JP2005332691A - Layered nickel oxide electrode material and its manufacturing method, and battery using it - Google Patents

Layered nickel oxide electrode material and its manufacturing method, and battery using it Download PDF

Info

Publication number
JP2005332691A
JP2005332691A JP2004149964A JP2004149964A JP2005332691A JP 2005332691 A JP2005332691 A JP 2005332691A JP 2004149964 A JP2004149964 A JP 2004149964A JP 2004149964 A JP2004149964 A JP 2004149964A JP 2005332691 A JP2005332691 A JP 2005332691A
Authority
JP
Japan
Prior art keywords
nickel oxide
electrode material
layered nickel
group
oxide electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149964A
Other languages
Japanese (ja)
Inventor
So Arai
創 荒井
Masayuki Tsuda
昌幸 津田
Masahiko Hayashi
政彦 林
Yoji Sakurai
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004149964A priority Critical patent/JP2005332691A/en
Publication of JP2005332691A publication Critical patent/JP2005332691A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered oxide electrode material having a large discharge capacity, its manufacturing method, and a battery using the layered oxide electrode material. <P>SOLUTION: This is a layered nickel oxide as expressed by a composition formula A<SB>x</SB>Ni<SB>1-z</SB>M<SB>z</SB>O<SB>2</SB>and has a layered Li<SB>2</SB>MnO<SB>2</SB>type structure. In the formula, A expresses an element and a group to become anion, and when the anion valence of A is set y, xy<1 is satisfied. M expresses a transition series element and one kind or more of elements selected from 2A group, 3A group, 2B group, and 3B group, and 0≤z≤0.5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は層状ニッケル酸化物電極材料、その製造方法及びそれを用いる電池、さらに詳細には放電容量が大きい電池を提供する技術に関するものである。   The present invention relates to a layered nickel oxide electrode material, a method for producing the same, a battery using the same, and more particularly to a technique for providing a battery having a large discharge capacity.

ニッケル含有酸化物は、ニッケルカドミウム電池を始めとする水溶液系電池や、リチウム電池を始めとする非水溶液系電池などの電極材料として広く用いられている。合成方法としては、水酸化ニッケルを始めとする2価のニッケル化合物を、化学的ないし電気化学的に酸化して、正極材料として機能するニッケル3価を含む化合物、例えばβ型オキシ水酸化ニッケルを得る方法が挙げられる。   Nickel-containing oxides are widely used as electrode materials for aqueous solution batteries such as nickel cadmium batteries and non-aqueous battery batteries such as lithium batteries. As a synthesis method, a divalent nickel compound such as nickel hydroxide is chemically or electrochemically oxidized, and a compound containing trivalent nickel that functions as a positive electrode material, such as β-type nickel oxyhydroxide, is used. The method of obtaining is mentioned.

しかしながら、これらの物質はニッケル2価までの還元の際に利用できる電子数が少ないため、これらの物質を正極材料とする電池の放電容量が少ないという問題点があった。またニッケル4価を含む化合物としては、層状化合物LiNiO(0≦x<1)等が挙げられるが、還元の際に利用できるイオン収納位置が少ないために、これらの物質を正極材料とする電池の容量は少ないという問題点があった(特許第3289256号)。 However, since these materials have a small number of electrons that can be used for the reduction to nickel divalent, there is a problem that the discharge capacity of a battery using these materials as a positive electrode material is small. Further, examples of the compound containing nickel tetravalent include a layered compound Li x NiO 2 (0 ≦ x <1) and the like. However, since there are few ion storage positions available at the time of reduction, these substances are used as a positive electrode material. There is a problem that the capacity of the battery to be used is small (Japanese Patent No. 3289256).

遷移金属の価数が4価で、層状構造を持ち、かつ遷移金属あたり1を超えるイオン収納を実現している化合物は数少ないが、その一つに酸化マンガンの一種である層状LiMnO型があり、これは遷移金属(マンガン)あたり2個のイオンを収納できる。しかし、マンガン酸化物電極一般の傾向として、マンガンのヤーンテラー歪みによる格子伸縮が大きく、層状LiMnOを電極材料として用いた電池のサイクル特性は良好ではないことが知られている。またこれに対応するニッケル酸化物は知られていなかった。
特許第3289256号 特開2001−332259号
Although there are few compounds that have a transition metal valence of 4 and have a layered structure and realize ion storage exceeding 1 per transition metal, one of them is layered Li 2 MnO 2 type which is a kind of manganese oxide Which can contain two ions per transition metal (manganese). However, as a general tendency of manganese oxide electrodes, it is known that lattice expansion and contraction due to manganese yarn teller distortion is large, and the cycle characteristics of a battery using layered Li 2 MnO 2 as an electrode material is not good. Moreover, the nickel oxide corresponding to this was not known.
Japanese Patent No. 3289256 JP 2001-332259 A

本発明は、上記のような現状の課題を解決し、放電容量が大きい層状ニッケル酸化物電極材料、その製造方法及びそれを用いる電池を提供することにある。   An object of the present invention is to provide a layered nickel oxide electrode material having a large discharge capacity, a method for producing the same, and a battery using the same.

かかる目的を達成するために、本発明の層状ニッケル酸化物電極材料は、組成式ANi1−z(Aは陽イオンとなりうる元素および基、Aの陽イオン価数をyとした場合にx・y<1を満たす、Mは遷移系列元素及び2A族、3A族、2B族、3B族から選ばれる一種類以上の元素、0≦z≦0.5)で表される層状ニッケル酸化物で、層状LiMnO型構造を有することを特徴としている。 To achieve the above object, layered nickel oxide electrode material of the present invention, the composition formula A x Ni 1-z M z O 2 (A is an element or group can be a cation, the cation valence of A y Where x · y <1 is satisfied, M is represented by a transition series element and one or more elements selected from 2A group, 3A group, 2B group, 3B group, 0 ≦ z ≦ 0.5) It is a layered nickel oxide and has a layered Li 2 MnO 2 type structure.

また、本発明による層状ニッケル酸化物電極材料の製造方法は、組成式ANi1−zを、酸処理または電気化学的イオン脱離によりAの一部を脱離し、さらに陽イオンを含む水溶液中で還元処理を行って前記陽イオンを挿入することにより、請求項1記載の層状ニッケル酸化物電極材料ANi1−zを得ることを特徴とする。 Moreover, the manufacturing method of the layered nickel oxide electrode material according to the present invention includes a composition formula ANi 1-z M z O 2 , wherein a part of A is desorbed by acid treatment or electrochemical ion desorption, and a cation is further removed. by in aqueous solution by performing the reduction treatment inserting the cations including, characterized in that to obtain a layered nickel oxide electrode material according to claim 1, wherein a x Ni 1-z M z O 2.

また本発明による電池では、前記層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む物質またはこの元素を可逆的に挿入・脱離あるいは吸蔵・脱離できる物質を含む負極を有し、前記元素のイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴としている。また本発明による電池では、前記層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、プロトンが前記正極と電気化学反応をするための移動を行い得る物質を電解質物質として有することも特徴としている。   Further, the battery according to the present invention has a positive electrode containing the layered nickel oxide electrode material as a positive electrode active material, and a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver, or this An electrolyte substance is a substance that has a negative electrode containing a substance that can reversibly insert and desorb, occlude and desorb an element, and ions of the element can move to cause an electrochemical reaction with the positive electrode and the negative electrode It is characterized by including. Further, the battery according to the present invention is characterized in that it has a positive electrode containing the layered nickel oxide electrode material as a positive electrode active material, and has a substance that can move protons to perform an electrochemical reaction with the positive electrode as an electrolyte substance. It is said.

本発明によれば、放電容量が大きい電池を実現することができ、電子機器の電源を始め、様々な分野に利用できるという利点を有する。   According to the present invention, a battery having a large discharge capacity can be realized, and there is an advantage that it can be used in various fields including a power source of an electronic device.

本発明をさらに詳しく説明する。発明者は、層状ニッケル酸化物電極材料及びそれを用いる電池を鋭意探索した結果、前記の層状ニッケル酸化物電極材料及びそれを用いる電池により、従来よりも放電容量が大きい層状ニッケル酸化物電極材料及びそれを用いる電池を製造、実現できることを確かめ、その認識の下に本発明を完成した。   The present invention will be described in more detail. As a result of earnest search for the layered nickel oxide electrode material and the battery using the same, the inventors have found that the layered nickel oxide electrode material and the battery using the layered nickel oxide electrode material and It was confirmed that a battery using the battery could be manufactured and realized, and the present invention was completed based on the recognition.

その理由は、以下のようなものが考えられる。すなわち本発明の層状ニッケル酸化物電極材料は、遷移金属あたり1を超えるイオン収納を実現している層状LiMnO型の構造を有しており、イオン収納位置が十分に広いため、大きな容量で放電が可能である。 The reason is as follows. That is, the layered nickel oxide electrode material of the present invention has a layered Li 2 MnO 2 type structure that realizes more than one ion storage per transition metal, and has a sufficiently large ion storage position, so that it has a large capacity. Can be discharged.

また層構造を安定させるため、陽イオンとなりうる元素および基であるAを加えることができる。ここで、Aの陽イオン価数をyとした場合にx・y<1を満たす必要がある。x・yが1を超える場合には、ニッケルの平均酸化数が低くなり、本発明の効果である大容量を得ることができない。またx・yが0に近いほど、大きな放電容量が得られることが多いので、好ましくは0<x・y≦1.0、さらに好ましくは0<x・y≦0.5、最も好ましくは0<x・y≦0.2である。   In order to stabilize the layer structure, an element which can be a cation and A which is a group can be added. Here, when the cation valence of A is y, it is necessary to satisfy x · y <1. When x · y exceeds 1, the average oxidation number of nickel becomes low, and a large capacity that is the effect of the present invention cannot be obtained. Further, as x · y is closer to 0, a larger discharge capacity is often obtained. Therefore, preferably 0 <x · y ≦ 1.0, more preferably 0 <x · y ≦ 0.5, and most preferably 0. <X · y ≦ 0.2.

この観点から、Aとしてはyが1ないし2であることが好ましく、元素としては水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、銅、銀、亜鉛、ニッケル、基としてはテトラメチルアンモニウム基、テトラエチルアンモニウム基、テトラプロピルアンモニウム基、テトラブチルアンモニウム基(以上総括してテトラアルキルアンモニウム基と呼ぶ)、またはアンモニウムイオンの一種類以上から構成されることが好ましい。yが3となるアルミニウム、ガリウム、インジウム、ストロンチウム、イットリウム、ランタノイド元素を用いることもできる。   From this point of view, y is preferably 1 or 2 as A, and the elements are hydrogen, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, copper, silver, zinc, nickel, group It is preferably composed of at least one kind of tetramethylammonium group, tetraethylammonium group, tetrapropylammonium group, tetrabutylammonium group (hereinafter collectively referred to as a tetraalkylammonium group), or an ammonium ion. Aluminum, gallium, indium, strontium, yttrium, or a lanthanoid element in which y is 3 can also be used.

また本発明の層状ニッケル酸化物電極材料ANi1−zにおける元素Mは、本電極材料の電極可逆性を向上させたり、熱安定性を向上させたり、保存特性を向上させる等の目的で、ニッケルの一部を置換するものであり、全く加えないことも可能である。 Further, the element M in the layered nickel oxide electrode material A x Ni 1-z M z O 2 of the present invention improves the electrode reversibility of the electrode material, improves the thermal stability, and improves the storage characteristics. For this purpose, a part of nickel is replaced, and it is possible to add none at all.

Mとしては、遷移系列元素及び2A族、3A族、2B族、3B族から選ばれる一種類以上の元素を用いることができるが、ニッケルと固溶してニッケル主体層を形成する観点からイオン半径がニッケルに近いものが好ましく、チタン、バナジウム、クロム、マンガン、鉄、コバルト、アルミニウム、ガリウムが好適である。また置換の割合zは0≦z≦0.5である。また置換の割合zが0.5を超える場合には、ニッケルの酸化還元対に基づく容量が小さくなるので不適であり、好ましくは0<z≦0.5、更に好ましくは0<z≦0.3、最も好ましくは0<z≦0.2である。   As M, one or more elements selected from transition series elements and 2A group, 3A group, 2B group, and 3B group can be used. From the viewpoint of forming a nickel main layer by solid solution with nickel, Is close to nickel, and titanium, vanadium, chromium, manganese, iron, cobalt, aluminum, and gallium are preferable. The substitution ratio z is 0 ≦ z ≦ 0.5. Further, when the substitution ratio z exceeds 0.5, the capacity based on the redox couple of nickel becomes small, which is unsuitable, preferably 0 <z ≦ 0.5, more preferably 0 <z ≦ 0. 3, most preferably 0 <z ≦ 0.2.

本発明の層状ニッケル酸化物電極材料ANi1−zの合成法については、例えばまず焼成法などによりANi1−zを合成し、これを例えばアルカリ金属イオン、アルカリ土類金属イオン、テトラアルキルアンモニウムイオン、アンモニウムイオン等を陽イオンとして含む水酸化物を水に溶解したアルカリ性の水溶液などで処理することにより、得ることができる。 For layered nickel oxide electrode material A x Ni 1-z M z O 2 synthesis methods of the present invention, for example, by first firing method to synthesize ANi 1-z M z O 2 , which, for example, alkali metal ions, It can be obtained by treating with an alkaline aqueous solution in which a hydroxide containing an alkaline earth metal ion, tetraalkylammonium ion, ammonium ion or the like as a cation is dissolved in water.

アルカリ性の水溶液を用いた場合、水酸化物イオンがANi1−zに酸化されて酸素が発生すると同時に、ANi1−zが還元され、溶液に含まれる前記の陽イオンがANi1−zの層間に取り込まれる。この際、アルカリ水溶液に含まれる陽イオンが、Aと同じであっても良い。 When an alkaline aqueous solution is used, hydroxide ions are oxidized to A x Ni 1-z M z O 2 to generate oxygen, and at the same time, A x Ni 1-z M z O 2 is reduced and contained in the solution. the cations are incorporated into the interlayer of a x Ni 1-z M z O 2 to be. At this time, the cation contained in the alkaline aqueous solution may be the same as A.

さらに層間に含まれる陽イオン種を、イオン交換により他のイオンと交換することもできる。また処理法として電気化学的な手法を単独または併用して用いることもできる。また本発明の層状ニッケル酸化物電極材料ANi1−zの合成過程において、酸素の量が多少増減する場合があるが、ニッケルとMの和に対する酸素のモル比が2に近ければ、ニッケルとMの平均価数が十分高く保たれるため、特性に与える影響はない。 Furthermore, the cation species contained between the layers can be exchanged with other ions by ion exchange. Moreover, an electrochemical method can be used alone or in combination as a treatment method. In the synthesis process of layered nickel oxide electrode material A x Ni 1-z M z O 2 of the present invention, there is a case where the amount of oxygen is less decrease in the molar ratio of oxygen to the sum of nickel and M is 2 If they are close, the average valences of nickel and M are kept sufficiently high, so there is no influence on the characteristics.

本発明による層状ニッケル酸化物電極材料を電極活物質に用いて電池電極を形成するには、前記層状ニッケル酸化物電極材料粉末とポリテトラフルオロエチレンのごとき結着剤粉末との混合物をステンレス等の支持体上に圧着成形する、或いは、かかる混合物粉末に導電性を付与するためアセチレンブラックのような導電性粉末を混合し、これにさらにポリテトラフルオロエチレンのような結着剤粉末を所要に応じて加え、この混合物を金属容器にいれる、あるいはステンレスなどの支持体に圧着成形する、あるいは有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布する、等の従来公知の手段によって形成され、特に制約はない。   In order to form a battery electrode using the layered nickel oxide electrode material according to the present invention as an electrode active material, a mixture of the layered nickel oxide electrode material powder and a binder powder such as polytetrafluoroethylene is made of stainless steel or the like. A pressure-sensitive adhesive molding such as acetylene black is mixed with the mixture powder, or a binder powder such as polytetrafluoroethylene is added to the mixture powder as necessary. In addition, the mixture is put in a metal container, or pressure-molded on a support such as stainless steel, or dispersed in a solvent such as an organic solvent and applied to a metal substrate as a slurry. There are no particular restrictions.

また本発明による電池では、前記層状ニッケル酸化物電極材料を正極活物質として含む正極を有する。負極として、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む物質またはその元素を可逆的に挿入・脱離あるいは吸蔵・脱離できる物質を含む場合には、前記元素のイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として有することにより、元素のイオンが正極と負極の間を行き来する電池となる。例えば、リチウムイオンが移動する電池を構成する場合、負極として、金属リチウム、リチウム−アルミニウム合金、リチウム−炭素化合物、リチウム含有窒化物など、従来公知の材料を含んで構成することができる。ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む場合にも、単体金属、合金、炭素との複合化合物、窒化物など、従来公知の材料を含んで構成することができる。ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む場合にも、単体金属、合金、炭素との複合化合物、窒化物など、従来公知の材料を含んで構成することができる。   The battery according to the present invention has a positive electrode including the layered nickel oxide electrode material as a positive electrode active material. When the negative electrode contains a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver, or a substance that can reversibly insert / desorb or occlude / desorb the element, By having as an electrolyte substance a substance that can move to cause the ions of the element to perform an electrochemical reaction with the positive electrode and the negative electrode, a battery in which the ion of the element moves between the positive electrode and the negative electrode is obtained. For example, when configuring a battery in which lithium ions move, the negative electrode can be configured to include a conventionally known material such as metallic lithium, a lithium-aluminum alloy, a lithium-carbon compound, or a lithium-containing nitride. Even when sodium, potassium, magnesium, calcium, strontium, aluminum, copper, or silver is included, it may be configured to include a conventionally known material such as a single metal, an alloy, a composite compound with carbon, or a nitride. it can. Even when sodium, potassium, magnesium, calcium, strontium, aluminum, copper, or silver is included, it may be configured to include a conventionally known material such as a single metal, an alloy, a composite compound with carbon, or a nitride. it can.

またプロトン移動を行い得る物質を電解質物質として有する場合には、電解質には酸性水溶液、アルカリ性水溶液、塩化ナトリウム水溶液などを用いることができる。この場合の電池に用いる負極としては従来公知の水溶液系電池用負極を用いることができる。例えば、水素吸蔵合金、鉄、銅、亜鉛、カドミウム、アルミニウム、マグネシウム等を挙げることができ、特に制限はない。   When a substance capable of proton transfer is included as the electrolyte substance, an acidic aqueous solution, alkaline aqueous solution, sodium chloride aqueous solution, or the like can be used as the electrolyte. As the negative electrode used in the battery in this case, a conventionally known negative electrode for an aqueous battery can be used. For example, a hydrogen storage alloy, iron, copper, zinc, cadmium, aluminum, magnesium and the like can be mentioned, and there is no particular limitation.

また前記電池の放電・充電を繰り返し行うことで、これを二次電池として用いることができる。さらに電解質、セパレータ、電池ケース等の構造材料等の他の要素についても従来公知の各種材料が使用でき、特に制限はない。   Moreover, this can be used as a secondary battery by repeatedly discharging and charging the battery. Furthermore, conventionally known various materials can be used for other elements such as electrolytes, separators, battery cases, and other structural materials, and there is no particular limitation.

以下実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

実施例1では、層状ニッケル酸化物を、次のようにして製造した。まず硝酸リチウムと水酸化ニッケルをモル比でLi:Ni=2:1の割合になるように均一に混合し、これを700℃、10時間、大気中で固相反応させ、得られた粉末を水洗して過剰のアルカリ分を除去し、乾燥することにより、LiNiOを得た。このLiNiOをX線回折分析で解析すると、六方晶(空間群R−3m)で指数付けすることができ、格子定数はa=2.875(Å)、c=14.19(Å)であることが分かった。 In Example 1, a layered nickel oxide was produced as follows. First, lithium nitrate and nickel hydroxide were uniformly mixed at a molar ratio of Li: Ni = 2: 1, and this was subjected to a solid phase reaction in the atmosphere at 700 ° C. for 10 hours. LiNiO 2 was obtained by washing with water to remove excess alkali and drying. When this LiNiO 2 is analyzed by X-ray diffraction analysis, it can be indexed with a hexagonal crystal (space group R-3m), and the lattice constants are a = 2.875 (Å) and c = 14.19 (Å). I found out.

次にこのLiNiOを、H/Ni=4の割合で1.0規定の硫酸溶液と混合し、5時間撹拌・反応させ、水洗、乾燥することによりLi0.1NiOを得た。さらにこのLi0.1NiOを、テトラエチルアンモニウム基をTEAと表して、TEA/Ni=10の割合で1mol/lの水酸化テトラエチルアンモニウム溶液と混合し、5時間撹拌・反応させ、水洗、乾燥することにより層状ニッケル酸化物を得た。この試料をaとする。 Next, this LiNiO 2 was mixed with a 1.0 N sulfuric acid solution at a ratio of H + / Ni = 4, stirred and reacted for 5 hours, washed with water and dried to obtain Li 0.1 NiO 2 . Further, this Li 0.1 NiO 2 was mixed with a 1 mol / l tetraethylammonium hydroxide solution at a ratio of TEA / Ni = 10 where the tetraethylammonium group was expressed as TEA, stirred and reacted for 5 hours, washed with water, dried By doing so, a layered nickel oxide was obtained. Let this sample be a.

試料aのX線回折図を図1に示す。このX線回折図を解析すると、六方晶(空間群P−3m1)で指数付けすることができ、格子定数はa=3.1(Å)、c=4.7(Å)であることが分かった。図2には、層状LiMnOのX線回折図を示す。ピーク強度に違いはあるが、同じ六方晶(空間群P−3m1)に属することから、試料aが層状LiMnO型構造を有することが分かる。 The X-ray diffraction pattern of sample a is shown in FIG. When this X-ray diffraction pattern is analyzed, it can be indexed by hexagonal crystal (space group P-3m1), and the lattice constants are a = 3.1 (Å) and c = 4.7 (Å). I understood. FIG. 2 shows an X-ray diffraction pattern of the layered Li 2 MnO 2 . Although there is a difference in peak intensity, since it belongs to the same hexagonal crystal (space group P-3m1), it can be seen that the sample a has a layered Li 2 MnO 2 type structure.

この試料の詳細な化学組成を調べるために、試料を酸に溶解させようとしたところ、酸に不溶の成分が20重量%ほど生じたため、正確な化学組成を求めることはできなかったが、リチウムとニッケルと酸素が含まれていることは確かめられた。LiMnO型構造を有することも併せて考えると、層間にリチウムとテトラエチルアンモニウムの分解生成物を含む二酸化ニッケルに属するものと推察された。また色は褐色であった。 In order to investigate the detailed chemical composition of this sample, an attempt was made to dissolve the sample in an acid. As a result, about 20% by weight of an insoluble component was generated, but an accurate chemical composition could not be obtained. It was confirmed that it contained nickel and oxygen. Considering that it has a Li 2 MnO 2 type structure, it was presumed to belong to nickel dioxide containing a decomposition product of lithium and tetraethylammonium between layers. The color was brown.

次にこの試料aを正極活物質として含む電池を作製した。図3はその電池の断面図であり、図3中、1は封口板、2はガスケット、3は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。まず試料aを真空乾燥した後、導電剤(アセチレンブラック)、結着剤(ポリテトラフルオロエチレン)と共に混合の上、ロール成形し、正極合剤ペレット6とした。   Next, a battery including the sample a as a positive electrode active material was produced. FIG. 3 is a cross-sectional view of the battery. In FIG. 3, 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode mixture pellet. First, the sample a was vacuum-dried, and then mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene), followed by roll molding to obtain a positive electrode mixture pellet 6.

次にステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入し、負極4の上にポリプロピレン製で微孔性のセパレータ5、正極合剤ペレット6をこの順序に配置し、電解液としてエチレンカーボネートとジメチルカーボネートの等容積混合溶媒にLiPFを溶解させた1規定溶液を適量注入して含浸させた後に、ステンレス製の正極ケース3を被せてかしめることにより、厚さ2mm、直径23mmのコイン型電池を作製した。なお、電池の作製はアルゴン雰囲気下のドライボックス内で行った。 Next, a metal lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 is inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode mixture are formed on the negative electrode 4. The pellets 6 are arranged in this order, and after impregnating an appropriate amount of a 1N solution in which LiPF 6 is dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution, the stainless steel positive electrode case 3 is covered. By caulking, a coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced. The battery was manufactured in a dry box under an argon atmosphere.

このようにして作製した試料aを正極活物質として含む電池を、アルゴン雰囲気下のドライボックス内で試験した。25℃において5mA/gの電流密度で2.0Vまで放電した際に、正極重量当たり290mAh/gの容量が得られた。放電容量が大きく、エネルギー密度の高い電池として利用できる利点を有している。   A battery including the sample a thus produced as a positive electrode active material was tested in a dry box under an argon atmosphere. When discharged to 2.0 V at a current density of 5 mA / g at 25 ° C., a capacity of 290 mAh / g per positive electrode weight was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and high energy density.

実施例2では、以下のような製造方法により得た層状ニッケル酸化物を正極活物質に用いる他は、実施例1と同様にして電池を作製した。   In Example 2, a battery was fabricated in the same manner as in Example 1 except that the layered nickel oxide obtained by the following production method was used as the positive electrode active material.

まず硝酸リチウムと水酸化ニッケルと酸化コバルトをモル比でLi:Ni:Co=2.0:0.9:0.1の割合になるように均一に混合し、これを700℃、10時間、大気中で固相反応させ、得られた粉末を水洗して過剰のアルカリ分を除去し、乾燥することにより、LiNi0.9Co0.1を得た。このLiNi0.9Co0.1をX線回折分析で解析すると、六方晶(空間群R−3m)で指数付けすることができ、格子定数はa=2.871(Å)、c=14.18(Å)であることが分かった。 First, lithium nitrate, nickel hydroxide and cobalt oxide were uniformly mixed at a molar ratio of Li: Ni: Co = 2.0: 0.9: 0.1, and this was mixed at 700 ° C. for 10 hours. LiNi 0.9 Co 0.1 O 2 was obtained by solid-phase reaction in the air, washing the resulting powder with water to remove excess alkali, and drying. When this LiNi 0.9 Co 0.1 O 2 is analyzed by X-ray diffraction analysis, it can be indexed by a hexagonal crystal (space group R-3m), and the lattice constant is a = 2.871 (Å), c = 14.18 (Å).

次にこのLiNi0.9Co0.1を、H/Ni=4の割合で1.0規定の硫酸溶液と混合し、5時間撹拌・反応させ、水洗、乾燥することによりLi0.1Ni0.9Co0.1を得た。さらにこのLi0.1Ni0.9Co0.1を、TEA/Ni=10の割合で1mol/lの水酸化テトラエチルアンモニウム溶液と混合し、5時間撹拌・反応させ、水洗、乾燥することにより層状ニッケル酸化物を得た。この試料をbとする。 Next, this LiNi 0.9 Co 0.1 O 2 was mixed with a 1.0 N sulfuric acid solution at a ratio of H + / Ni = 4, stirred and reacted for 5 hours, washed with water, and dried to give Li 0. .1 Ni 0.9 Co 0.1 O 2 was obtained. Further, this Li 0.1 Ni 0.9 Co 0.1 O 2 is mixed with a 1 mol / l tetraethylammonium hydroxide solution at a ratio of TEA / Ni = 10, stirred and reacted for 5 hours, washed with water and dried. As a result, layered nickel oxide was obtained. Let this sample be b.

