance compensation apparatus and method, power supply circuit | |
JPH0744874B2 (en) | How to operate a three-phase AC rotating electric machine | |
JP2003209955A (en) | Method of connecting rotating electric machine | |
JP2001045789A (en) | Motor-control device | |
JP3946933B2 (en) | Current detection apparatus and current detection method | |
JPH07322413A (en) | Rotary electric machine controller and electric car | |
JPH1080190A (en) | Vector control apparatus for induction motor | |
JPH1070865A (en) | Bearingless rotary equipment | |
JPH07308089A (en) | Control device for synchronous motor | |
JP2004104973A (en) | Inverter control device | |
JPH07110153B2 (en) | Inverter controller for drive control of two-phase induction motor | |
JP3173022B2 (en) | Control device for brushless DC motor | |
EP1276223A1 (en) | Current detection device | |
RU2112307C1 (en) | Compensated-winding induction machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |