JPH0744127A - Plasma display panel - Google Patents

Plasma display panel

Info

Publication number
JPH0744127A
JPH0744127A JP19070093A JP19070093A JPH0744127A JP H0744127 A JPH0744127 A JP H0744127A JP 19070093 A JP19070093 A JP 19070093A JP 19070093 A JP19070093 A JP 19070093A JP H0744127 A JPH0744127 A JP H0744127A
Authority
JP
Japan
Prior art keywords
display
electrode
period
sustain discharge
discharge period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19070093A
Other languages
Japanese (ja)
Other versions
JP3266373B2 (en
Inventor
Yoshimasa Nagaoka
慶真 長岡
Giichi Kanazawa
義一 金澤
Tomokatsu Kishi
智勝 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19070093A priority Critical patent/JP3266373B2/en
Publication of JPH0744127A publication Critical patent/JPH0744127A/en
Application granted granted Critical
Publication of JP3266373B2 publication Critical patent/JP3266373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain accurate display gradations and to improve the display quality of a gradation display by varying the level of maintaining pulses according to a display rate. CONSTITUTION:The value from a high voltage generating circuit 30 to a high voltage control circuit part 29 is different between an address period and a trickle discharge period. An external high voltage VS is supplied as it is in the address period, but in the trickle discharge period, a variable high voltage VS+alpha which is adjusted according to the current display rate of the display data is supplied. Therefore, the level of the maintaining pulses VS in the trickle discharge period varies with the display rate. Further, the luminance of a screen varies in proportion to the level of the maintaining pulses VS, so the level of the adjusting voltage alpha (data stored in a data converting ROM 32) is optimized to display a high-gradation display part and a low-gradation display part with correct lightness even in case of, for example, a 256-gradation or more gradation display.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラズマ・ディスプレ
イパネル(Plasma Display Panel :以下「PDP」と
略す)、特に、1駆動サイクルをアドレス期間と維持放
電期間に分離して駆動されるAC(交流)型のプラズマ
・ディスプレイパネルの改良技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma display panel (hereinafter, abbreviated as "PDP"), and in particular, an AC (AC) driven by separating one driving cycle into an address period and a sustain discharge period. ) Type plasma display panel improvement technology.

【0002】PDPは、奥行きが少なく、しかも大画面
を実現できるため、コンピュータやテレビジョン等の表
示装置に利用されるが、例えば、ハイビジョンのような
高精細表示に利用するには、256階調程度若しくはそ
れ以上の高い階調性を有していることが求められる。
Since the PDP has a small depth and can realize a large screen, it is used for a display device such as a computer and a television. For example, it can be used for a high definition display such as a high definition, and 256 gradations. It is required to have a high gradation property of a degree or more.

【0003】[0003]

【従来の技術】図5はAC型PDPの概略パネル平面
図、図6は1つの表示ドット(放電セルとも言う)の概
略断面図である。このPDPはいわゆる3電極・面放電
型の構成を有している。1、2は微細な間隙をもって積
層された2枚のガラス基板である。背面のガラス基板1
には、画面の横方向に敷設された表示ライン毎の電極Y
i (Y電極とも言う;iは1〜n)と、この電極Yi
平行して敷設された全表示ラインに共通の電極X(X電
極とも言う)とが誘電体層3に包まれて設けられてお
り、誘電体層3の表面には保護膜としてMgO(酸化マ
グネシューム)膜4が被着されている。また、前面のガ
ラス基板2には、電極Yi (及び電極X)に交差する方
向(すなわち画面の縦方向)の電極Aj (アドレス電極
とも言う;jは1〜m)が設けられ、さらに、この電極
j の下面に被着された蛍光体5が壁(障壁)6で仕切
られている。壁6で区画された空間(以下「放電空
間」)7が1つの表示ドット(表示セル)を形成し、隣
接する3つのドットの蛍光体(それぞれが赤、緑又は青
の発光特性をもつ)の光合成でカラー表示が行われる。
電極Yi や電極X又は電極Aj 間の電位差をコントロー
ルすることにより、放電空間7の内部で各種の放電現
象、すなわち選択放電(アドレス放電とも言う)8や維
持放電9を自由に発生させることができる。
2. Description of the Related Art FIG. 5 is a schematic panel plan view of an AC PDP, and FIG. 6 is a schematic sectional view of one display dot (also referred to as a discharge cell). This PDP has a so-called three-electrode / surface-discharge type structure. Reference numerals 1 and 2 are two glass substrates laminated with a minute gap. Back glass substrate 1
Is an electrode Y for each display line laid in the horizontal direction of the screen.
i (also referred to as a Y electrode; i is 1 to n) and an electrode X (also referred to as an X electrode) common to all display lines laid parallel to the electrode Y i are wrapped in a dielectric layer 3. A MgO (magnesium oxide) film 4 is provided as a protective film on the surface of the dielectric layer 3. Further, the front glass substrate 2 is provided with an electrode A j (also referred to as an address electrode; j is 1 to m) in a direction intersecting with the electrode Y i (and the electrode X) (that is, the vertical direction of the screen). The phosphor 5 attached to the lower surface of the electrode A j is partitioned by a wall (barrier) 6. A space (hereinafter referred to as “discharge space”) 7 defined by the wall 6 forms one display dot (display cell), and a phosphor of three adjacent dots (each having a red, green, or blue emission characteristic). Color display is performed by photosynthesis.
Various discharge phenomena, that is, selective discharge (also referred to as address discharge) 8 and sustain discharge 9 can be freely generated inside the discharge space 7 by controlling the potential difference between the electrode Y i , the electrode X, or the electrode A j. You can

【0004】図7は駆動系を含むPDPの概略全体構成
図である。10は図5及び図6の構成を有するパネル
部、11は外部からの供給信号(表示データDATA、
ドットクロックCLOCK、垂直同期信号VSYNC及
び水平同期信号HSYNC等)や電源電圧に基づいて、
表示に必要な各種の内部信号や内部電源電圧を生成する
制御回路、12はA1 からAm までのアドレス電極を駆
動するアドレスドライバ、13はY1 からYn までのY
電極を駆動するYドライバ、14はX電極を駆動するX
ドライバである。
FIG. 7 is a schematic overall configuration diagram of a PDP including a drive system. Reference numeral 10 is a panel unit having the configuration shown in FIGS. 5 and 6, 11 is an external supply signal (display data DATA,
Dot clock CLOCK, vertical synchronization signal VSYNC, horizontal synchronization signal HSYNC, etc.) and power supply voltage,
Control circuit for generating various internal signals and internal power supply voltage necessary for display, 12 an address driver for driving the address electrodes from A 1 to A m, 13 from Y 1 to Y n Y
Y driver for driving the electrode, 14 is X for driving the X electrode
Is a driver.

【0005】AC型PDPは、2本の維持電極(Y電極
とX電極)に、交互にパルス状の電圧波形を印加するこ
とで放電を持続し、発光表示を行うものである。一回の
放電はパルス印加の直後、1μsから数μs程度で終了
するが、放電によって発生した正電荷であるイオンは、
負の電圧が印加されている電極上の誘電体層3の表面に
蓄積され、同様に負電荷である電子は、正の電圧が印加
されている電極上の誘電体層3の表面に蓄積される。
[0005] The AC type PDP is a device for sustaining a discharge by alternately applying a pulse-shaped voltage waveform to two sustain electrodes (Y electrode and X electrode) to perform light emission display. One discharge ends in about 1 μs to several μs immediately after the pulse application, but the positive ions generated by the discharge are
Electrons, which are accumulated on the surface of the dielectric layer 3 on the electrode to which the negative voltage is applied, are also accumulated on the surface of the dielectric layer 3 on the electrode to which the positive voltage is applied. It

【0006】従って、初めに高電圧のパルス(以下「書
き込みパルスVw」と言う)で放電させ、壁電荷を生成
した後、極性の異なる前回よりも低い電圧のパルス(以
下「維持パルスまたは維持放電パルスVs」と言う)を
印加すると、前に蓄積された壁電荷に新たな壁電荷が重
畳され、放電空間に対する電圧が大きくなって、放電電
圧のしきい値を越えて放電を開始する。
Therefore, after a high voltage pulse (hereinafter referred to as "writing pulse Vw") is first discharged to generate wall charges, a pulse having a lower voltage than the previous pulse (hereinafter referred to as "sustain pulse or sustain discharge") having different polarities. Pulse Vs ”), new wall charges are superimposed on the previously accumulated wall charges, the voltage for the discharge space increases, and the discharge is started beyond the threshold of the discharge voltage.

【0007】すなわち、一度書き込み放電を行って壁電
荷を生成したセルは、その後、維持パルスを交互に逆極
性で印加することで、放電を持続するという特徴があ
り、このことをメモリ効果、またはメモリ機能と呼んで
いる。一般に、AC型PDPは、このメモリ効果を利用
して表示を行うものである。AC型PDPには、2本の
電極で選択放電(アドレス放電)と維持放電を行う2電
極型と、第3の電極を加えてアドレス放電を行う3電極
型とがあるが、多階調表示を行うカラーPDPでは、蛍
光体の寿命低下を回避する目的で一般に3電極構造が用
いられる。カラーPDPでは、放電によって発生する紫
外線を利用して表示セル内の蛍光体を励起するが、この
蛍光体は、放電によって同時に発生するイオンの衝撃に
弱いという欠点がある。2電極型では蛍光体がイオンに
直接当たるような構造になっているため、蛍光体の寿命
が短い。
That is, the cell in which the write discharge is performed once to generate the wall charge is characterized by sustaining the discharge by applying the sustain pulse alternately in the opposite polarity, which is a memory effect, or It is called the memory function. Generally, the AC type PDP performs display by utilizing this memory effect. AC type PDPs include a two-electrode type that performs selective discharge (address discharge) and sustain discharge with two electrodes, and a three-electrode type that performs address discharge by adding a third electrode. In the color PDP for performing the above, a three-electrode structure is generally used for the purpose of avoiding a decrease in the life of the phosphor. In the color PDP, ultraviolet rays generated by discharge are used to excite the fluorescent substance in the display cell, but this fluorescent substance has a drawback that it is weak against impact of ions simultaneously generated by the discharge. Since the two-electrode type has a structure in which the phosphor directly hits the ions, the life of the phosphor is short.

【0008】図8は図5及び図6に示すPDPの駆動波
形図であり、いわゆる「アドレス/維持放電期間分離型
・自己消去アドレス方式」における1サブフレーム(サ
ブフィールドとも言う)期間の波形である。この駆動方
法では、1サブフレーム期間は、全面書き込み期間を含
むアドレス期間と維持放電期間(サスティン期間とも言
う)とに分離される。以下、このような期間分離型の駆
動方式を「アドレス/維持放電分離方式」と言う。
FIG. 8 is a drive waveform diagram of the PDP shown in FIGS. 5 and 6, and is a waveform for one subframe (also referred to as subfield) period in the so-called “address / sustain discharge period separated type / self-erasing address system”. is there. In this driving method, one sub-frame period is divided into an address period including a full write period and a sustain discharge period (also called a sustain period). Hereinafter, such a period-separated driving method is referred to as an "address / sustain discharge separated method".

【0009】アドレス期間の動作 この期間では、まず、全てのY電極に0電位(GNDレ
ベル)を与えると同時に、X電極にパルス状の高電圧
(書き込みパルスVw)を与えて、全セルに放電を起こ
して表示データをリセットさせた後、Y電極の電位とX
電極の電位を同一レベル(Vs)に揃えて全セルに維持
放電を行わせる。
Operation in Address Period In this period, first, 0 potential (GND level) is applied to all Y electrodes, and at the same time, pulsed high voltage (write pulse Vw) is applied to X electrodes to discharge all cells. After resetting the display data, the potential of the Y electrode and X
The potentials of the electrodes are adjusted to the same level (Vs) to cause all cells to perform sustain discharge.

【0010】次いで、表示データに応じたセルのON/
OFFを行うために、線順次でアドレス放電を行わせ
る。まず、Y電極にGNDレベルのアドレスパルスを印
加すると同時に、維持放電を起こさないセル(すなわち
非点灯セル)に対応するアドレス電極に、電圧Vaのア
ドレスパルスを印加する。これにより、非点灯セルの自
己消去放電が行われ、選択表示ラインの書き込み(アド
レス)が実行される。
Then, the cell is turned on / off according to the display data.
In order to turn off, the address discharge is performed line-sequentially. First, the GND-level address pulse is applied to the Y electrode, and at the same time, the address pulse of the voltage Va is applied to the address electrode corresponding to the cell in which the sustain discharge does not occur (that is, the non-lighted cell). As a result, the self-erasing discharge of the non-lighted cells is performed, and the writing (address) of the selected display line is executed.

【0011】以下、他の表示ラインについても同様の動
作を順次に行い、全表示ラインに新たな表示データの書
き込みを行う。維持放電期間の動作 この期間では、Y電極とX電極に所定の周期で交互に維
持パルス(サスティンパルスとも言う)Vsを印加し
て、両電極間に維持放電を生じさせる。
Thereafter, the same operation is sequentially performed on the other display lines, and new display data is written on all the display lines. Operation during Sustain Discharge Period During this period, sustain pulse (also referred to as sustain pulse) Vs is alternately applied to the Y electrode and the X electrode at a predetermined cycle to generate sustain discharge between both electrodes.

【0012】ここで、画面の輝度は、維持放電期間の長
短、すなわち維持パルスVsの回数で決まる。すなわ
ち、維持放電パルスVsの数を増やせば輝度が上がり、
減らせば輝度が下がる。図9は1フレームを4つのサブ
フレームSF1 〜SF4 に分割した場合の本駆動方式の
概念図である。
The brightness of the screen is determined by the length of the sustain discharge period, that is, the number of sustain pulses Vs. That is, increasing the number of sustain discharge pulses Vs increases the brightness,
If it is reduced, the brightness will decrease. FIG. 9 is a conceptual diagram of the present drive system when one frame is divided into four subframes SF 1 to SF 4 .

【0013】全てのサブフレームのアドレス期間の長さ
Ta1 〜Ta4 は同一であるが、維持放電期間の長さT
1 〜Ts4 は異なっている。第1のサブフレームSF
1 の維持放電期間の長さTs1 をAとすると、第2のサ
ブフレームSF2 の維持放電期間の長さTs2 はA×2
1 倍、第3のサブフレームSF3 の維持放電期間の長さ
Ts3 はA×22 倍、第4のサブフレームSF4 の維持
放電期間の長さTs4はA×23 倍になっている。すな
わち、サブフレームの数をNとすると、第1から第Nま
でのサブフレームの維持放電期間の長さTs1 〜Ts4
は、A×20 、A×21 、A×22 、……、A×2N-1
となる。
The lengths Ta 1 to Ta 4 of the address period of all the subframes are the same, but the length T of the sustain discharge period is T.
s 1 to Ts 4 are different. First subframe SF
When the length Ts 1 of the sustain discharge period of 1 is A, the length Ts 2 of the sustain discharge period of the second subframe SF 2 is A × 2.
1 fold, the third subframe SF length Ts 3 of the sustain discharge period of 3 A × 2 2 times the length Ts 4 of the fourth sustain discharge period of the sub-frame SF 4 is turned A × 2 3 times ing. That is, assuming that the number of subframes is N, the lengths Ts 1 to Ts 4 of the sustain discharge periods of the first to Nth subframes.
Is A × 2 0 , A × 2 1 , A × 2 2 , ..., A × 2 N-1
Becomes

【0014】従って、維持放電パルスVsの周期は全て
のサブフレームにおいて同一であるから、各サブフレー
ムの維持放電パルスVsの数が20 倍、21 倍、2
2 倍、……、2N-1 倍と順次に多くなり、点灯させるサ
ブフレームを選択することで、簡単に2N 階調を表示で
きるようになる。なお、図10は他の「アドレス/維持
放電分離方式」の例であり、いわゆる「アドレス/維持
放電分離型・書き込みアドレス方式」と呼ばれる駆動方
式である。
[0014] Therefore, since the period of the sustain discharge pulse Vs is the same in all subframes, number 2 0 times the sustain pulse Vs of each subframe, 2 1-fold, 2
2-fold, ..., it becomes successively more and 2 N-1 times, by selecting the subframes to be illuminated becomes easy to display a 2 N gradation. Note that FIG. 10 is an example of another "address / sustain discharge separation method", which is a drive method called "address / sustain discharge separation type / write address method".

【0015】1サブフレームは、上述の駆動方式と同様
に、アドレス期間と維持放電期間に分離されるが、アド
レス期間の初めに、電圧Veの太幅消去パルスを印加し
て全面消去を行う点で相違する。
One sub-frame is divided into an address period and a sustain discharge period as in the above-described driving method, but a wide erase pulse of voltage Ve is applied at the beginning of the address period to perform full erase. Is different.

【0016】[0016]

【発明が解決しようとする課題】ところで、面放電型の
PDPでは、パネルの電極抵抗等の影響で同一の維持パ
ルス数でも、図11に示すように、表示率によって輝度
が変化するという不具合がある。図11において、縦軸
は輝度、横軸は表示率(100%:全セル点灯、0%:
全セル消灯)であり、破線は輝度変化のない理想的な特
性、実線は各サブフレームSF1 〜SF4 の実際の特性
である。点灯セルの数が増える(表示率が大きくなる)
につれて輝度が低下している。
By the way, in the surface discharge type PDP, even if the number of sustain pulses is the same due to the influence of the electrode resistance of the panel, as shown in FIG. 11, there is a problem that the brightness changes depending on the display rate. is there. In FIG. 11, the vertical axis represents the luminance and the horizontal axis represents the display ratio (100%: all cell lighting, 0%:
All cells are turned off), the broken line is an ideal characteristic with no brightness change, and the solid line is an actual characteristic of each of the subframes SF 1 to SF 4 . Increased number of lit cells (increased display rate)
As the brightness decreases.

【0017】こうした不具合は、単階調表示あるいは1
6階調程度の階調表示であればそれほど目立つものでは
なく、実用上問題とはならないが、256階調若しくは
それ以上になると、例えば、画面パターンによっては、
高階調表示部分と低階調表示部分の明るさが逆転するこ
とがあり、表示品質を大きく損なってしまうという問題
点がある。 [目的]そこで、本発明は、表示率に応じて維持パルス
の大きさを変化させることにより、256階調若しくは
それ以上の階調表示における表示品質の向上を図ること
を目的とする。
Such a problem is caused by a single gradation display or 1
If it is a gradation display of about 6 gradations, it is not so conspicuous, and it is not a problem in practical use. However, if it is 256 gradations or more, for example, depending on the screen pattern,
The brightness of the high gradation display portion and the brightness of the low gradation display portion may be reversed, and there is a problem that the display quality is greatly impaired. [Object] Therefore, an object of the present invention is to improve the display quality in a gradation display of 256 gradations or higher by changing the magnitude of the sustain pulse according to the display ratio.

【0018】[0018]

【課題を解決するための手段】本発明は、上記目的を達
成するために、1つのフレームを第1から第NまでのN
個のサブフレームに時間的に分割し、第1のサブフレー
ムの維持放電期間の長さに対して、第2のサブフレーム
の維持放電期間の長さを21 倍、第3のサブフレームの
維持放電期間の長さを22 倍、……、第Nのサブフレー
ムの維持放電期間の長さを2N-1 倍に設定し、これら第
1から第NまでのN個のサブフレームを表示データの階
調に応じて選択し得るように構成すると共に、選択サブ
フレームの維持放電期間には、X電極とY電極間に電位
差を与えて両電極間に書き込みデータ維持のための放電
現象を生じさせるプラズマ・ディスプレイパネルにおい
て、1画面を構成する全表示セルのうちの点灯セルと消
灯セルの割合で表される表示率を検出する検出手段と、
該表示率に応じて前記X電極とY電極間に与える電位差
を調節する調節手段と、を備えたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention uses one frame for N first to Nth frames.
The sub-frame is temporally divided into two sub-frames, and the length of the sustain discharge period of the second sub-frame is multiplied by 2 1 times the length of the sustain discharge period of the first sub-frame. The length of the sustain discharge period is set to 2 2 times, and the length of the sustain discharge period of the Nth subframe is set to 2 N-1 times, and these N subframes from the 1st to the Nth are set. In addition to the configuration for selecting according to the gradation of the display data, during the sustain discharge period of the selected subframe, a potential difference is applied between the X electrode and the Y electrode to maintain a write phenomenon between the two electrodes for maintaining write data. In the plasma display panel that causes the above-mentioned, a detection unit that detects a display rate represented by a ratio of a lighted cell and a non-lighted cell of all display cells forming one screen,
Adjusting means for adjusting the potential difference applied between the X electrode and the Y electrode according to the display rate.

【0019】[0019]

【作用】上述の「アドレス/維持放分離方式」における
輝度は、維持放電期間中の維持パルスの回数によって決
まる。よって、輝度可変の最小単位は、維持パルス1個
分の大きさに依存するから、本発明のように、1画面を
構成する全表示セルの表示率に応じてX電極とY電極間
の電位差(維持パルスの大きさ)を調節すれば、256
階調若しくはそれ以上の階調表示における不本意な階調
逆転を回避でき、表示品質の向上を図ることができる。
The brightness in the above-mentioned "address / sustain discharge separation system" is determined by the number of sustain pulses during the sustain discharge period. Therefore, since the minimum unit of brightness variation depends on the size of one sustain pulse, the potential difference between the X electrode and the Y electrode depends on the display rate of all the display cells forming one screen as in the present invention. If the (sustain pulse size) is adjusted, 256
It is possible to avoid inadvertent grayscale inversion in grayscale or higher grayscale display, and to improve display quality.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜図4は本発明に係るプラズマ・ディスプレ
イパネルの一実施例を示す図である。まず、構成を説明
する。図1において、20はPDPユニットであり、P
DPユニット20は、パネル部(構造は図5、図6参
照)21、アドレスドライバ22、Yドライバ23、X
ドライバ24及び制御回路25を含んで構成される。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are views showing an embodiment of a plasma display panel according to the present invention. First, the configuration will be described. In FIG. 1, 20 is a PDP unit, P
The DP unit 20 includes a panel section (see FIGS. 5 and 6 for the structure) 21, an address driver 22, a Y driver 23, and an X unit.
It is configured to include a driver 24 and a control circuit 25.

【0021】制御回路25は、時分割されたサブフィー
ルド毎の表示を行うために外部からの表示データを一時
的に蓄積する表示データバッファメモリ26、表示に必
要な各種の基本波形データを記憶する駆動波形ROM
(read only memory)27、各ドライバ22〜24に必
要な各種信号を生成するロジック制御回路部28、各ド
ライバ22〜24に必要な高電圧パルスを供給する高圧
制御回路部29及び当該高電圧パルスのための高電圧電
源を発生する高電圧発生回路(検出手段、調節手段)3
0を備える。
The control circuit 25 stores a display data buffer memory 26 for temporarily storing display data from the outside in order to display each time-divided subfield, and various basic waveform data required for display. Drive waveform ROM
(Read only memory) 27, a logic control circuit unit 28 that generates various signals required for the drivers 22 to 24, a high voltage control circuit unit 29 that supplies high voltage pulses required to the drivers 22 to 24, and the high voltage pulse. Voltage generation circuit (detection means, adjustment means) 3 for generating a high voltage power supply for
Equipped with 0.

【0022】本実施例のポイントである高電圧発生回路
30は、表示データに基づいて全セル中の点灯セルと非
点灯セルの割合に相当する表示率を検出する表示率検出
回路31と、該表示率を電圧データに変換するデータ変
換ROM32と、サブフレーム毎の表示タイミングに合
わせるための時間調整バッファ33と、時間調整された
電圧データをアナログ電圧に変換するD/A変換器34
と、D/A変換器34の出力を一定の増幅率で増幅する
電圧増幅器35と、アドレス期間と維持放電期間を判別
する期間判別回路36と、電圧出力回路37とを含んで
構成される。なお、電圧出力回路37は、Pチャネル型
のMOSトランジスタ37a及びNチャネル型のMOS
トランジスタ37bを、電圧増幅器35の出力とグラン
ド間に直列に接続すると共に、各MOSトランジスタ3
7a、37bの接続ノードと高耐圧ダイオード37cの
カソード間にコンデンサ37dを挿入し、さらに、期間
判別回路36の出力論理に応答して各MOSトランジス
タ37a、37bを相補的にオン/オフするFETドラ
イバ37eを備えて構成する。アドレス期間ではNチャ
ネルMOSトランジスタ37bをオンにして外部から供
給される高電圧Vsをそのまま出力する一方、維持放電
期間ではPチャネルMOSトランジスタ37aをオンに
して外部から供給される高電圧Vsに電圧増幅器35の
出力(α)を加算して出力する。
The high voltage generation circuit 30, which is the point of this embodiment, has a display rate detection circuit 31 for detecting a display rate corresponding to the ratio of the lit cells to the non-lit cells in all cells based on the display data, and the display rate detection circuit 31. A data conversion ROM 32 for converting the display rate into voltage data, a time adjustment buffer 33 for adjusting the display timing for each subframe, and a D / A converter 34 for converting the time adjusted voltage data into an analog voltage.
A voltage amplifier 35 that amplifies the output of the D / A converter 34 at a constant amplification rate, a period determination circuit 36 that determines an address period and a sustain discharge period, and a voltage output circuit 37. The voltage output circuit 37 includes a P-channel MOS transistor 37a and an N-channel MOS transistor.
The transistor 37b is connected in series between the output of the voltage amplifier 35 and the ground, and each MOS transistor 3
A FET driver that inserts a capacitor 37d between the connection node of 7a and 37b and the cathode of the high breakdown voltage diode 37c, and responds to the output logic of the period determination circuit 36 to turn on / off each MOS transistor 37a and 37b complementarily. 37e. During the address period, the N-channel MOS transistor 37b is turned on to output the high voltage Vs supplied from the outside as it is, while during the sustain discharge period, the P-channel MOS transistor 37a is turned on to output the high voltage Vs supplied from the outside to the voltage amplifier. The output (α) of 35 is added and output.

【0023】図2は表示率検出回路31の好ましい構成
例であり、R1 〜R6 、G1 〜G6、B1 〜B6 はそれ
ぞれ6ビット(64階調の場合;256階調では8ビッ
ト)構成の表示データ(R:赤、G:緑、B:青)、V
SYNCは垂直同期信号、CLOCKはドットクロック
である。38R1 〜38R6、39G1〜39G6、40B1
40B6は、赤、緑、青の各表示データのビット毎に設け
られたカウンタであり、それぞれのカウンタは、1垂直
走査期間における表示データの対応ビットの所定論理
(セルを点灯させるための論理;例えばハイ論理)の数
をカウントする。全てのカウンタの出力は、ビット毎の
加算器411 〜416 で加算され、再下位ビットの加算
器411 の出力が第1のサブフレームSF1 の表示率に
なり、……、最上位ビットの加算器416 の出力が第6
サブフレームSF6 の表示率になる。
FIG. 2 shows a preferred configuration example of the display rate detection circuit 31. R 1 to R 6 , G 1 to G 6 , and B 1 to B 6 are each 6 bits (in the case of 64 gradations; in 256 gradations). 8-bit) display data (R: red, G: green, B: blue), V
SYNC is a vertical synchronizing signal, and CLOCK is a dot clock. 38 R1 to 38 R6 , 39 G1 to 39 G6 , 40 B1 to
40 B6 is a counter provided for each bit of red, green, and blue display data, and each counter has a predetermined logic (a logic for lighting a cell) of a corresponding bit of the display data in one vertical scanning period. Counting the number of high logics, for example). Outputs of all of the counters are added by the adder 41 1 to 41 6 for each bit, the output of the adder 41 1 re lower bit becomes the first display rate of the sub-frame SF 1, ......, the uppermost The output of the bit adder 41 6 is the sixth
The display rate is that of the sub-frame SF 6 .

【0024】次に、作用を説明する。本実施例では、高
電圧発生回路30から高圧制御回路部29に供給される
高電圧の値がアドレス期間と維持放電期間で異なる。す
なわち、図3(a)に示すように、アドレス期間では、
外部から供給される高電圧Vsがそのまま供給される
が、維持放電期間では、そのときの表示データの表示率
に応じて調節された可変の高電圧Vs+αが供給され
る。
Next, the operation will be described. In the present embodiment, the value of the high voltage supplied from the high voltage generation circuit 30 to the high voltage control circuit unit 29 differs between the address period and the sustain discharge period. That is, as shown in FIG. 3A, in the address period,
The high voltage Vs supplied from the outside is supplied as it is, but during the sustain discharge period, the variable high voltage Vs + α adjusted according to the display rate of the display data at that time is supplied.

【0025】従って、前述の駆動方式(図8又は図10
参照)の維持放電期間における維持パルスVsの大きさ
が表示率に応じて変化することになり、しかも、図3
(b)に示すように、画面の輝度は、ある電圧範囲内に
おいて維持パルスVsの大きさに比例して変化するか
ら、調整電圧(α)の大きさ(具体的には、データ変換
ROM32の格納データ)を適正化することにより、例
えば、256階調若しくはそれ以上の多階調表示の場合
においても、高階調表示部分と低階調表示部分の明るさ
を正しく表示できるようになり、表示品質の向上を図る
ことができる。
Therefore, the above-mentioned driving method (see FIG. 8 or FIG. 10) is used.
The magnitude of the sustaining pulse Vs during the sustaining discharge period (see FIG. 3) changes according to the display rate.
As shown in (b), since the screen brightness changes in proportion to the magnitude of the sustain pulse Vs within a certain voltage range, the magnitude of the adjustment voltage (α) (specifically, in the data conversion ROM 32). By optimizing the stored data), it becomes possible to correctly display the brightness of the high gradation display portion and the low gradation display portion even in the case of multi-gradation display of 256 gradations or more. The quality can be improved.

【0026】なお、本実施例では、維持放電期間だけに
限定して高電圧Vsの調節を行っているが、その理由は
以下のとおりである。画面の輝度を変化させるには、ア
ドレス期間の高電圧Vsを調節しても可能である。しか
し、このアドレス期間におけるVsのマージンは、図4
(a)に示すように、きわめて狭い範囲でしか与えられ
ないため、Vsが安定動作領域から外れると非選択セル
が点灯したり(領域イ)あるいは選択セルが非点灯にな
ったり(領域ロ)する不具合を招く。これに対し、維持
放電期間におけるVsのマージンは、図4(b)に示す
ように、上限電圧VsUP(全消去画面において全セル中
の最初の1セルが放電開始する電圧)から下限電圧Vs
LOW (全点灯画面において全セル中の最初の1セルが消
えてしまう電圧)までの間でかなりの余裕があり、表示
率に応じてVsを変化させても、アドレス期間のように
動作上の不都合を招くことはない。
In the present embodiment, the high voltage Vs is adjusted only during the sustain discharge period, and the reason is as follows. The brightness of the screen can be changed by adjusting the high voltage Vs in the address period. However, the margin of Vs in this address period is shown in FIG.
As shown in (a), since it is given only in an extremely narrow range, when Vs deviates from the stable operation region, the non-selected cell may be turned on (region a) or the selected cell may be turned off (region b). Cause a malfunction. On the other hand, as shown in FIG. 4B, the margin of Vs in the sustain discharge period is from the upper limit voltage Vs UP (the voltage at which the first one cell of all cells starts to discharge in the all erase screen) to the lower limit voltage Vs.
There is a considerable margin up to LOW (the voltage at which the first one cell of all cells disappears in the all-lighted screen), and even if Vs is changed according to the display rate, the operation is similar to the address period. There is no inconvenience.

【0027】[0027]

【発明の効果】本発明によれば、表示率に応じて維持パ
ルスの大きさを変化させるようにしたので、正確な表示
階調を得ることができ、256階調若しくはそれ以上の
階調表示における表示品質の向上を図ることができる。
According to the present invention, since the magnitude of the sustain pulse is changed according to the display ratio, it is possible to obtain an accurate display gradation and display 256 gradations or more. It is possible to improve the display quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の全体構成図である。FIG. 1 is an overall configuration diagram of the present invention.

【図2】本発明の表示率検出回路の構成図である。FIG. 2 is a configuration diagram of a display rate detection circuit of the present invention.

【図3】Vs合成出力タイムチャート及びVsと輝度の
関係を示す図である。
FIG. 3 is a diagram showing a Vs composite output time chart and a relationship between Vs and luminance.

【図4】維持放電期間のVsマージン図及びアドレス期
間のVsマージン図である。
FIG. 4 is a Vs margin diagram for a sustain discharge period and a Vs margin diagram for an address period.

【図5】代表的な3電極・面放電・AC型PDPの概略
平面図である。
FIG. 5 is a schematic plan view of a typical three-electrode / surface discharge / AC PDP.

【図6】図5の1表示セルの概略断面図である。6 is a schematic cross-sectional view of one display cell of FIG.

【図7】従来例の概略ブロック図である。FIG. 7 is a schematic block diagram of a conventional example.

【図8】アドレス/維持放電分離型・自己消去アドレス
方式における駆動波形図である。
FIG. 8 is a drive waveform diagram in the address / sustain discharge separate type self-erasing address system.

【図9】16階調表示の場合のタイムチャートである。FIG. 9 is a time chart for 16 gradation display.

【図10】アドレス/維持放電分離型・書き込みアドレ
ス方式における駆動波形図である。
FIG. 10 is a drive waveform diagram in the address / sustain discharge separate type / write address system.

【図11】表示率と輝度の関係図である。FIG. 11 is a relationship diagram between a display rate and brightness.

【符号の説明】[Explanation of symbols]

j :アドレス電極 SF1 〜SF4 :サブフレーム X:X電極 Yi :Y電極 7:放電空間(表示セル) 30:高電圧発生回路(検出手段、調節手段)A j : Address electrodes SF 1 to SF 4 : Subframe X: X electrode Y i : Y electrode 7: Discharge space (display cell) 30: High voltage generation circuit (detection means, adjustment means)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1つのフレームを第1から第NまでのN個
のサブフレームに時間的に分割し、 第1のサブフレームの維持放電期間の長さに対して、第
2のサブフレームの維持放電期間の長さを21 倍、第3
のサブフレームの維持放電期間の長さを22 倍、……、
第Nのサブフレームの維持放電期間の長さを2N-1 倍に
設定し、 これら第1から第NまでのN個のサブフレームを表示デ
ータの階調に応じて選択し得るように構成すると共に、 選択サブフレームの維持放電期間には、X電極とY電極
間に電位差を与えて両電極間に書き込みデータ維持のた
めの放電現象を生じさせるプラズマ・ディスプレイパネ
ルにおいて、 1画面を構成する全表示セルのうちの点灯セルと消灯セ
ルの割合で表される表示率を検出する検出手段と、 該表示率に応じて前記X電極とY電極間に与える電位差
を調節する調節手段と、を備えたことを特徴とするプラ
ズマ・ディスプレイパネル。
1. One frame is temporally divided into N subframes from a first to an Nth subframe, and the length of the sustain discharge period of the first subframe is compared with that of the second subframe. 2 1 times the length of the sustain discharge period, the third
2 times the length of the sustain discharge period of the subframe of ...
The length of the sustain discharge period of the Nth subframe is set to 2 N-1 times, and N subframes from the 1st to the Nth can be selected according to the gradation of the display data. In addition, in the sustain discharge period of the selected sub-frame, one screen is formed in the plasma display panel that applies a potential difference between the X electrode and the Y electrode to generate a discharge phenomenon for maintaining write data between the both electrodes. A detection unit that detects a display ratio represented by a ratio of a lighted cell to a non-lighted cell of all display cells; and an adjustment unit that adjusts a potential difference applied between the X electrode and the Y electrode according to the display ratio. A plasma display panel characterized by being equipped.
JP19070093A 1993-08-02 1993-08-02 Plasma display panel Expired - Fee Related JP3266373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19070093A JP3266373B2 (en) 1993-08-02 1993-08-02 Plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19070093A JP3266373B2 (en) 1993-08-02 1993-08-02 Plasma display panel

Publications (2)

Publication Number Publication Date
JPH0744127A true JPH0744127A (en) 1995-02-14
JP3266373B2 JP3266373B2 (en) 2002-03-18

Family

ID=16262402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19070093A Expired - Fee Related JP3266373B2 (en) 1993-08-02 1993-08-02 Plasma display panel

Country Status (1)

Country Link
JP (1) JP3266373B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100859A (en) * 1995-09-01 2000-08-08 Fujitsu Limited Panel display adjusting number of sustaining discharge pulses according to the quantity of display data
US6115011A (en) * 1996-06-06 2000-09-05 Hitachi, Ltd. Plasma display device and driving method
WO2001037250A1 (en) * 1999-11-12 2001-05-25 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
US6278421B1 (en) 1996-11-06 2001-08-21 Fujitsu Limited Method and apparatus for controlling power consumption of display unit, display system equipped with the same, and storage medium with program stored therein for implementing the same
US6326938B1 (en) 1998-03-26 2001-12-04 Fujitsu Limited Power consumption control in display unit
US6331843B1 (en) 1997-12-10 2001-12-18 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting the number of subframes to brightness
US6388678B1 (en) 1997-12-10 2002-05-14 Matsushita Electric Industrial Co., Ltd. Plasma display panel drive pulse controller
US6417835B1 (en) 1995-10-24 2002-07-09 Fujitsu Limited Display driving method and apparatus
US6614646B2 (en) 2000-03-22 2003-09-02 Nkg Insulators, Ltd. Polarizable electrode for electrical double-layer capacitor
US6636187B2 (en) 1998-03-26 2003-10-21 Fujitsu Limited Display and method of driving the display capable of reducing current and power consumption without deteriorating quality of displayed images
JP2005010398A (en) * 2003-06-18 2005-01-13 Hitachi Ltd Plasma display device
KR20050111187A (en) * 2004-05-21 2005-11-24 삼성에스디아이 주식회사 Apparatus for driving plasma display panel and plasma display panel comprising the same
JP2006284640A (en) * 2005-03-31 2006-10-19 Pioneer Electronic Corp Method for driving plasma display panel
WO2007013139A1 (en) * 2005-07-26 2007-02-01 Fujitsu Hitachi Plasma Display Limited Plasma display device
WO2007015309A1 (en) * 2005-08-04 2007-02-08 Fujitsu Hitachi Plasma Display Limited Plasma display device
KR100669274B1 (en) * 1996-11-12 2007-04-19 산요덴키가부시키가이샤 Method of driving flat panel display apparatus
CN100353396C (en) * 2003-03-28 2007-12-05 富士通株式会社 Method for driving plasma display panel
JP2009151345A (en) * 2009-04-10 2009-07-09 Hitachi Ltd Method and device for driving plasma display
EP2105912A2 (en) 1995-07-21 2009-09-30 Canon Kabushiki Kaisha Drive circuit for display device with uniform luminance characteristics
JP2010092075A (en) * 2010-01-25 2010-04-22 Hitachi Ltd Method and device for driving plasma display
US7706130B2 (en) 2006-03-24 2010-04-27 Asahi Glass Company, Limited Process for producing electrode for electric double layer capacitor and process for producing electric double layer capacitor employing the electrode

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105912A3 (en) * 1995-07-21 2010-03-17 Canon Kabushiki Kaisha Drive circuit for display device with uniform luminance characteristics
EP2105912A2 (en) 1995-07-21 2009-09-30 Canon Kabushiki Kaisha Drive circuit for display device with uniform luminance characteristics
US6104362A (en) * 1995-09-01 2000-08-15 Fujitsu Limited Panel display in which the number of sustaining discharge pulses is adjusted according to the quantity of display data, and a driving method for the panel display
US6100859A (en) * 1995-09-01 2000-08-08 Fujitsu Limited Panel display adjusting number of sustaining discharge pulses according to the quantity of display data
KR100415431B1 (en) * 1995-09-01 2004-01-24 후지쯔 가부시끼가이샤 Panel display device and driving method of display panel
US6417835B1 (en) 1995-10-24 2002-07-09 Fujitsu Limited Display driving method and apparatus
US7855698B2 (en) 1995-10-24 2010-12-21 Hitachi Limited Display driving method and apparatus
US7095390B2 (en) 1995-10-24 2006-08-22 Fujitsu Limited Display driving method and apparatus
US6563486B2 (en) 1995-10-24 2003-05-13 Fujitsu Limited Display driving method and apparatus
US6115011A (en) * 1996-06-06 2000-09-05 Hitachi, Ltd. Plasma display device and driving method
US6278421B1 (en) 1996-11-06 2001-08-21 Fujitsu Limited Method and apparatus for controlling power consumption of display unit, display system equipped with the same, and storage medium with program stored therein for implementing the same
KR100669274B1 (en) * 1996-11-12 2007-04-19 산요덴키가부시키가이샤 Method of driving flat panel display apparatus
US6331843B1 (en) 1997-12-10 2001-12-18 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting the number of subframes to brightness
US6353424B2 (en) 1997-12-10 2002-03-05 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting subfield number according to brightness
US6388678B1 (en) 1997-12-10 2002-05-14 Matsushita Electric Industrial Co., Ltd. Plasma display panel drive pulse controller
US6400346B2 (en) 1997-12-10 2002-06-04 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting subfield number according to brightness
US6351253B2 (en) 1997-12-10 2002-02-26 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting subfield number according to brightness
US6690388B2 (en) 1997-12-10 2004-02-10 Matsushita Electric Industrial Co., Ltd. PDP display drive pulse controller
US6384803B2 (en) 1997-12-10 2002-05-07 Matsushita Electric Industrial Co., Ltd. Display apparatus capable of adjusting subfield number according to brightness
US6388645B2 (en) 1997-12-10 2002-05-14 Matsushita Electric Industrial Co. Ltd. Display apparatus capable of adjusting subfield number according to brightness
US6326938B1 (en) 1998-03-26 2001-12-04 Fujitsu Limited Power consumption control in display unit
US6636187B2 (en) 1998-03-26 2003-10-21 Fujitsu Limited Display and method of driving the display capable of reducing current and power consumption without deteriorating quality of displayed images
US6900781B1 (en) 1999-11-12 2005-05-31 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
EP1365379A1 (en) * 1999-11-12 2003-11-26 Matsushita Electric Industrial Co., Ltd. Display device and method of driving the same
WO2001037250A1 (en) * 1999-11-12 2001-05-25 Matsushita Electric Industrial Co., Ltd. Display and method for driving the same
US6614646B2 (en) 2000-03-22 2003-09-02 Nkg Insulators, Ltd. Polarizable electrode for electrical double-layer capacitor
CN100353396C (en) * 2003-03-28 2007-12-05 富士通株式会社 Method for driving plasma display panel
JP2005010398A (en) * 2003-06-18 2005-01-13 Hitachi Ltd Plasma display device
US7746295B2 (en) 2003-06-18 2010-06-29 Hitachi, Ltd. Plasma display device having improved luminous efficacy
KR20050111187A (en) * 2004-05-21 2005-11-24 삼성에스디아이 주식회사 Apparatus for driving plasma display panel and plasma display panel comprising the same
JP2006284640A (en) * 2005-03-31 2006-10-19 Pioneer Electronic Corp Method for driving plasma display panel
WO2007013139A1 (en) * 2005-07-26 2007-02-01 Fujitsu Hitachi Plasma Display Limited Plasma display device
US7990341B2 (en) 2005-07-26 2011-08-02 Fujitsu Hitachi Plasma Display Limited Plasma display device
WO2007015309A1 (en) * 2005-08-04 2007-02-08 Fujitsu Hitachi Plasma Display Limited Plasma display device
US7706130B2 (en) 2006-03-24 2010-04-27 Asahi Glass Company, Limited Process for producing electrode for electric double layer capacitor and process for producing electric double layer capacitor employing the electrode
JP2009151345A (en) * 2009-04-10 2009-07-09 Hitachi Ltd Method and device for driving plasma display
JP2010092075A (en) * 2010-01-25 2010-04-22 Hitachi Ltd Method and device for driving plasma display

Also Published As

Publication number Publication date
JP3266373B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
JP3266373B2 (en) Plasma display panel
JP2853537B2 (en) Flat panel display
US7375702B2 (en) Method for driving plasma display panel
JP2856241B2 (en) Gradation control method for plasma display device
USRE37083E1 (en) Method and apparatus for driving surface discharge plasma display panel
KR100490965B1 (en) Method and apparatus for driving plasma display panel uneffected by the display load amount
US7477215B2 (en) Plasma display apparatus and driving method thereof
JP3307486B2 (en) Flat panel display and control method thereof
US6784857B1 (en) Method of driving a sustaining pulse for a plasma display panel and a driver circuit for driving a plasma display panel
JP4768134B2 (en) Driving method of plasma display device
JP2002014652A (en) Driving method for display panel
EP1717786A2 (en) Plasma display apparatus and image processing method thereof
JP2004021181A (en) Driving method for plasma display panel
JP2756053B2 (en) AC Drive Type Plasma Display Panel Driving Method
WO2005111974A1 (en) Plasma display panel driving method
JP2006293112A (en) Driving method of plasma display panel, and plasma display device
JP2000172226A (en) Plasma display panel device
US6914584B2 (en) Plasma display device with reduced power consumption while preventing erroneous write-in
JPH10301528A (en) Driving method of plasma display
JP2007041251A (en) Method for driving plasma display panel
JPH10207427A (en) Driving method for plasma display panel display device and driving control device
WO2009101784A1 (en) Plasma display device and method for driving the same
JP4100337B2 (en) Driving method of plasma display panel
JP2006003398A (en) Driving method for plasma display panel
JP2006119586A (en) Plasma display and its driving method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011218

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees