JPH0744032B2 - Method for manufacturing organic electrolyte battery - Google Patents

Method for manufacturing organic electrolyte battery

Info

Publication number
JPH0744032B2
JPH0744032B2 JP61132750A JP13275086A JPH0744032B2 JP H0744032 B2 JPH0744032 B2 JP H0744032B2 JP 61132750 A JP61132750 A JP 61132750A JP 13275086 A JP13275086 A JP 13275086A JP H0744032 B2 JPH0744032 B2 JP H0744032B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
organic electrolyte
limno
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61132750A
Other languages
Japanese (ja)
Other versions
JPS62290058A (en
Inventor
隆幸 山平
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61132750A priority Critical patent/JPH0744032B2/en
Publication of JPS62290058A publication Critical patent/JPS62290058A/en
Publication of JPH0744032B2 publication Critical patent/JPH0744032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、負極活物質にリチウムを、電解液に有機電解
液を用いる有機電解質電池(いわゆるリチウム一次電
池)に関するものであり、特に二酸化マンガンを正極活
物質とする有機電解質電池の製造方法改良に関するもの
である。
TECHNICAL FIELD The present invention relates to an organic electrolyte battery (so-called lithium primary battery) using lithium as a negative electrode active material and an organic electrolytic solution as an electrolytic solution, and particularly to manganese dioxide. The present invention relates to an improvement in a method for manufacturing an organic electrolyte battery using as a positive electrode active material.

〔発明の概要〕 本発明は、有機電解質電池の正極活物質(二酸化マンガ
ン)中にLiMnO2を添加することにより、 電池組立て直後の高電位部分を放電処理することなしに
解消し、最初から所望の電池電位を示す有機電解質電池
の製造方法を得ようとするものである。
[Summary of the Invention] The present invention is solved by adding LiMnO 2 in the positive electrode active material (manganese dioxide) of an organic electrolyte battery without discharging the high-potential portion immediately after battery assembly, and is desired from the beginning. The present invention is intended to obtain a method for manufacturing an organic electrolyte battery exhibiting the battery potential of

〔従来の技術〕[Conventional technology]

金属リチウムを負極に用い、電解液として有機電解液を
使用してなる有機電解質電池(いわゆるリチウム一次電
池)は、保存性に優れ,性能が非常に高い等、他の一次
電池に代替する有用な電池として注目を集めている。
An organic electrolyte battery (so-called lithium primary battery), which uses metallic lithium as a negative electrode and an organic electrolyte as an electrolyte, has excellent storage stability and extremely high performance, and is useful as a substitute for other primary batteries. It is attracting attention as a battery.

上記有機電解質電池は、例えば時計,カメラ,電卓,メ
モリーバックアップ用等の電源電池として使用されてい
る。
The organic electrolyte battery is used as a power supply battery for a clock, a camera, a calculator, a memory backup, etc.

上述のように各種民生用電子機器の電源電池として利用
されている上記有機電解質電池の実用例としては、例え
ば、Li/MnO2,Li/CFx,Li/SOCl2等の組合わせによるもの
が知られており、中でも特にLi/MnO2の組合わせによる
ものが、強負荷特性に優れ、しかも原料が安価であると
いったメリットから多数生産され、使用されているとい
う状況にある。
As a practical example of the organic electrolyte battery used as a power supply battery for various consumer electronic devices as described above, for example, a combination of Li / MnO 2 , Li / CF x , Li / SOCl 2, etc. It is known that, in particular, a combination of Li / MnO 2 is produced and used in large numbers because of its advantages of high load characteristics and low cost of raw materials.

ところが、上記Li/MnO2からなる有機電解質電池は、電
池組立て加工直後に3.5〜3.6Vという非常に高い電位を
示す。これは、正極活物質として用いられている二酸化
マンガンに非常に高い活性を示す部分が存在しているた
めであると言われている。
However, the above-mentioned organic electrolyte battery made of Li / MnO 2 exhibits a very high potential of 3.5 to 3.6 V immediately after the battery is assembled and processed. It is said that this is because manganese dioxide used as the positive electrode active material has a portion exhibiting extremely high activity.

このような高活性を示す部分が陽極罐内に存在すると、
これによって電解液として用いている有機電解液が劣化
してしまい電池としての保存性が悪化してしまう。
When such a highly active portion is present in the anode can,
As a result, the organic electrolytic solution used as the electrolytic solution is deteriorated and the storability of the battery is deteriorated.

また、上記有機電解質電池を使用する各種民生用電子機
器に内蔵されているIC等の電子部品は、その作動電位の
許容範囲が一般に3.3V付近にあるため、上記高電位を示
している有機電解質電池をそのままの状態で機器内に組
み込んでしまうと表示異常や誤動作を招いたり、さらに
は電子部品の破損等を招く恐れがある。
Further, electronic components such as ICs incorporated in various consumer electronic devices that use the organic electrolyte battery, since the allowable range of the operating potential is generally around 3.3V, the organic electrolyte showing the high potential. If the battery is installed in the device as it is, abnormal display or malfunction may occur, and further, electronic parts may be damaged.

そこで、その対処法として、正極活物質で用いられてい
る二酸化マンガンに添加剤を加えたり、二酸化マンガン
自身に特殊処理を施すこと等が提案され試みられている
が、いずれも充分な効果が得られていない。そのため現
在では、上記高電位を示す有機電解質電池作製後、電池
容量の一部を意図的に放電処理して所望の電位にまで電
位を低下させている。しかし、上記放電処理作業は、電
池の加工工程上あるいは生産性等の面から大きな問題と
なっている。
Therefore, as a countermeasure, it has been proposed and tried to add an additive to manganese dioxide used in the positive electrode active material, or to subject the manganese dioxide itself to a special treatment. Has not been done. Therefore, at present, after producing the organic electrolyte battery exhibiting the above-mentioned high potential, a part of the battery capacity is intentionally discharged to reduce the potential to a desired potential. However, the above-mentioned discharge treatment work poses a serious problem in terms of the battery processing process or productivity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように、Li/MnO2からなる有機電解質電池は、電池
組立て加工直後に非常に高い電位を示すため、電池容量
の一部を意図的に放電処理して所望の電位にまで電池電
位を低下させている。
As described above, the organic electrolyte battery made of Li / MnO 2 exhibits a very high potential immediately after the battery is assembled and processed, so that part of the battery capacity is intentionally discharged to reduce the battery potential to a desired potential. I am letting you.

しかし、上記放電処理作業は、電池の加工工程上あるい
は生産性等の面から大きな問題となっており、上記放電
処理作業をすることなしに有機電解質電池を組立て加工
することが望まれている。
However, the above-mentioned discharge treatment work poses a serious problem in terms of the battery processing process or productivity, and it is desired to assemble and process the organic electrolyte battery without performing the above-mentioned discharge treatment work.

そこで、本発明は上述の実情を鑑みて提案されたもので
あって、電池組立て直後においても所望の電池電位を示
す有機電解質電池を提供することを目的とし、電池作製
後電池の容量の一部を意図的に放電処理する必要がな
く、生産性に優れた有機電解質電池の製造方法を提供す
ることを目的とする。
Therefore, the present invention has been proposed in view of the above circumstances, and an object thereof is to provide an organic electrolyte battery exhibiting a desired battery potential even immediately after battery assembly, and a part of the capacity of the battery after battery production. It is an object of the present invention to provide a method for producing an organic electrolyte battery having excellent productivity, which does not require intentional discharge treatment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の目的を達成すべく長期に亘り鋭意
研究の結果、二酸化マンガンを正極活物質とする有機電
解質電池の初期高電位部分の解消にLiMnO2の添加が有効
であることを見出し本発明を完成するに至ったものであ
る。すなわち、本発明はリチウム又はリチウム合金を主
体とする負極活物質と、二酸化マンガンを主体とする正
極活物質と、有機電解液よりなる有機電解質電池を製造
するに際して、 上記正極活物質にあらかじめLiMnO2を添加することを特
徴とするものである。
The present inventors, as a result of extensive research over a long period of time to achieve the above-mentioned object, that the addition of LiMnO 2 is effective in eliminating the initial high potential portion of the organic electrolyte battery using manganese dioxide as a positive electrode active material. Heading The present invention has been completed. That is, the present invention, when manufacturing an organic electrolyte battery composed of a negative electrode active material mainly composed of lithium or a lithium alloy, a positive electrode active material mainly composed of manganese dioxide, and an organic electrolytic solution, LiMnO 2 is previously added to the positive electrode active material. Is added.

〔作用〕[Action]

有機電解質電池の正極活物質として用いられる二酸化マ
ンガン中にLiMnO2を添加することによって、放電処理を
施すことなく電池組立て直後の初期高電位部分が除去さ
れる。
By adding LiMnO 2 to manganese dioxide used as a positive electrode active material of an organic electrolyte battery, an initial high potential portion immediately after battery assembly is removed without performing discharge treatment.

このLiMnO2が正極活物質中で果たす役割についてその詳
細は不明であるが、以下のように推測される。
The details of the role that LiMnO 2 plays in the positive electrode active material are unknown, but it is speculated as follows.

まず、従来より電池組立直後に行われている放電処理に
ついて、電池電位を低下させる機構を検討した結果、こ
の放電処理直後の正極合剤表面に微量(x量)のLiMnO2
(xLiMnO2)が形成されていることが判明した。
First, as a result of studying the mechanism for lowering the battery potential in the discharge treatment that has been conventionally performed immediately after battery assembly, a small amount (x amount) of LiMnO 2 was observed on the surface of the positive electrode mixture immediately after this discharge treatment.
It was found that (xLiMnO 2 ) was formed.

このxLiMnO2は、おそらく、MnO2と次のように反応す
る。
This xLiMnO 2 probably reacts with MnO 2 as follows.

(1−x)MnO2+xLiMnO2→LixMnO2 すなわち、MnO2においては放電反応、LiMnO2においては
充電反応が起こり、正極合剤全体が均一なLixMnO2とな
る。結果として、MnO2全体の高電位部分が消失する。
(1-x) MnO 2 + xLiMnO 2 → Li x MnO 2 i.e., the discharge reaction in MnO 2, occur charge reaction in LiMnO 2, the entire positive electrode mixture becomes homogeneous Li x MnO 2. As a result, the high potential part of the entire MnO 2 disappears.

一方、MnO2中にLiMnO2を予め添加しておけば、これがMn
O2と反応して同じように正極合剤全体が均一なLixMnO2
となり、あわせてMnO2全体の高電位部分が消失する。し
たがって、電池組立直後に放電処理を行わなくとも優れ
た保存性が得られる。
On the other hand, if LiMnO 2 is added to MnO 2 in advance,
Li x MnO 2 which reacts with O 2 and is uniform throughout the positive electrode mixture
And the high potential part of the entire MnO 2 disappears. Therefore, excellent preservability can be obtained without performing discharge treatment immediately after battery assembly.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものではないことは言
うまでもない。
Hereinafter, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

先ず、意図的に放電を行ない高電位部分を除去した場合
に電池内でどのような反応が生じているか解明するため
の予備試験を行った。
First, a preliminary test was conducted to clarify what kind of reaction occurred in the battery when the high potential portion was removed by intentional discharge.

予備試験 組立てられた電池の高電位部分を除去するための試験を
行うために次のようなリチウム/二酸化マンガン電池を
作製した。
Preliminary Test The following lithium / manganese dioxide battery was made to perform a test to remove the high potential portion of the assembled battery.

負極には、金属リチウムを用い、正極には、二酸化マン
ガン,グラファイト,ポリテトラフルオロエチレンを各
々88.9:9.3:1.8の割合(数値はそれぞれ重量部を表
す。)にて混合し、直径15.5mm,厚さ1.65mm,重量0.894g
に加圧成形したペレットを熱処理したものを用た。セパ
レーターとしてはポリプロピレンの不織布を用い、電解
液はプロピレンカーボネイトとジメトキシエタンを体積
比で1:1に混合したものに1Mol/lのLiClO4を溶解させた
非水電解液を用いた。
Metal lithium was used for the negative electrode, and manganese dioxide, graphite, and polytetrafluoroethylene were mixed for the positive electrode at a ratio of 88.9: 9.3: 1.8 (numerical values represent parts by weight), and the diameter was 15.5 mm. Thickness 1.65mm, weight 0.894g
Pellets that were pressure-molded into were heat-treated. A polypropylene non-woven fabric was used as the separator, and a non-aqueous electrolyte prepared by dissolving 1 mol / l of LiClO 4 in a mixture of propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 was used as the electrolyte.

これらの材料を用いて、第1図に示すように、アノード
カップ(1)に金属リチウム(4)を陰極材として圧着
し、さらにその上に電解液を含有するセパレーター
(3)を置き、プラスチックのガスケット(6)をはめ
込んだ後、用意した正極ペレット(5)をセパレーター
(3)の上に置きカソード罐(2)を被せ、その端をカ
シメてシールをして、外径20mm,総高3.2mmの有機電解質
電池を組立てた。なお、アノードカップ(1)及びカソ
ード罐(2)には、ニッケルメッキを施したステンレス
鋼を用いた。
Using these materials, as shown in FIG. 1, metallic lithium (4) is pressure-bonded to an anode cup (1) as a cathode material, and a separator (3) containing an electrolytic solution is further placed on the anode cup (1) to form a plastic. After fitting the gasket (6) of the above, put the prepared positive electrode pellet (5) on the separator (3) and cover the cathode can (2), and seal the end by caulking the outer diameter 20mm, total height A 3.2 mm organic electrolyte battery was assembled. The anode cup (1) and the cathode can (2) were made of nickel-plated stainless steel.

このようにして組立てた有機電解質電池は、組立て直後
には3.56Vという高電位を示た。そこで、上記電池を2
個用意し、それぞれを予備放電として30Ωの負荷抵抗で
8分間放電させ高電位部分を除去した。上記30Ωの負荷
抵抗8分間の放電直後の電池電位は、1.2〜1.3Vであっ
た。
The organic electrolyte battery thus assembled exhibited a high potential of 3.56 V immediately after assembly. Therefore, replace the above battery with 2
Individual pieces were prepared and each was subjected to preliminary discharge for 8 minutes with a load resistance of 30Ω to remove the high potential portion. The battery potential immediately after discharging the above load resistance of 30Ω for 8 minutes was 1.2 to 1.3V.

予備放電後、一方の電池を直ちに分解し、正極ペレット
を取出して正極ペレット上のX線回析分析を行った。こ
のX線回析分析の回析パターンを第2図に示した。
After the preliminary discharge, one of the batteries was immediately disassembled, the positive electrode pellet was taken out, and the X-ray diffraction analysis on the positive electrode pellet was performed. The diffraction pattern of this X-ray diffraction analysis is shown in FIG.

もう一方の電池は、予備放電後1日間室温状態で貯蔵し
た後、分解し正極ペレットを取出して正極ペレット上の
X線回析分析を行った。このX線回析分析の回析パター
ンを第3図に示した。またこの電池の電位は、3.2Vであ
り、1日間貯蔵したことによって電位は所望の値にまで
回復していた。
The other battery was stored at room temperature for 1 day after preliminary discharge, decomposed, taken out from the positive electrode pellet, and subjected to X-ray diffraction analysis on the positive electrode pellet. The diffraction pattern of this X-ray diffraction analysis is shown in FIG. The potential of this battery was 3.2 V, and the potential had recovered to a desired value after being stored for 1 day.

その結果、30Ωの負荷抵抗で8分間の放電直後の電池の
正極ペレット上のX線回析パターンからは、二酸化マン
ガンのピークに混入し第2図中矢印で示す位置にLiMnO2
と合致するピークが発見できた。ところが、第3図に示
す予備放電後1日間貯蔵して置き電位が3.2Vにまで回復
した電池の正極ペレット上のX線回析パターンからは、
LiMnO2と考えられるピークが発見できなかった。
As a result, from the X-ray diffraction pattern on the positive electrode pellet of the battery immediately after discharging for 8 minutes with the load resistance of 30Ω, the peak of manganese dioxide was mixed and the LiMnO 2
A peak matching with was found. However, from the X-ray diffraction pattern on the positive electrode pellet of the battery shown in FIG.
No peak that could be LiMnO 2 was found.

上述の結果より本発明者等は、強負荷放電した電池にお
いて、正極ペレット中にLiMnO2の層が形成され、強負荷
放電後徐々にその層は、陽極ペレット中の高活性部分に
より酸化されてLiMnO2が消滅し、Li(1-x)MnO2と言う形
をとり、あわせて正極ペレット中の形活性部分も消失す
るのであろうとメカニズムを推測した。
From the above results, the present inventors have found that in a battery under heavy load discharge, a layer of LiMnO 2 is formed in the positive electrode pellet, and after heavy load discharge, the layer is gradually oxidized by the highly active portion in the positive electrode pellet. The mechanism was presumed that LiMnO 2 disappears and takes the form of Li (1-x) MnO 2, and the active part in the positive electrode pellet also disappears.

したがって、LiMnO2を正極ペレットを構成している合剤
中にあらかじめ適量添加しておくことにより、電池組立
て後の高電位をなくすることができると予測される。
Therefore, it is expected that the high potential after battery assembly can be eliminated by adding an appropriate amount of LiMnO 2 to the mixture forming the positive electrode pellets in advance.

上記予備試験によって得られた結果に基づき、LiMnO2
組立て後の電池の高電位を解消するのに効果的であろう
と予測される。そこで、実際にLiMnO2を添加して有機電
解質電を作製した。
Based on the results obtained from the above preliminary tests, it is expected that LiMnO 2 will be effective in eliminating the high potential of the assembled cell. Therefore, LiMnO 2 was actually added to fabricate an organic electrolyte.

実施例1 この実施例では、LiMnO2をリチウムと二酸化マンガンを
有機電解液中で電気化学的に反応させることによって得
た。
Example 1 In this example, LiMnO 2 was obtained by electrochemically reacting lithium and manganese dioxide in an organic electrolyte.

このようにして得られたLiMnO2を正極合剤、即ち二酸化
マンガン,グラファイト,ポリテトラフルオロエチレン
を各々88.9:9.3:1.8の割合(数値はそれぞれ重量部を表
す。)にて混合しているものに対して9重量部混合した
ものを新たな正極合剤として使用し、それを直径6.85m
m,厚さ1.81mm,重量0.197gに加圧成形し正極ペレットを
得た。
The LiMnO 2 thus obtained is mixed with a positive electrode mixture, that is, manganese dioxide, graphite, and polytetrafluoroethylene at a ratio of 88.9: 9.3: 1.8 (the values represent parts by weight). A mixture of 9 parts by weight with respect to was used as a new positive electrode mixture, which had a diameter of 6.85 m.
The positive electrode pellet was obtained by pressure molding into m, thickness 1.81 mm, and weight 0.197 g.

この正極ペレットを第1図に示す電池に装着し、外径10
mm,総高3mmのサンプル電池を組立てた。これを電池Aと
した。
This positive electrode pellet was attached to the battery shown in FIG.
A sample battery with a height of 3 mm and a total height of 3 mm was assembled. This was designated as Battery A.

また、予備試験で使用した電池と同様なもの、すなわち
正極合剤の組成が、二酸化マンガン:グラファイト:ポ
リテトラフルオロエチレン=88.9:9.3:1.8の割合である
ものを正極ペレットとして使用した電池を比較例として
電池Aと同様にして組立てた。
Also, compare batteries similar to those used in the preliminary test, that is, batteries using the positive electrode mixture with the composition of manganese dioxide: graphite: polytetrafluoroethylene = 88.9: 9.3: 1.8 as the positive electrode pellets. As an example, it was assembled in the same manner as Battery A.

上記電池Aと比較例の組立て直後の電池電位の変化を第
4図に示した。上記電池Aの電池電位は、比較例に対し
て0.4V低い値を示している。
FIG. 4 shows changes in the battery potential immediately after the battery A and the comparative example were assembled. The battery potential of the battery A is 0.4V lower than that of the comparative example.

上記比較例を組立てた後、30Ω負荷抵抗で10分間放電さ
せ高電位を除去した。そして電池Aが示した電位3.12V
まで電位を降下させた。
After assembling the above comparative example, a high potential was removed by discharging with a load resistance of 30Ω for 10 minutes. And the potential that battery A showed is 3.12V
The potential was dropped to.

上述のように略等しい電位を有する電池Aと比較例を60
℃の恒温槽で20日間保存したものについて、その特性の
変化を測定した。その結果を第1表に示す。
As described above, the battery A having a substantially equal potential and the comparative example 60
Changes in the properties of the ones stored in a constant temperature bath at ℃ for 20 days were measured. The results are shown in Table 1.

上記電池Aは、60℃,20日間保存後において電位の上昇
は見られず、放電処理を施した比較例と比較し同等もし
くはそれ以上の優れた特性を示した。
The battery A showed no increase in potential after storage at 60 ° C. for 20 days, and showed excellent characteristics equal to or higher than those of the comparative example subjected to the discharge treatment.

実施例2 実施例1において電気化学的に合成したLiMnO2を正極合
剤に適量添加することによって高電位部分の除去に効果
があることが確認された。そこで、更に容易且つ安価に
LiMnO2を合成する方法として化学合成による方法を検討
した。
Example 2 In Example 1, it was confirmed that by adding an appropriate amount of electrochemically synthesized LiMnO 2 to the positive electrode mixture, it was effective in removing the high potential portion. So easier and cheaper
As a method for synthesizing LiMnO 2 , a chemical synthesis method was studied.

電解二酸化マンガンと炭酸リウチムを1:2(モル比)の
割合で混合し、不活性ガス雰囲気中で800〜950℃にて3
時間焼成することによってLiMnO2を合成した。ここで得
られたLiMnO2をX線回折によって分析した結果、第5図
に示すパターンが得られLiMnO2であることが確認され
た。
Electrolytic manganese dioxide and lithium carbonate are mixed in a ratio of 1: 2 (molar ratio), and the mixture is mixed in an inert gas atmosphere at 800 to 950 ° C for 3 times.
LiMnO 2 was synthesized by firing for a period of time. As a result of X-ray diffraction analysis of the LiMnO 2 obtained here, the pattern shown in FIG. 5 was obtained, and it was confirmed to be LiMnO 2 .

上記化学合成によって得られたLiMnO2を有機電解質電池
の正極合剤、即ち二酸化マンガン,グラファイト,ポリ
テトラフルオロエチレンを各々88.9:9.3:1.8の割合(数
値はそれぞれ重量部を表す。)にて混合しているものに
対して9重量部混合したものを新たな正極合剤として使
用し、上記実施例1と同様にしてサンプル電池を組立て
た。これを電池Bとした。また、予備試験で組立てたも
のと同様の電池、すなわち正極合剤の組成が、二酸化マ
ンガン:グラファイト:ポリテトラフルオロエチレン=
88.9:9.3:1.8の割合であるものを正極ペレットとして使
用した電池を比較例として組立てた。
LiMnO 2 obtained by the above chemical synthesis was mixed with a positive electrode mixture of an organic electrolyte battery, that is, manganese dioxide, graphite and polytetrafluoroethylene at a ratio of 88.9: 9.3: 1.8 (numerical values represent parts by weight). A sample battery was assembled in the same manner as in Example 1 above, using a mixture of 9 parts by weight of the above mixture as a new positive electrode mixture. This was designated as Battery B. In addition, the battery similar to that assembled in the preliminary test, that is, the composition of the positive electrode mixture was manganese dioxide: graphite: polytetrafluoroethylene =
A battery in which a ratio of 88.9: 9.3: 1.8 was used as a positive electrode pellet was assembled as a comparative example.

上記電池Bを組立てた後、実施例1と同様に電池電位の
変化を測定した。その結果を第6図に示す。上記電池B
の電池電位は、比較例に対し0.2V低い値を示した。
After assembling the above battery B, the change in the battery potential was measured in the same manner as in Example 1. The result is shown in FIG. Battery B
The battery potential of No. 2 was 0.2 V lower than that of Comparative Example.

また、上記電池Bと比較例を実施例1と同様に60℃の恒
温槽で20日間保存したものについて、その特性の変化を
測定した。その結果を第2表に示す。
Further, the change in the characteristics of the battery B and the comparative example stored in a constant temperature bath at 60 ° C. for 20 days as in Example 1 were measured. The results are shown in Table 2.

上記電池Bは、60℃,20日間保存後において電位の上昇
は見られず、逆に下降する傾向が見られ、放電処理を施
した比較例電池と比較し同等もしくはそれ以上の優れた
特性を示した。
The battery B showed no increase in the potential after being stored at 60 ° C. for 20 days and showed a tendency to decrease on the contrary, and exhibited the same or better characteristics as compared with the comparative battery subjected to the discharge treatment. Indicated.

従って、化学合成によって得られたLiMnO2も高電位部分
の除去に有効であると判断される。
Therefore, it is judged that LiMnO 2 obtained by the chemical synthesis is also effective in removing the high potential part.

〔発明の効果〕 有機電解質電池の正極活物質として用いられる二酸化マ
ンガン中にLiMnO2を添加することによって、電池作製直
後においても所望の電位を示す有機電解質電池を提供す
ることが可能となり、これによって電池の容量の一部を
意図的に放電処理する処理作業を省くことが可能とな
る。
(Effects of the Invention) By adding LiMnO 2 to manganese dioxide used as a positive electrode active material of an organic electrolyte battery, it becomes possible to provide an organic electrolyte battery exhibiting a desired potential even immediately after battery preparation, whereby It is possible to omit the processing work of intentionally discharging a part of the capacity of the battery.

従って、電池の加工工程が簡略化され、生産性が向上す
る。
Therefore, the processing steps of the battery are simplified and the productivity is improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用した有機電解質電池の一例を示す
断面図である。 第2図は予備放電後の正極ペレットのX線回折スペクト
ルを示す特性図であり、第3図は予備放電後1日間放置
した陽極ペレットのX線回折スペクトルを示す特性図で
あり、第4図は電気化学的に合成したLiMnO2を正極ペレ
ットに添加した電池における電位の経時変化を比較例の
それと比べて示す特性図であり、第5図は化学合成によ
り合成されたLiMnO2のX線回折スペクトルを示す特性図
であり、第6図は化学合成によって得られたLiMnO2を正
極ペレットに添加した電池における電位の経時変化を比
較例のそれと比べて示す特性図である。 4……金属リチウム(負極活物質) 5……正極ペレット(正極活物質)
FIG. 1 is a sectional view showing an example of an organic electrolyte battery to which the present invention is applied. FIG. 2 is a characteristic diagram showing an X-ray diffraction spectrum of the positive electrode pellet after the preliminary discharge, and FIG. 3 is a characteristic diagram showing an X-ray diffraction spectrum of the anode pellet left for one day after the preliminary discharge, and FIG. Fig. 5 is a characteristic diagram showing the change with time in the potential of a battery in which electrochemically synthesized LiMnO 2 was added to the positive electrode pellet, compared with that of the comparative example. Fig. 5 shows the X-ray diffraction of chemically synthesized LiMnO 2 FIG. 6 is a characteristic diagram showing a spectrum, and FIG. 6 is a characteristic diagram showing changes in potential with time in a battery in which LiMnO 2 obtained by chemical synthesis is added to a positive electrode pellet, as compared with that in a comparative example. 4 ... Metallic lithium (negative electrode active material) 5 ... Positive electrode pellet (positive electrode active material)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウム又はリチウム合金を主体とする負
極活物質と、二酸化マンガンを主体とする正極活物質
と、有機電解液よりなる有機電解質電池を製造するに際
して、 上記正極活物質にあらかじめLiMnO2を添加することを特
徴とする有機電解質電池の製造方法。
1. When manufacturing an organic electrolyte battery comprising a negative electrode active material mainly composed of lithium or a lithium alloy, a positive electrode active material mainly composed of manganese dioxide, and an organic electrolytic solution, LiMnO 2 is previously added to the positive electrode active material. A method for producing an organic electrolyte battery, which comprises adding
JP61132750A 1986-06-10 1986-06-10 Method for manufacturing organic electrolyte battery Expired - Lifetime JPH0744032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132750A JPH0744032B2 (en) 1986-06-10 1986-06-10 Method for manufacturing organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132750A JPH0744032B2 (en) 1986-06-10 1986-06-10 Method for manufacturing organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS62290058A JPS62290058A (en) 1987-12-16
JPH0744032B2 true JPH0744032B2 (en) 1995-05-15

Family

ID=15088698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132750A Expired - Lifetime JPH0744032B2 (en) 1986-06-10 1986-06-10 Method for manufacturing organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0744032B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073785B2 (en) * 1986-11-11 1995-01-18 三洋電機株式会社 Non-aqueous electrolyte battery
US20050048366A1 (en) * 2003-08-27 2005-03-03 Bowden William L. Cathode material and method of manufacturing
EP2211398B1 (en) * 2009-01-19 2018-01-10 Renata AG Heavy-duty galvanic element
JP6200656B2 (en) * 2013-02-22 2017-09-20 Fdk株式会社 Lithium battery manufacturing method

Also Published As

Publication number Publication date
JPS62290058A (en) 1987-12-16

Similar Documents

Publication Publication Date Title
US4820599A (en) Non-aqueous electrolyte type secondary cell
KR100239872B1 (en) Synthesis method for alkaline metal intercalation materials
US4405699A (en) Manganese dioxide electrode for lithium batteries
US6291103B1 (en) Positive active material for rechargeable lithium battery
CA1062774A (en) Electrochemical cell with cathode incorporating bi2o3 and anode of light metal
JP2001085010A (en) Lithium secondary battery
US4590059A (en) Process for the production of manganese dioxide
JP4957911B2 (en) Lithium ion battery active material and lithium ion battery comprising Al-containing lithium titanate
US6270925B1 (en) Lithium battery
US4911996A (en) Electrochemical cell
US4668594A (en) Rechargeable electrochemical apparatus and positive electrode thereof
JPH0744032B2 (en) Method for manufacturing organic electrolyte battery
JPH1064592A (en) Lithium secondary battery
JP2005322551A (en) Layered oxide electrode material, its manufacturing method, and battery using it
JP3239267B2 (en) Organic electrolyte battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JP3010685B2 (en) Organic electrolyte battery
JP2005100922A (en) Electrode material manufacturing method of the same, and battery using the same
JP4165717B2 (en) Lithium secondary battery and manufacturing method thereof
JP3017847B2 (en) Non-aqueous solvent secondary battery
JP2807481B2 (en) Cathode of non-aqueous electrolyte battery
JP3494400B2 (en) Lithium secondary battery
JPH0992240A (en) Nonaqueous electrolyte secondary battery
JP2005332691A (en) Layered nickel oxide electrode material and its manufacturing method, and battery using it

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term