JPH1070865A - Bearingless rotary equipment - Google Patents

Bearingless rotary equipment

Info

Publication number
JPH1070865A
JPH1070865A JP8242674A JP24267496A JPH1070865A JP H1070865 A JPH1070865 A JP H1070865A JP 8242674 A JP8242674 A JP 8242674A JP 24267496 A JP24267496 A JP 24267496A JP H1070865 A JPH1070865 A JP H1070865A
Authority
JP
Japan
Prior art keywords
power
windings
power amplifier
magnetic field
bearingless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8242674A
Other languages
Japanese (ja)
Inventor
Tadashi Kayashima
直史 茅島
Susumu Osawa
将 大沢
Satoshi Mori
敏 森
Kazuki Sato
一樹 佐藤
Tadashi Sato
忠 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8242674A priority Critical patent/JPH1070865A/en
Publication of JPH1070865A publication Critical patent/JPH1070865A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to reduce a required number of power switching elements of power amplifiers, by connecting the output terminals of a plurality of power amplifiers to one of terminals of corresponding windings, and other terminals of the windings to common connections. SOLUTION: Slots corresponding to 12 magnetic poles are provided on inner peripheral surface of a stator 10, and 12 independent single-pole windings #1 to #12 are provided. And one side terminals of these 12 single-pole windings #1 to #12 are respectively connected to a common neutral point 16. On the other hand, other terminals of the single-pole windings #1 to #12 are connected to the output terminals of the power amplifiers B1 to B12 of a controller. That is, one power line from each of single-pole windings #1 to #12 is connected to the output terminals of the power amplifiers B1 to B12. By doing this, the required number of power switching elements of the power amplifiers B1 to B12 can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、M極の回転磁界と
M±2極の回転磁界とを重畳した回転磁界を回転子に作
用させ、回転子を目標位置に浮上制御すると共に、回転
子を回転駆動する無軸受回転機械装置に係り、特に無軸
受回転機械の固定子巻線に励磁電流を供給する電力増幅
器の接続構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating magnetic field obtained by superposing a rotating magnetic field of M poles and a rotating magnetic field of M. +-. 2 poles on a rotor to control the floating of the rotor to a target position and to control the floating of the rotor. More particularly, the present invention relates to a connection structure of a power amplifier for supplying an exciting current to a stator winding of a bearingless rotating machine.

【0002】[0002]

【従来の技術】特開平6−133493号公報には、無
軸受回転機械(磁気浮上誘導モータ)の一例が開示され
ている。これは固定子にM極の回転磁界と、M±2極の
回転磁界を重畳した回転磁界を発生させることにより、
回転磁界と導体との相互磁気作用で回転子に回転力と浮
上力とを与えるようにしたものである。
2. Description of the Related Art Japanese Patent Laid-Open Publication No. Hei 6-133493 discloses an example of a bearingless rotating machine (magnetic levitation induction motor). This is achieved by generating a rotating magnetic field in which a rotating magnetic field of M poles and a rotating magnetic field of M ± 2 poles are superimposed on the stator.
Rotational force and levitation force are applied to the rotor by the mutual magnetic action between the rotating magnetic field and the conductor.

【0003】このような無軸受回転機械装置の一例を図
4に示す。固定子10の内周面に12個の磁極に相当す
るスロットを設け、12個の独立した単極巻線#1〜#
12を収納する。シャフト13の外周面には変位センサ
14A,14Bが直角方向に向けて取り付けられ、それ
ぞれシャフト13のX及びY方向の変位を検出し、コン
トローラ20の制御部21に入力する。変位センサ14
A,14Bの信号は、制御部21内で増幅及び演算処理
され、回転子15を回転させるM極の回転磁界を固定子
10の内周面に発生させる電流、及び回転子15を浮上
させるM±2極の回転磁界を、固定子10の内周面に発
生させる電流を、各巻線#1〜#12について演算し、
それらの値をそれぞれ出力する。
FIG. 4 shows an example of such a bearingless rotating machine. Slots corresponding to twelve magnetic poles are provided on the inner peripheral surface of the stator 10, and twelve independent single-pole windings # 1 to #
12 is stored. Displacement sensors 14A and 14B are attached to the outer peripheral surface of the shaft 13 in a direction perpendicular to the shaft 13. The displacement sensors 14A and 14B detect displacements of the shaft 13 in the X and Y directions, respectively, and input the displacements to the control unit 21 of the controller 20. Displacement sensor 14
The signals of A and 14B are amplified and operated in the control unit 21 to generate a rotating magnetic field of M pole for rotating the rotor 15 on the inner peripheral surface of the stator 10 and a signal for causing the rotor 15 to float. A current for generating a rotating magnetic field of ± 2 poles on the inner peripheral surface of the stator 10 is calculated for each of the windings # 1 to # 12,
Output each of those values.

【0004】この演算処理されたそれぞれの電流信号
を、電力増幅器A1〜A12で増幅して、各磁極の巻線
に励磁電流として供給する。これにより回転子15に十
分な回転力と浮上力が得られる。尚、無軸受回転機械の
浮上原理等については、例えば、特開平2−19354
7号公報等に詳細に開示されている。
[0004] Each of the arithmetically processed current signals is amplified by power amplifiers A1 to A12 and supplied to the winding of each magnetic pole as an exciting current. Thereby, sufficient rotational force and floating force are obtained for the rotor 15. The floating principle of a bearingless rotating machine is described, for example, in Japanese Patent Application Laid-Open No. Hei.
No. 7, for example.

【0005】固定子磁極を形成する#1〜#12のそれ
ぞれの巻線は、固定子10の内周面に設けられたスロッ
ト内に配置され、単極性の磁界を形成する。その巻線の
両端子が対応する電力増幅器A1〜A12の一対の平衡
出力端子にそれぞれ接続されている。この例では、固定
子の巻線#1〜#12が12相あるので、励磁電流を供
給する電力増幅器も単相のものが12個(A1〜A1
2)必要となる。
The windings # 1 to # 12 forming the stator magnetic poles are arranged in slots provided on the inner peripheral surface of the stator 10 and form a unipolar magnetic field. Both terminals of the winding are connected to a pair of balanced output terminals of the corresponding power amplifiers A1 to A12, respectively. In this example, since the windings # 1 to # 12 of the stator have twelve phases, the power amplifiers for supplying the exciting current are twelve single-phase power amplifiers (A1 to A1).
2) Required.

【0006】図5は、電力増幅器の出力回路部分と各固
定子の巻線との接続を示す。各電力増幅器の出力段は、
図示するように4個の電力スイッチング素子のフルブリ
ッジ型の平衡出力回路として構成されている。例えばT
R1がONで、TR2がOFFで、TR3がOFFで、
TR4がONである時に、図中矢印で示す方向の電流が
流れる。また逆に、TR1がOFFで、TR2がON
で、TR3がONで、TR4がOFFである時には、図
中に示す矢印とは反対方向の電流が流れる。
FIG. 5 shows the connection between the output circuit of the power amplifier and the windings of each stator. The output stage of each power amplifier is
As shown in the figure, it is configured as a full bridge type balanced output circuit of four power switching elements. For example, T
R1 is ON, TR2 is OFF, TR3 is OFF,
When TR4 is ON, a current flows in the direction indicated by the arrow in the figure. Conversely, TR1 is OFF and TR2 is ON
When TR3 is ON and TR4 is OFF, a current flows in a direction opposite to the arrow shown in the figure.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た構成では電力増幅器の出力段の電力スイッチング素子
の必要数が多くなり、又電力増幅器の接続配線の数が多
くなり、結果として装置のコストアップ、大型化を招く
こととなる。
However, in the above-mentioned configuration, the number of power switching elements required at the output stage of the power amplifier is increased, and the number of connection wirings of the power amplifier is increased. As a result, the cost of the apparatus is increased. This leads to an increase in size.

【0008】本発明は上述した事情に鑑みて為されたも
ので、電力増幅器の電力スイッチング素子の必要数を減
少し、装置全体としての小型化を図った無軸受回転機械
装置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a bearingless rotating machine device in which the required number of power switching elements of a power amplifier is reduced and the overall size of the device is reduced. It is the purpose.

【0009】[0009]

【課題を解決するための手段】本発明の無軸受回転機械
装置は、M極の回転磁界とM±2極の回転磁界とを重畳
した回転磁界を回転子に作用させる複数の巻線を備えた
固定子磁極と、該固定子磁極の巻線に電流を供給する電
力増幅器と、該電力増幅器を駆動する制御回路とからな
る無軸受回転機械装置において、前記複数の巻線にそれ
ぞれ対応した電力増幅器を備え、該複数の電力増幅器の
出力端子は、対応する巻線の一方の端子に接続され、各
巻線の他方の端子が共通接続されたことを特徴とする。
SUMMARY OF THE INVENTION A bearingless rotating machine device according to the present invention includes a plurality of windings for applying a rotating magnetic field in which a rotating magnetic field of M poles and a rotating magnetic field of M ± 2 poles are superimposed on a rotor. A stator magnetic pole, a power amplifier that supplies current to the windings of the stator magnetic pole, and a control circuit that drives the power amplifier. An output terminal of each of the plurality of power amplifiers is connected to one terminal of a corresponding winding, and the other terminal of each winding is commonly connected.

【0010】また、前記複数の電力増幅器の出力端子か
ら、それぞれ対応する巻線に流入する電流の総和はゼロ
であることを特徴とする。
Further, the sum of the currents flowing from the output terminals of the plurality of power amplifiers to the corresponding windings is zero.

【0011】また、前記電力増幅器の出力端子は、直流
電源に直列接続された2個の電力スイッチング素子の中
点から取出したものであることを特徴とする。
Further, the output terminal of the power amplifier is obtained from a middle point of two power switching elements connected in series to a DC power supply.

【0012】固定子磁極の巻線の一方の端子が共通に接
続され、他方の端子が対応する電力増幅器の出力端子に
接続されたことから、電力増幅器の出力段では、電力ス
イッチング素子が2個あれば所要の励磁電流を固定子巻
線に供給することができる。この為電力増幅器の電力ス
イッチング素子数及び配線数が半分に減少し、装置の製
造コストの低減及び小型化を達成することができる。
Since one terminal of the winding of the stator pole is connected in common and the other terminal is connected to the output terminal of the corresponding power amplifier, two power switching elements are provided at the output stage of the power amplifier. If necessary, the required exciting current can be supplied to the stator winding. For this reason, the number of power switching elements and the number of wirings of the power amplifier are reduced by half, and the manufacturing cost and size of the device can be reduced.

【0013】[0013]

【実施例】以下、本発明の一実施例について添付図面を
参照にしながら説明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明の一実施例の無軸受回転機
械の駆動制御装置の接続部分の構造を示す。無軸受回転
機械の固定子10の内周面に12個の磁極に相当するス
ロットを設け、12個の独立した単極巻線#1〜#12
を備えることは、従来の技術と同様である。また、シャ
フト13の外周面に変位センサ14A,14Bが直角方
向に向けて取付けられ、単極巻線#1〜#12にM極の
回転磁界とM±2極の回転磁界とを重畳した回転磁界を
回転子15に作用させることにより、回転子15を回転
駆動すると共に浮上位置決め制御を行うことも、従来の
技術と同様である。
FIG. 1 shows a structure of a connection portion of a drive control device for a bearingless rotating machine according to an embodiment of the present invention. Slots corresponding to twelve magnetic poles are provided on the inner peripheral surface of the stator 10 of the bearingless rotating machine, and twelve independent single-pole windings # 1 to # 12 are provided.
Is the same as in the prior art. Rotation sensors 14A and 14B are mounted on the outer peripheral surface of the shaft 13 in a direction perpendicular to the shaft 13, and a rotating magnetic field of M poles and a rotating magnetic field of M ± 2 poles are superimposed on the single-pole windings # 1 to # 12. Applying a magnetic field to the rotor 15 to drive the rotor 15 to rotate and control the floating positioning is also the same as in the related art.

【0015】本実施例の無軸受回転機械では、12個の
単極巻線#1〜#12の一方の端子は、共通の中性点1
6にそれぞれが接続されている。そして、単極巻線#1
〜#12の他方の端子は、それぞれがコントローラの電
力増幅器B1〜B12の出力端子に接続されている。即
ち、従来例では、図4に示すように各単極巻線#1〜#
12から2本の電力線が電力増幅器A1〜A12の平衡
出力端子に接続されていたのに対して、本実施例では各
単極巻線#1〜#12から1本の電力線が電力増幅器B
1〜B12の出力端子に接続されている。
In the bearingless rotating machine of this embodiment, one terminal of each of the twelve single-pole windings # 1 to # 12 has a common neutral point 1
6 are connected to each other. And single pole winding # 1
The other terminals # 1 to # 12 are respectively connected to output terminals of power amplifiers B1 to B12 of the controller. That is, in the conventional example, as shown in FIG.
12 are connected to the balanced output terminals of the power amplifiers A1 to A12, whereas in this embodiment, one power line is connected to the power amplifiers B1 to # 12.
1 to B12.

【0016】図2は、電力増幅器の出力段の回路構成を
示す。即ち、各電力増幅器の出力回路は2個の電力スイ
ッチング素子からなるハーフブリッジと呼ばれる回路構
成を為している。従って、図5に示す従来例と比較し
て、電力スイッチング素子の素子数が12x2=24個
となり、従来例では48個の電力スイッチング素子を必
要としたのに対して半減している。これに伴い、配線数
も半減する。
FIG. 2 shows the circuit configuration of the output stage of the power amplifier. That is, the output circuit of each power amplifier has a circuit configuration called a half bridge composed of two power switching elements. Therefore, as compared with the conventional example shown in FIG. 5, the number of power switching elements is 12 × 2 = 24, which is halved compared to the necessity of 48 power switching elements in the conventional example. Accordingly, the number of wirings is reduced by half.

【0017】各電力増幅器B1〜B12の出力段は、商
用交流電源を整流・平滑して形成された直流電源Eに、
電力スイッチング素子TR1、TR2が直列に接続さ
れ、その中点から出力が取出される。電力スイッチング
素子TR1、TR2は、そのゲート電極に制御部22か
ら、スイッチング信号が入力され、インバータ装置とし
て動作する。又、直流電源Eは電源部23から各電力増
幅器B1〜B12に一括して供給される。尚、電力スイ
ッチ素子としては、パワートランジスタ、パワーMOS
FET、IGBT等が用いられる。
The output stage of each of the power amplifiers B1 to B12 is connected to a DC power supply E formed by rectifying and smoothing a commercial AC power supply.
Power switching elements TR1 and TR2 are connected in series, and an output is taken out from the midpoint. The switching signals are input to the gate electrodes of the power switching elements TR1 and TR2 from the control unit 22 and operate as inverter devices. Further, the DC power supply E is supplied from the power supply unit 23 to the power amplifiers B1 to B12 collectively. In addition, as a power switch element, a power transistor, a power MOS
An FET, IGBT, or the like is used.

【0018】本実施例の無軸受回転機械の電力増幅器に
は、各巻線#1〜#12に対して電流を流すための指令
値が与えられる。この電流の指令値は、以下に述べる制
御装置の演算操作によって与えられる。尚、本実施例で
は、回転駆動を4極(M=4)、浮上制御を2極(M−
2=2)としている。
The power amplifier of the bearingless rotating machine of the present embodiment is provided with a command value for flowing a current to each of the windings # 1 to # 12. The command value of the current is given by a calculation operation of the control device described below. In the present embodiment, the rotation drive is four poles (M = 4), and the levitation control is two poles (M−4).
2 = 2).

【0019】固定子が回転子を回転・磁気浮上させてい
る時、センサを用いて得る情報は、図示しない回転角セ
ンサからの回転速度ω、回転角(電気角)ωt、及び変
位センサ14A,14Bからの磁気浮上変位α,β等で
ある。このうち、回転子のモータトルクを発生させるた
めの制御系について、必要とされる情報は、回転速度
ω、回転角(電気角)ωtである。センサで検出された
回転速度ωと、その指令値ω*の差分に対して、補償回
路でPI制御等の補償演算を行い、トルク分電流Iq
算出される。又励磁分電流をIdとする。電流Id,q
回転子に与えるための情報とするためには座標変換が必
要である。(1)式で与える座標変換の演算結果、電流
a,Ibを得る。
When the stator is rotating and magnetically levitating the rotor, information obtained by using the sensors includes a rotation speed ω, a rotation angle (electrical angle) ωt from a rotation angle sensor (not shown), a displacement sensor 14A, 14B, magnetic levitation displacements α, β, and the like. Among them, necessary information about the control system for generating the motor torque of the rotor is the rotation speed ω and the rotation angle (electrical angle) ωt. A compensation operation such as PI control is performed by a compensation circuit on the difference between the rotational speed ω detected by the sensor and the command value ω * , and a torque component current Iq is calculated. Also an exciting component of the current and I d. To convert the currents I d and I q into information for giving to the rotor, coordinate conversion is required. The currents Ia and Ib are obtained as a result of the coordinate conversion given by the equation (1).

【0020】[0020]

【数1】 (Equation 1)

【0021】浮上力を与えるための回転磁界の制御系に
ついて、必要とされる情報は回転角(電気角)ωtと磁
気浮上変位α,βである。磁気浮上変位α,βと、その
指令値α*,,β*の差分に対して、PI制御等の補償回
路により補償演算を行い、磁気浮上電流Iα,Iβが算
出される。磁気浮上電流Iα,Iβを回転子に与えるた
めの情報とするためには座標変換が必要である。座標変
換の演算式は(2)式で与えられ、この座標変換の結果
a,Fbを得る。
The information required for the control system of the rotating magnetic field for giving the levitation force is the rotation angle (electrical angle) ωt and the magnetic levitation displacements α and β. Compensation calculation is performed by a compensation circuit such as PI control on the difference between the magnetic levitation displacements α and β and the command values α * and β * , and magnetic levitation currents Iα and Iβ are calculated. To convert the magnetic levitation currents Iα and Iβ into information for applying to the rotor, coordinate conversion is required. The arithmetic expression for coordinate conversion is given by Expression (2), and the results F a and F b of this coordinate conversion are obtained.

【0022】[0022]

【数2】 (Equation 2)

【0023】回転磁界を回転子の周囲に形成するために
は、モータトルクを生じる回転磁界を形成する電流と、
磁気浮上のための回転磁界を形成する電流を重ね合わせ
た形で、各固定子の単相巻線に供給する必要がある。そ
して各固定子の巻線の各相に所要の電流を供給するため
に電力増幅器へ指令を与える。式(3)、(4)、
(5)、(6)に示すごとく、各相の電力増幅器B1〜
B12への指令値が与えられる。
In order to form a rotating magnetic field around the rotor, a current for forming a rotating magnetic field that generates a motor torque;
It is necessary to supply currents for forming a rotating magnetic field for magnetic levitation to the single-phase windings of the respective stators in a superimposed manner. Then, a command is given to the power amplifier to supply a required current to each phase of each stator winding. Equations (3), (4),
As shown in (5) and (6), the power amplifiers B1 to B1 of each phase
A command value to B12 is given.

【0024】[0024]

【数3】 (Equation 3)

【0025】[0025]

【数4】 (Equation 4)

【0026】[0026]

【数5】 (Equation 5)

【0027】[0027]

【数6】 (Equation 6)

【0028】ここで注目すべき点は、各電力増幅器への
電流指令値の総和がゼロになるということである。この
ことは固定子の各単相巻線に電流を流す際に、その回路
構成を図1に示すようにすることが可能であることを示
している。即ち、12相の単相巻線の一方が共通に中性
点に接続され、他方が対応する電力増幅器の出力端子に
不平衡に接続することができる。
It should be noted here that the sum of the current command values to each power amplifier becomes zero. This indicates that the circuit configuration can be made as shown in FIG. 1 when a current flows through each single-phase winding of the stator. That is, one of the 12-phase single-phase windings can be commonly connected to the neutral point, and the other can be unbalancedly connected to the output terminal of the corresponding power amplifier.

【0029】図3に示すように、与えられた電流指令値
*に対して、検出された電流値Iとの比較が行われ
て、電力増幅器への信号が形成される。そしてこの電流
指令値I*に従った励磁電流が固定子の各相の巻線に供
給される。
As shown in FIG. 3, a given current command value I * is compared with the detected current value I to form a signal to the power amplifier. An exciting current according to the current command value I * is supplied to each phase winding of the stator.

【0030】尚、上記実施例は12相の単相巻線を用い
た無軸受回転機械について説明したが、その他の相数に
ついても同様に適用できることは勿論である。又、上記
実施例は磁気浮上誘導モータについて説明したが、同期
モータ或いは発電機等についても、本願発明の趣旨を同
様に適用できることは勿論である。
Although the above embodiment describes a bearingless rotating machine using a 12-phase single-phase winding, it is needless to say that the same applies to other phases. In the above embodiment, the magnetic levitation induction motor has been described. However, it goes without saying that the gist of the present invention can be similarly applied to a synchronous motor or a generator.

【0031】[0031]

【発明の効果】以上に説明したように本発明によれば、
各相の単相巻線に供給する励磁電流の総和をゼロとする
ことができるので、電力増幅器を平衡型とする必要がな
くなる。従って、電力スイッチング素子の必要数及び配
線数を半減することができ、電力増幅器の製造コストを
低減し、且つ設備全体の構造を小形コンパクト化するこ
とが可能となる。
According to the present invention as described above,
Since the sum of the exciting currents supplied to the single-phase windings of each phase can be made zero, there is no need to make the power amplifier a balanced type. Therefore, the required number of power switching elements and the number of wirings can be reduced by half, the manufacturing cost of the power amplifier can be reduced, and the structure of the entire equipment can be reduced in size and size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の電力増幅器と固定子巻線と
の接続部分を示す説明図である。
FIG. 1 is an explanatory diagram showing a connection portion between a power amplifier and a stator winding according to an embodiment of the present invention.

【図2】図1における電力増幅器の出力段の回路構成を
示す説明図である。
FIG. 2 is an explanatory diagram showing a circuit configuration of an output stage of the power amplifier in FIG.

【図3】励磁電流の制御系の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a control system of an exciting current.

【図4】従来の電力増幅器と固定子巻線との接続部分を
示す説明図である。
FIG. 4 is an explanatory diagram showing a connection portion between a conventional power amplifier and a stator winding.

【図5】図4における電力増幅器の出力段の回路構成を
示す説明図である。
5 is an explanatory diagram showing a circuit configuration of an output stage of the power amplifier in FIG.

【符号の説明】[Explanation of symbols]

10 固定子 13 シャフト 14A,14B 変位センサ 20 制御部 21 コントローラ 22 電源部 #1〜#12 単相巻線 A1〜A12,B1〜B12 電力増幅器 DESCRIPTION OF SYMBOLS 10 Stator 13 Shaft 14A, 14B Displacement sensor 20 Control part 21 Controller 22 Power supply part # 1- # 12 Single-phase winding A1-A12, B1-B12 Power amplifier

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 一樹 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 佐藤 忠 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuki Sato 4-2-1 Motofujisawa, Fujisawa City, Kanagawa Prefecture Inside Ebara Research Institute, Ltd. (72) Inventor Tadashi Sato 4-2-2 Motofujisawa, Fujisawa City, Kanagawa Prefecture No. 1 Inside EBARA Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 M極の回転磁界とM±2極の回転磁界と
を重畳した回転磁界を回転子に作用させる複数の巻線を
備えた固定子磁極と、該固定子磁極の巻線に電流を供給
する電力増幅器と、該電力増幅器を駆動する制御回路と
からなる無軸受回転機械装置において、前記複数の巻線
にそれぞれ対応した電力増幅器を備え、該複数の電力増
幅器の出力端子は、対応する巻線の一方の端子に接続さ
れ、各巻線の他方の端子が共通接続されたことを特徴と
する無軸受回転機械装置。
1. A stator magnetic pole having a plurality of windings for applying a rotating magnetic field in which a rotating magnetic field of M poles and a rotating magnetic field of M ± 2 poles are applied to a rotor; A power amplifier that supplies a current, and a bearingless rotating machine device including a control circuit that drives the power amplifier, comprising a power amplifier corresponding to each of the plurality of windings, and an output terminal of the plurality of power amplifiers, A bearingless rotating machine device, wherein one of the windings is connected to a corresponding terminal, and the other terminal of each winding is commonly connected.
【請求項2】 前記複数の電力増幅器の出力端子から、
それぞれ対応する巻線に流入する電流の総和はゼロであ
ることを特徴とする請求項1記載の無軸受回転機械装
置。
2. An output terminal of the plurality of power amplifiers,
The bearingless rotary machine according to claim 1, wherein the sum of the currents flowing into the respective windings is zero.
【請求項3】 前記電力増幅器の出力端子は、直流電源
に直列接続された2個の電力スイッチング素子の中点か
ら取出したものであることを特徴とする請求項2記載の
無軸受回転機械装置。
3. The bearingless rotary machine according to claim 2, wherein an output terminal of the power amplifier is taken from a midpoint of two power switching elements connected in series to a DC power supply. .
JP8242674A 1996-08-26 1996-08-26 Bearingless rotary equipment Pending JPH1070865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8242674A JPH1070865A (en) 1996-08-26 1996-08-26 Bearingless rotary equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8242674A JPH1070865A (en) 1996-08-26 1996-08-26 Bearingless rotary equipment

Publications (1)

Publication Number Publication Date
JPH1070865A true JPH1070865A (en) 1998-03-10

Family

ID=17092559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8242674A Pending JPH1070865A (en) 1996-08-26 1996-08-26 Bearingless rotary equipment

Country Status (1)

Country Link
JP (1) JPH1070865A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045266A1 (en) * 2003-11-05 2005-05-19 Jtekt Corporation Power amplification device and magnetic bearing
JP2005249068A (en) * 2004-03-04 2005-09-15 Boc Edwards Kk Magnetic bearing device and turbo-molecular pump loaded with the magnetic bearing device
JP2010532151A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Self-bearing brushless DC motor with reduced complexity
JP2011101471A (en) * 2009-11-04 2011-05-19 Canon Inc Device for controlling rotary motors
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045266A1 (en) * 2003-11-05 2005-05-19 Jtekt Corporation Power amplification device and magnetic bearing
JP2005249068A (en) * 2004-03-04 2005-09-15 Boc Edwards Kk Magnetic bearing device and turbo-molecular pump loaded with the magnetic bearing device
JP4502667B2 (en) * 2004-03-04 2010-07-14 エドワーズ株式会社 Magnetic bearing device and turbomolecular pump equipped with the magnetic bearing device
JP2010532151A (en) * 2007-06-27 2010-09-30 ブルックス オートメーション インコーポレイテッド Self-bearing brushless DC motor with reduced complexity
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
JP2011101471A (en) * 2009-11-04 2011-05-19 Canon Inc Device for controlling rotary motors

Similar Documents

Publication Publication Date Title
JP3664409B2 (en) Switched reluctance rotating machine
JP4629659B2 (en) Synchronous electric machine having one stator and at least one rotor and related control device
JP2001231227A (en) Composite motor
JP2000134891A (en) Synchronous motor and controller therefor
WO2011114912A1 (en) Bearingless motor
JPH06165561A (en) Controller for synchronous motor
JPH07264822A (en) Multiphase multiplex motor
JP2930254B2 (en) Self-levitation motor system
JP2005039932A (en) Nine-phase motor driving unit
JPH1070865A (en) Bearingless rotary equipment
JP2001258290A (en) Method for constructing independent control system for rotating machine having no magnetic flux detection bearing
KR20160102571A (en) Permanent magnet rotating electric machine control device
JP3586593B2 (en) Motor control device
US8115358B1 (en) Method and systems for operating magnetic bearings and bearingless drives
JPH08256496A (en) Inverter controller for sensorless and brushless dc motor
JP4032370B2 (en) Synchronous motor and synchronous motor control device
JP4448300B2 (en) Control device for synchronous machine
JP3688420B2 (en) Bearingless rotating machine
JPH0884491A (en) Motor servable as bearing
JPH08242600A (en) Current controller for hybrid excitation type permanent magnet motor
EP1276223A1 (en) Current detection device
JPH1094217A (en) Control system for permanent magnet rotating electric machine generating radial force
JPH0965676A (en) Linear motor controller
JP2001190092A (en) Induction-type bearingless motor with generation function
JP2007166687A (en) Motor unit and motor drive control device