試料bも、試料aと類似のX線回折図を示し、層状LiMnO型構造を有することが分かった。また試料の詳細な化学組成を調べるために、試料を酸に溶解させようとしたところ、酸に不溶の成分が20重量%ほど生じたため、正確な化学組成を求めることはできなかったが、リチウムとニッケルとコバルトと酸素が含まれていることは確かめられた。LiMnO型構造を有することも併せて考えると、層間にリチウムとテトラエチルアンモニウムの分解生成物を含み、ニッケルの一部がコバルトで置換された、二酸化ニッケルに属するものと推察された。 Sample b also showed an X-ray diffraction pattern similar to that of sample a, and was found to have a layered Li 2 MnO 2 type structure. Further, in order to investigate the detailed chemical composition of the sample, an attempt was made to dissolve the sample in an acid. As a result, about 20% by weight of an insoluble component was generated, but an accurate chemical composition could not be obtained. It was confirmed to contain nickel, cobalt and oxygen. Considering that it has a Li 2 MnO 2 type structure, it was inferred that it belonged to nickel dioxide containing a decomposition product of lithium and tetraethylammonium between the layers and partially replacing nickel with cobalt.

このようにして作製した試料bを正極活物質として含む電池を、アルゴン雰囲気下のドライボックス内で試験した。25℃において5mA/gの電流密度で2.0Vまで放電した際に、正極重量当たり280mAh/gの容量が得られた。放電容量が大きく、エネルギー密度の高い電池として利用できる利点を有している。また繰り返し充放電が可能なことも分かった。   A battery including the sample b thus produced as a positive electrode active material was tested in a dry box under an argon atmosphere. When discharged to 2.0 V at a current density of 5 mA / g at 25 ° C., a capacity of 280 mAh / g per positive electrode weight was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and high energy density. It was also found that repeated charge / discharge is possible.

実施例3では、実施例1で製造した試料aに重量比で20%の導電剤を加え正極とし、電解液には塩化ナトリウムを溶解した3mol/lの水溶液を用い、負極には亜鉛板を用いて水溶液系電池を作製した。25℃において10mA/gの電流密度で0.7Vまで放電した際に、正極重量当たり290mAh/gの容量が得られた。放電容量が大きく、エネルギー密度の高い電池として利用できる利点を有している。また繰り返し充放電が可能なことも分かった。   In Example 3, a conductive agent of 20% by weight is added to the sample a produced in Example 1 to make a positive electrode, a 3 mol / l aqueous solution in which sodium chloride is dissolved is used as an electrolytic solution, and a zinc plate is used as a negative electrode. An aqueous battery was prepared. When discharged to 0.7 V at a current density of 10 mA / g at 25 ° C., a capacity of 290 mAh / g per positive electrode weight was obtained. It has an advantage that it can be used as a battery having a large discharge capacity and high energy density. It was also found that repeated charge / discharge is possible.

実施例1〜3では、ニッケル含有酸化物の製造方法の具体例と、それを用いる電池の具体例について示したが、一般に、電極材料が、組成式ANi1−z(Aは陽イオンとなる元素および基、Aの陽イオン価数をyとした場合にx・y<1を満たす、Mは遷移系列元素及び2A族、3A族、2B族、3B族から選ばれる一種類以上の元素、0≦z≦0.5)で表され、層状LiMnO型構造を有することを特徴とする層状ニッケル酸化物であり、電池が、上記層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む物質またはこの元素を可逆的に挿入・脱離あるいは吸蔵・脱離できる物質を含む負極を有し、前記元素のイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とするか、上記層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、プロトンが前記正極と電気化学反応をするための移動を行い得る物質を電解質物質として有することを特徴とする場合には、同様の効果を生じることはいうまでもない。 In Examples 1 to 3, a specific example of a method for producing a nickel-containing oxide and a specific example of a battery using the nickel-containing oxide were shown. In general, the electrode material has a composition formula A x Ni 1-z M z O 2 ( A is an element and group to be a cation, and satisfies x · y <1 when the cation valence of A is y, M is selected from a transition series element, 2A group, 3A group, 2B group, 3B group A layered nickel oxide represented by one or more elements, 0 ≦ z ≦ 0.5), and having a layered Li 2 MnO 2 type structure, wherein the battery comprises the layered nickel oxide electrode material. Has a positive electrode as a positive electrode active material, and can reversibly insert / desorb or occlude / desorb a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver, or this element Stuff Or a material capable of performing migration for causing an ion reaction of the element with the positive electrode and the negative electrode as an electrolyte substance, or the layered nickel oxide electrode material In the case of having a positive electrode contained as a positive electrode active material and having a substance as an electrolyte material capable of moving protons to perform an electrochemical reaction with the positive electrode, it goes without saying that the same effect is produced. Nor.

(比較例1)
比較例1では、以下のような製造方法により得た正極活物質の試料cを用いる他は、実施例1と同様にしてリチウム電池を作製した。まず硝酸リチウムと水酸化ニッケルをモル比でLi:Ni=2:1の割合になるように均一に混合し、これを700℃、10時間、大気中で固相反応させ、得られた粉末を水洗して過剰のアルカリ分を除去し、乾燥することにより、LiNiOを得た。このLiNiOをX線回折分析で解析すると、六方晶(空間群R−3m)で指数付けすることができ、格子定数はa=2.875(Å)、c=14.19(Å)であることが分かった。この試料をcとする。
(Comparative Example 1)
In Comparative Example 1, a lithium battery was produced in the same manner as in Example 1 except that the positive electrode active material sample c obtained by the following production method was used. First, lithium nitrate and nickel hydroxide were uniformly mixed at a molar ratio of Li: Ni = 2: 1, and this was subjected to a solid phase reaction in the atmosphere at 700 ° C. for 10 hours. LiNiO 2 was obtained by washing with water to remove excess alkali and drying. When this LiNiO 2 is analyzed by X-ray diffraction analysis, it can be indexed with a hexagonal crystal (space group R-3m), and the lattice constants are a = 2.875 (Å) and c = 14.19 (Å). I found out. Let this sample be c.

このようにして作製した試料cを正極活物質として含む電池を、アルゴン雰囲気下のドライボックス内で試験した。25℃において5mA/gの電流密度で4.3Vまで充電した後、2.0Vまで放電した際に、正極重量当たり200mAh/gの容量が得られた。この電池と比較すると、本発明の実施例で製造した正極活物質を有する電池は、放電容量が大きいことが分かる。   A battery including the sample c thus produced as a positive electrode active material was tested in a dry box under an argon atmosphere. When charged to 4.3 V at a current density of 5 mA / g at 25 ° C. and then discharged to 2.0 V, a capacity of 200 mAh / g per positive electrode weight was obtained. Compared with this battery, it can be seen that the battery having the positive electrode active material produced in the example of the present invention has a large discharge capacity.

(比較例2)
比較例2では、比較例1で製造した正極活物質の試料cを用いる他は、実施例3と同様にして水溶液系電池を作製した。25℃において10mA/gの電流密度で0.7Vまで放電した際に、正極重量当たり220mAh/gの容量が得られた。この電池と比較すると、本発明の実施例で製造した正極活物質を有する電池は、放電容量が大きいことが分かる。
(Comparative Example 2)
In Comparative Example 2, an aqueous battery was prepared in the same manner as in Example 3 except that the positive electrode active material sample c produced in Comparative Example 1 was used. When discharged to 0.7 V at a current density of 10 mA / g at 25 ° C., a capacity of 220 mAh / g per positive electrode weight was obtained. Compared with this battery, it can be seen that the battery having the positive electrode active material produced in the example of the present invention has a large discharge capacity.

本発明は、放電容量の大きい電池を提供するために、請求項1に記載された構造の層状ニッケル酸化物電極材料を用いることを特徴とする。   The present invention is characterized by using the layered nickel oxide electrode material having the structure described in claim 1 in order to provide a battery having a large discharge capacity.

銅Kα線を用いて測定された、本発明の実施例における試料aのX線回折図。The X-ray-diffraction figure of the sample a in the Example of this invention measured using the copper K alpha ray. 銅Kα線を用いて測定された、LiMnOのX線回折図。It was measured using a copper Kα beam, X-ray diffraction pattern of Li 2 MnO 2. 本発明の実施例におけるコイン型電池の構成例を示す断面図。Sectional drawing which shows the structural example of the coin-type battery in the Example of this invention.

符号の説明Explanation of symbols

1 封口板
2 ガスケット
3 正極ケース
4 負極
5 セパレータ
6 正極合剤ペレット
1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

Claims (12)

組成式ANi1−z(Aは陽イオンとなる元素および基、Aの陽イオン価数をyとした場合にx・y<1を満たす、Mは遷移系列元素及び2A族、3A族、2B族、3B族から選ばれる一種類以上の元素、0≦z≦0.5)で表される層状ニッケル酸化物で、層状LiMnO型構造を有することを特徴とする層状ニッケル酸化物電極材料。 Composition formula A x Ni 1-z M z O 2 (A is an element and group to be a cation, x satisfies y · 1 when the cation valence of A is y, M is a transition series element and 2A A layered nickel oxide represented by one or more elements selected from Group 3A, Group 2B, Group 3B, Group 3B, 0 ≦ z ≦ 0.5), and has a layered Li 2 MnO 2 type structure, Layered nickel oxide electrode material. 前記Aの陽イオン価数は、1、2または3であることを特徴とする請求項1記載の層状ニッケル酸化物電極材料。 The layered nickel oxide electrode material according to claim 1, wherein the cation valence of A is 1, 2 or 3. 前記Aは水素、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、銅、銀、亜鉛、ニッケル、テトラアルキルアンモニウム基およびアンモニウム基からなる群より選択された一種類以上であることを特徴とする請求項2記載の層状ニッケル酸化物電極材料。 The A is at least one selected from the group consisting of hydrogen, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, copper, silver, zinc, nickel, tetraalkylammonium groups and ammonium groups. The layered nickel oxide electrode material according to claim 2. 前記x・yは0<x・y<1であることを特徴とする請求項1から3のいずれか1項記載の層状ニッケル酸化物電極材料。 4. The layered nickel oxide electrode material according to claim 1, wherein x · y is 0 <x · y <1. 5. 前記x・yは0<x・y<0.2であることを特徴とする請求項4記載の層状ニッケル酸化物電極材料。 The layered nickel oxide electrode material according to claim 4, wherein x · y is 0 <x · y <0.2. 前記Mはアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、アルミニウムおよびガリウムからなる群より選択された一種以上であることを特徴とする請求項1から5のいずれか1項記載の層状ニッケル酸化物電極材料。 The layered nickel according to any one of claims 1 to 5, wherein the M is at least one selected from the group consisting of aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, aluminum, and gallium. Oxide electrode material. 前記zは0<z≦0.3であることを特徴とする請求項1から6のいずれか1項記載の層状ニッケル酸化物電極材料。 The layered nickel oxide electrode material according to claim 1, wherein z is 0 <z ≦ 0.3. 前記zは0<z≦0.2であることを特徴とする請求項7記載の層状ニッケル酸化物電極材料。 The layered nickel oxide electrode material according to claim 7, wherein z is 0 <z ≦ 0.2. 組成式ANi1−zを、酸処理または電気化学的イオン脱離によりAの一部を脱離し、さらに陽イオンを含む水溶液中で還元処理を行って前記陽イオンを挿入することにより、請求項1記載の層状ニッケル酸化物電極材料ANi1−zを得ることを特徴とする層状ニッケル酸化物電極材料の製造方法。 A part of A is removed from the composition formula ANi 1-z M z O 2 by acid treatment or electrochemical ion desorption, and further the reduction treatment is performed in an aqueous solution containing a cation to insert the cation. the method for producing a layered nickel oxide electrode material characterized by obtaining a layered nickel oxide electrode material according to claim 1, wherein a x Ni 1-z M z O 2. 前記還元処理が、アルカリ性水溶液中における水酸化物イオンの分解により行うことを特徴とする請求項9記載の層状ニッケル酸化物電極材料の製造方法。 10. The method for producing a layered nickel oxide electrode material according to claim 9, wherein the reduction treatment is performed by decomposition of hydroxide ions in an alkaline aqueous solution. 請求項1記載の層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、アルミニウム、銅、銀の何れかを含む物質またはこの元素を可逆的に挿入・脱離あるいは吸蔵・脱離できる物質を含む負極を有し、前記元素のイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする電池。 A positive electrode containing the layered nickel oxide electrode material according to claim 1 as a positive electrode active material, a substance containing any of lithium, sodium, potassium, magnesium, calcium, strontium, aluminum, copper, silver, or this element reversibly Having a negative electrode containing a substance that can be inserted / desorbed or occluded / desorbed as an electrolyte substance, and a substance capable of migrating ions of the element to perform an electrochemical reaction with the positive electrode and the negative electrode as an electrolyte substance. Battery characterized. 請求項1記載の層状ニッケル酸化物電極材料を正極活物質として含む正極を有し、プロトンが前記正極と電気化学反応をするための移動を行い得る物質を電解質物質として有することを特徴とする電池。 A battery comprising a positive electrode containing the layered nickel oxide electrode material according to claim 1 as a positive electrode active material, and having a substance capable of transferring protons to cause an electrochemical reaction with the positive electrode as an electrolyte substance. .
JP2004149964A 2004-05-20 2004-05-20 Layered nickel oxide electrode material and its manufacturing method, and battery using it Pending JP2005332691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149964A JP2005332691A (en) 2004-05-20 2004-05-20 Layered nickel oxide electrode material and its manufacturing method, and battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149964A JP2005332691A (en) 2004-05-20 2004-05-20 Layered nickel oxide electrode material and its manufacturing method, and battery using it

Publications (1)

Publication Number Publication Date
JP2005332691A true JP2005332691A (en) 2005-12-02

Family

ID=35487182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149964A Pending JP2005332691A (en) 2004-05-20 2004-05-20 Layered nickel oxide electrode material and its manufacturing method, and battery using it

Country Status (1)

Country Link
JP (1) JP2005332691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009615A (en) * 2014-06-25 2016-01-18 Fdk株式会社 Positive electrode active material for sodium secondary batteries, and sodium secondary battery
US9793543B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US10910647B2 (en) 2017-05-09 2021-02-02 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793543B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US9793542B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US10158118B2 (en) 2014-03-28 2018-12-18 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US10276869B2 (en) 2014-03-28 2019-04-30 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11081696B2 (en) 2014-03-28 2021-08-03 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11316159B2 (en) 2014-03-28 2022-04-26 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickle oxide electrochemically active cathode material
US11799082B2 (en) 2014-03-28 2023-10-24 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11901553B2 (en) 2014-03-28 2024-02-13 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickle oxide electrochemically active cathode material
JP2016009615A (en) * 2014-06-25 2016-01-18 Fdk株式会社 Positive electrode active material for sodium secondary batteries, and sodium secondary battery
US10910647B2 (en) 2017-05-09 2021-02-02 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US11764357B2 (en) 2017-05-09 2023-09-19 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material

Similar Documents

Publication Publication Date Title
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
US10601039B2 (en) Sodium layered oxide as cathode material for sodium ion battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
JP4152618B2 (en) Method for producing positive electrode active material for layered oxide battery
Matsui et al. Ca-substituted P3-type NaxNi1/3Mn1/3Co1/3O2 as a potential high voltage cathode active material for sodium-ion batteries
JP3403569B2 (en) Lithium nickel composite oxide, its production method and its use
JP2022001550A (en) Lithium metal complex oxide and preparation method of the same
JP2001332258A (en) Composite oxide material for electrode, its manufacturing method and cell therewith
JP4339741B2 (en) Layered oxide electrode material and battery using the same
JP3532139B2 (en) Method for producing nickel-containing oxide electrode material and battery using the electrode material
US9966602B2 (en) Metal cyanometallates
KR101401770B1 (en) SYNTHESIS METHOD OF Mn OXIDES AS CATHODE MATERIAL FOR LITHIUM BATTERIES AND METHOD OF MAKING THE LITHIUM BATTERIES
JP2016175825A (en) Manganese oxide, production method of the same, and lithium secondary battery obtained by using the same
JP2000182616A (en) Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JP2005332691A (en) Layered nickel oxide electrode material and its manufacturing method, and battery using it
JPH06111822A (en) Lithium battery
JP2005100922A (en) Electrode material manufacturing method of the same, and battery using the same
JP3403568B2 (en) Lithium nickel composite oxide, its production method and its use
JP3961514B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
US20170324085A1 (en) Precursor for Producing Lithium-rich Cathode Active Material, and Lithium-rich Cathode Active Material Produced Thereby
KR101681545B1 (en) Positive electrode active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
JP3961513B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material