JP3961514B2 - Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material - Google Patents

Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material Download PDF

Info

Publication number
JP3961514B2
JP3961514B2 JP2004202689A JP2004202689A JP3961514B2 JP 3961514 B2 JP3961514 B2 JP 3961514B2 JP 2004202689 A JP2004202689 A JP 2004202689A JP 2004202689 A JP2004202689 A JP 2004202689A JP 3961514 B2 JP3961514 B2 JP 3961514B2
Authority
JP
Japan
Prior art keywords
composite oxide
lithium
electrode material
producing
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004202689A
Other languages
Japanese (ja)
Other versions
JP2006024487A (en
Inventor
昌幸 津田
庸司 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004202689A priority Critical patent/JP3961514B2/en
Publication of JP2006024487A publication Critical patent/JP2006024487A/en
Application granted granted Critical
Publication of JP3961514B2 publication Critical patent/JP3961514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はLi−Ni−Ti複合酸化物電極材料の製造方法、およびそのLi−Ni−Ti複合酸化物電極材料を正極活物質として含む電池に関するものである。   The present invention relates to a method for producing a Li—Ni—Ti composite oxide electrode material, and a battery including the Li—Ni—Ti composite oxide electrode material as a positive electrode active material.

Liと遷移金属の複合酸化物を正極活物質として用いた電池は、軽量かつ大容量を有することから携帯電話電源用用途を中心に、広く用いられている。しかしながら、現在最も多く使用されているLi−Co複合酸化物系材料は、充放電に伴う結晶構造変化により、その理論比容量の全てを利用することはできず、理論値の半分に当たる150mAh/gしか利用できていない状況にある。   Batteries using a composite oxide of Li and a transition metal as a positive electrode active material are widely used mainly for applications for mobile phone power supplies because of their light weight and large capacity. However, the Li-Co composite oxide material that is most frequently used at present cannot use all of its theoretical specific capacity due to the change in crystal structure accompanying charge / discharge, and it is 150 mAh / g, which is half the theoretical value. It can only be used.

充填方法の最適化等により電池としての容量向上が行われてきたが、それも頭打ちの状態となっている。Li−Co複合酸化物に代わる新たな複合酸化物材料系として、Li−Ni複合酸化物やLi−Mn複合酸化物等が検討され、その比容量は200mAh/gを超えるものも報告されている。   Although the capacity of the battery has been improved by optimizing the filling method or the like, it has also reached its peak. Li-Ni composite oxide, Li-Mn composite oxide, etc. have been studied as a new composite oxide material system replacing Li-Co composite oxide, and those whose specific capacity exceeds 200 mAh / g have been reported. .

しかしこれらの材料系でも、サイクル特性の不十分さや、安全性の問題、高温での保存特性等の課題が存在する。これらの課題に対して、遷移金属の一部を他の遷移金属等で置換することにより改善する方法が種々報告されているが、比容量が減少してしまい実用には十分ではなかった。   However, even these materials have problems such as insufficient cycle characteristics, safety problems, and storage characteristics at high temperatures. Various methods have been reported to solve these problems by substituting a part of the transition metal with another transition metal or the like. However, the specific capacity is reduced, which is not sufficient for practical use.

これに対し、近年では複数の遷移金属の複合酸化物系として、特開2002−42813公報に代表されるLiNi0.5Mn0.5といった材料系が報告されている。この系の特徴は2種類の遷移金属それぞれが異なる役割を果たしている点であり、通常の部分置換された系とは異なる全く新しい材料系ということができる。LiNi0.5Mn0.5の場合にはNiが2+/4+の酸化還元反応により電極材料の機能を示し、一方Mnは4価で安定に存在し構造を維持する機能を与えている。この材料系(またはそれに該当する組成を有する化合物)は、特開平9−199127号公報、および特開2003−17060公報においても報告がなされている。 On the other hand, in recent years, a material system such as LiNi 0.5 Mn 0.5 O 2 typified by JP-A-2002-42813 has been reported as a composite oxide system of a plurality of transition metals. The feature of this system is that each of the two kinds of transition metals plays a different role, and it can be said that it is a completely new material system different from a normal partially substituted system. In the case of LiNi 0.5 Mn 0.5 O 2 , Ni exhibits a function of an electrode material by an oxidation-reduction reaction of 2 + / 4 +, while Mn stably exists in a tetravalent state and provides a function of maintaining the structure. . This material system (or a compound having a composition corresponding thereto) is also reported in Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060.

発明者らはこの材料系において、その特性等の報告がなされていないLi−Ni−Ti複合酸化物に注目し、その特性を明らかにすべく検討を行ってきた中で、既報の特開平9−199127号公報、および特開2003−17060公報に掲載されている方法においては電極材料の性能を示すLi−Ni−Ti複合酸化物を得ることは不可能であることを見出した。   The inventors paid attention to Li-Ni-Ti composite oxides whose properties and the like have not been reported in this material system, and have been studying to clarify the properties. It has been found that it is impossible to obtain a Li—Ni—Ti composite oxide exhibiting the performance of an electrode material by the methods described in JP-A-199127 and JP-A-2003-17060.

具体的には、既報の特開平9−199127号公報、および特開2003−17060公報に掲載されている方法によると、空間群Fm3mで表される結晶構造を有する材料が得られた。この結晶構造は電極材料として機能しないことが知られており(芳尾、小沢、リチウムイオン二次電池−材料と応用−、日刊工業新聞社(1996))、実際、機能しなかった。電極材料として機能させるには、LiNi0.5Mn0.5と同様に層状構造を有する結晶構造を得る必要がある。 Specifically, according to the methods described in the published Japanese Patent Application Laid-Open Nos. 9-199127 and 2003-17060, a material having a crystal structure represented by the space group Fm3m was obtained. It is known that this crystal structure does not function as an electrode material (Yao, Ozawa, Lithium ion secondary battery-materials and applications-, Nikkan Kogyo Shimbun (1996)), and actually did not function. In order to function as an electrode material, it is necessary to obtain a crystal structure having a layered structure like LiNi 0.5 Mn 0.5 O 2 .

上記の課題を解決するため、本発明者らは、従来の焼成法(固相法)では合成が困難であった、2価のNiと4価のTiをほぼ1:1の比で含有し、層状構造を有し、かつ電極材料の性能を示すLi−Ni−Ti複合酸化物について、2価のNiと4価のTiをほぼ1:1の比で含有し、層状構造を有するNa−Ni−Ti複合酸化物を前駆体として、イオン交換を行うことによって合成可能であることを見いだした。すなわち、2価のNiと4価のTiを含有し、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を原料に用いて、NaとLiをイオン交換する方法である。 In order to solve the above problems, the present inventors contain divalent Ni and tetravalent Ti in a ratio of approximately 1: 1, which was difficult to synthesize by the conventional firing method (solid phase method). A Li—Ni—Ti composite oxide having a layered structure and exhibiting the performance of an electrode material contains divalent Ni and tetravalent Ti in a ratio of approximately 1: 1, and has a layered structure Na— It has been found that synthesis is possible by ion exchange using Ni—Ti composite oxide as a precursor. That contains a divalent Ni and tetravalent Ti, formula Na b Ni y Ti 1-y O 2-β (0.95 ≦ b ≦ 1.05,0.45 ≦ y ≦ 0.55, −0.1 ≦ β ≦ 0.1), and a Na—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m is used as a raw material. This is a method of ion exchange.

この系と類似の構造を持つ材料系に、前述のLiNi0.5Mn0.5があるが、この材料系ではNiとMnの比が1に近いほど、電極材料として優れた性能を示す(Y.Makimura and T.Ohzuku,J.Power Sources,119−121,156(2003);T.Ohzuku and Y.Makimura,Chemistry Lett.744(2001))。同様に、上記のLi−Ni−Ti複合酸化物においても、NiとTiの比が1であることが、電極材料として高い性能を示すのに必要である。 LiNi 0.5 Mn 0.5 O 2 described above is a material system having a structure similar to this system. In this material system, the closer the ratio of Ni and Mn is to 1, the better the performance as an electrode material. (Y. Makimura and T. Ohzuku, J. Power Sources, 119-121, 156 (2003); T. Ohzuku and Y. Makimura, Chemistry Lett. 744 (2001)). Similarly, in the above Li-Ni-Ti composite oxide, it is necessary for the ratio of Ni and Ti to be 1 in order to show high performance as an electrode material.

このLi−Ni−Ti複合酸化物系のように前駆体を用いて合成を行う場合には、その前駆体であるNa−Ni−Ti複合酸化物について、NiとTiの比が1である必要がある。しかしながら、原料の混合時にはその純度や秤量の問題で、NiとTiの比を1にするのは容易ではない。
小槻、芳澤、永山、特開2002−42813公報 浅岡、渡邊、小林、特開平9−199127号公報 安斎、特開2003−17060公報 山崎、木村、特開平10−87327号公報 菅野、電気化学、No.9、63(1995) 芳尾、小沢、リチウムイオン二次電池−材料と応用−、日刊工業新聞社(1996) Y.Makimura and T.Ohzuku,J.Power Sources,119−121,156(2003) T.Ohzuku and Y.Makimura,Chemistry Lett.744(2001)
When synthesis is performed using a precursor as in this Li—Ni—Ti composite oxide system, the ratio of Ni and Ti needs to be 1 for the Na—Ni—Ti composite oxide that is the precursor. There is. However, it is not easy to set the ratio of Ni and Ti to 1 at the time of mixing raw materials due to problems of purity and weighing.
Kominato, Yoshizawa, Nagayama, JP 2002-42813 A Asaoka, Watanabe, Kobayashi, Japanese Patent Laid-Open No. 9-199127 Ansai, JP2003-17060A Yamazaki, Kimura, JP 10-87327 A Kanno, Electrochemistry, No. 9, 63 (1995) Yoshio, Ozawa, Lithium-ion secondary battery-Materials and applications-, Nikkan Kogyo Shimbun (1996) Y. Makimura and T.M. Ohzuku, J. et al. Power Sources, 119-121, 156 (2003) T.A. Ohzuku and Y.K. Makimura, Chemistry Lett. 744 (2001)

本発明は、NiとTiの比が1のLi−Ni−Ti複合酸化物電極材料を用いることにより、より優れた性能を有する電池を新たに提供することを目的としている。   An object of the present invention is to newly provide a battery having better performance by using a Li—Ni—Ti composite oxide electrode material having a ratio of Ni to Ti of 1.

さらにその手段として、NiとTiの比が1のLi−Ni−Ti複合酸化物電極材料合成の前駆体に使用する、NiとTiの比が1のNa−Ni−Ti複合酸化物の製造方法を提供し、Li−Ni−Ti複合酸化物電極材料を製造することを目的としている。   Further, as the means, a method for producing a Na—Ni—Ti composite oxide having a Ni / Ti ratio of 1 used as a precursor for synthesizing a Li—Ni—Ti composite oxide electrode material having a Ni / Ti ratio of 1 The object is to produce a Li—Ni—Ti composite oxide electrode material.

かかる目的を達成するために、本発明によるLi−Ni−Ti複合酸化物電極材料の製造方法は、Ni塩、Ti塩およびNa塩より、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を製造するに際し、原料としてNiTiOを用い製造された前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物とすることを特徴とする。 In order to achieve this object, a method for producing a Li—Ni—Ti composite oxide electrode material according to the present invention comprises a general formula Na b Ni y Ti 1-y O 2 -β from Ni salt, Ti salt and Na salt. (0.95 ≦ b ≦ 1.05, 0.45 ≦ y ≦ 0.55, −0.1 ≦ β ≦ 0.1), the crystal structure belonging to the space group R-3m When the Na—Ni—Ti composite oxide having the structure is manufactured, Na and Li of the Na—Ni—Ti composite oxide manufactured using NiTiO 3 as a raw material are ion-exchanged, and the general formula Li a Ni x Ti The crystal structure represented by 1- xO 2-α (0.95 ≦ a ≦ 1.05, 0.45 ≦ x ≦ 0.55, −0.1 ≦ α ≦ 0.1) is a space group R A Li—Ni—Ti composite oxide having a layered structure belonging to −3 m is characterized.

また、前記Na−Ni−Ti複合酸化物は、NiTiOおよびNa塩を不活性雰囲気中で焼成して製造することを特徴とし、Na塩としては、好ましくは炭酸ナトリウムを使用することを特徴とする。 The Na—Ni—Ti composite oxide is characterized by being produced by firing NiTiO 3 and a Na salt in an inert atmosphere, and the sodium salt is preferably sodium carbonate. To do.

さらに、本発明の方法において、前記NiとTiは等量であることが望ましく(すなわちX=0.5)、このようなLi−Ni−Ti複合酸化物とするため、yは0.5であることを特徴とする。   Furthermore, in the method of the present invention, it is desirable that the Ni and Ti have the same amount (that is, X = 0.5). In order to obtain such a Li—Ni—Ti composite oxide, y is 0.5. It is characterized by being.

本発明において、製造された前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換するに際しては、前記Na−Ni−Ti複合酸化物と硝酸リチウムを混合し、255〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とする。また、前記イオン交換はLi/Na比が5〜10倍となる量の硝酸リチウム中で行うことを特徴とする。   In the present invention, when Na and Li of the produced Na—Ni—Ti composite oxide are ion-exchanged, the Na—Ni—Ti composite oxide and lithium nitrate are mixed, and at a temperature of 255 to 300 ° C. 1 to 24 hours by the molten salt method. The ion exchange is performed in an amount of lithium nitrate in which the Li / Na ratio is 5 to 10 times.

さらに、前記イオン交換は、前記Na−Ni−Ti複合酸化物と複数のリチウム塩とを混合し、200〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とし、前記リチウム塩は、硝酸リチウム、塩化リチウム、水酸化リチウムであることを特徴とする。前記イオン交換はLi/Na比が5〜10倍となる量の混合したリチウム塩中で行うことを特徴としている。   Furthermore, the ion exchange is performed by the molten salt method by mixing the Na—Ni—Ti composite oxide and a plurality of lithium salts at a temperature of 200 to 300 ° C. for 1 to 24 hours, The lithium salt is lithium nitrate, lithium chloride, or lithium hydroxide. The ion exchange is performed in a mixed lithium salt in such an amount that the Li / Na ratio is 5 to 10 times.

また本発明の電池は、前述の方法により製造されたLi−Ni−Ti複合酸化物を正極活物質として含む正極を有し、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする。   In addition, the battery of the present invention includes a positive electrode that includes the Li—Ni—Ti composite oxide manufactured by the above-described method as a positive electrode active material, and includes a material that can reversibly insert, desorb, occlude, and release lithium. It has a negative electrode, The lithium ion contains the substance which can perform the movement for an electrochemical reaction with the said positive electrode and the said negative electrode as an electrolyte substance, It is characterized by the above-mentioned.

本発明の製造方法によれば、NiとTiの比が1のNa−Ni−Ti複合酸化物の合成が可能になり、これを前駆体に用いることで、NiとTiの比が1のLi−Ni−Ti複合酸化物の合成が可能になる。その結果、この方法により製造されたLi−Ni−Ti複合酸化物を正極活物質として用いることにより、優れた性能を有する電池を実現することができ、種々の電子機器の電源を始め、様々な分野に利用できるという利点を有する。   According to the production method of the present invention, it becomes possible to synthesize a Na—Ni—Ti composite oxide having a Ni / Ti ratio of 1, and by using this as a precursor, a Li / Ti ratio of 1 is obtained. -Ni-Ti composite oxide can be synthesized. As a result, by using the Li—Ni—Ti composite oxide produced by this method as a positive electrode active material, it is possible to realize a battery having excellent performance, including power supplies for various electronic devices, It has the advantage that it can be used in the field.

本発明をさらに詳しく説明する。Ni塩、Ti塩およびNa塩より、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を製造するに際し、原料としてNiTiOを用い製造された前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物とする。 The present invention will be described in more detail. Ni salts, of Ti salts and Na salts of the general formula Na b Ni y Ti 1-y O 2-β (0.95 ≦ b ≦ 1.05,0.45 ≦ y ≦ 0.55, -0.1 ≦ β ≦ 0.1), and when the Na—Ni—Ti composite oxide having a layered structure whose crystal structure belongs to the space group R-3m is produced, the NiTiO 3 is used as a raw material. Na and Li of the Na—Ni—Ti composite oxide are ion-exchanged, and the general formula Li a Ni x Ti 1-x O 2-α (0.95 ≦ a ≦ 1.05, 0.45 ≦ x ≦ 0. 55, −0.1 ≦ α ≦ 0.1), and a Li—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m.

発明者らはNiとTiの比が1のLi−Ni−Ti複合酸化物電極材料の製造方法を鋭意探索した結果、Li−Ni−Ti複合酸化物電極材料合成の前駆体に使用するNa−Ni−Ti複合酸化物を、原料としてNiTiOを用いて合成することにより、NiとTiの比が1のLi−Ni−Ti複合酸化物電極材料を合成可能であることを見出した。 As a result of earnest search for a method for producing a Li—Ni—Ti composite oxide electrode material having a Ni / Ti ratio of 1, the inventors have used Na— which is used as a precursor for synthesizing a Li—Ni—Ti composite oxide electrode material. It has been found that by synthesizing Ni—Ti composite oxide using NiTiO 3 as a raw material, a Li—Ni—Ti composite oxide electrode material having a Ni / Ti ratio of 1 can be synthesized.

発明者らは電極材料として機能する、2価のNiと4価のTiを含有し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物、特に2価のNiと4価のTiをほぼ1:1の比で含有し、層状構造を有するLi−Ni−Ti複合酸化物を合成するには、従来の単純な焼成法では合成が不可能であることを示し、新規合成方法として2価のNiと4価のTiをほぼ1:1の比で含有し、層状構造を有するNa−Ni−Ti複合酸化物を合成し、それを前駆体としてイオン交換を行う方法を提供している。 The inventors of the present invention contain divalent Ni and tetravalent Ti, which function as electrode materials, and have a general formula of Li a Ni x Ti 1-x O 2-α (0.95 ≦ a ≦ 1.05,. 45 ≦ x ≦ 0.55, −0.1 ≦ α ≦ 0.1), and a Li—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m, In order to synthesize a Li-Ni-Ti composite oxide containing divalent Ni and tetravalent Ti in a ratio of approximately 1: 1 and having a layered structure, the conventional simple firing method cannot be used. As a new synthesis method, a Na-Ni-Ti composite oxide containing a divalent Ni and a tetravalent Ti in a ratio of approximately 1: 1 and having a layered structure was synthesized and used as a precursor. A method of performing ion exchange is provided.

この方法においては、前駆体であるNa−Ni−Ti複合酸化物におけるNiとTiの比が、その後イオン交換によって得られるLi−Ni−Ti複合酸化物のNiとTiの比に反映される。よって、NiとTiの比が1のLi−Ni−Ti複合酸化物を得るには、NiとTiの比が1のNa−Ni−Ti複合酸化物を得る必要がある。   In this method, the ratio of Ni and Ti in the precursor Na—Ni—Ti composite oxide is reflected in the ratio of Ni and Ti in the Li—Ni—Ti composite oxide obtained by ion exchange thereafter. Therefore, in order to obtain a Li—Ni—Ti composite oxide having a Ni / Ti ratio of 1, it is necessary to obtain a Na—Ni—Ti composite oxide having a Ni / Ti ratio of 1.

このNa−Ni−Ti複合酸化物は一般に単純な焼成法で得ることが可能である。具体的には、Na塩と2価のNi塩および4価のTi塩を量論比(Na:Ni:Ti=2:1:1)にて混合し、不活性雰囲気中(Ar,N等)で仮焼成および本焼成を行うことで合成する。ここで不活性雰囲気を用いるのはNiの酸化を防ぐためである。原料についても、Ni2価およびTi4価の塩を用いれば特に制限はなく、入手の容易さ、取り扱いのしやすさから、炭酸ナトリウム、水酸化ニッケル、酸化チタンの組み合わせが簡便であることが示されている。 This Na—Ni—Ti composite oxide can generally be obtained by a simple firing method. Specifically, Na salt, divalent Ni salt, and tetravalent Ti salt are mixed at a stoichiometric ratio (Na: Ni: Ti = 2: 1: 1) in an inert atmosphere (Ar, N 2 Etc.) is preliminarily fired and main fired. Here, the inert atmosphere is used to prevent oxidation of Ni. The raw materials are not particularly limited as long as Ni divalent and Ti tetravalent salts are used, and it is shown that the combination of sodium carbonate, nickel hydroxide, and titanium oxide is simple because of availability and ease of handling. ing.

しかしながら、より電池特性に優れたLi−Ni−Ti複合酸化物を得るにあたって、NiとTiの比を1とするには、純度の明らかな原料を使用し、さらには厳密な秤量を行う必要があった。また、原料混合時にはその比が1であっても反応時の不純物生成により生じる組成ずれの問題もあった。これらの問題を解決し、NiとTiの比を1とするには、元からNiとTiの比が1である原料を用いればよい。   However, in order to obtain a Li—Ni—Ti composite oxide having more excellent battery characteristics, it is necessary to use a raw material with a clear purity and to perform a strict weighing in order to make the ratio of Ni and Ti be 1. there were. Further, even when the ratio is 1 at the time of mixing raw materials, there is a problem of compositional deviation caused by the generation of impurities during the reaction. In order to solve these problems and to set the ratio of Ni and Ti to 1, a raw material whose ratio of Ni and Ti is originally 1 may be used.

この元からNiとTiの比が1である原料としては、NiTiOがあげられる。これを原料とすることで、原料混合時のNiとTiの比を1とでき、さらに焼成して得られるNa−Ni−Ti複合酸化物においてもNiとTiの比も1にできる。この結果、イオン交換後においても、NiとTiの比が1のLi−Ni−Ti複合酸化物を得ることが可能となり、より優れた性能を有する電池を実現することができる。 An example of a raw material having a Ni / Ti ratio of 1 is NiTiO 3 . By using this as a raw material, the ratio of Ni and Ti at the time of mixing raw materials can be made 1, and the ratio of Ni and Ti can also be made 1 in a Na—Ni—Ti composite oxide obtained by firing. As a result, even after ion exchange, it is possible to obtain a Li—Ni—Ti composite oxide having a Ni / Ti ratio of 1, and a battery having better performance can be realized.

このNiTiOを用いて、Na−Ni−Ti複合酸化物を合成するにあたっては、Na塩に関しては特に制限はなく、入手の容易さ、取り扱いのしやすさから、炭酸ナトリウムが簡便である。 In synthesizing the Na—Ni—Ti composite oxide using this NiTiO 3 , the Na salt is not particularly limited, and sodium carbonate is convenient because it is easily available and easy to handle.

得られたNa−Ni−Ti複合酸化物のイオン交換にはリチウム塩を用いた溶融塩法を用いるのが好ましい。この方法により短時間で結晶性の良い試料を得ることができる。この際もNiの酸化を防ぐために不活性雰囲気中で行う。   It is preferable to use a molten salt method using a lithium salt for ion exchange of the obtained Na—Ni—Ti composite oxide. By this method, a sample with good crystallinity can be obtained in a short time. Also in this case, it is performed in an inert atmosphere in order to prevent oxidation of Ni.

リチウム塩として硝酸リチウムを用いた場合、255℃未満であると溶融しない恐れがあり、300℃を超えた温度で処理を行うと、岩塩型構造への構造変化が生じ、電極性能を著しく低下させるため注意が必要である。基本的に、硝酸リチウムが確実に溶融し、かつ、できる限り低い温度が好ましい。したがって、最も好ましくは270℃前後である。   When lithium nitrate is used as the lithium salt, it may not melt when the temperature is lower than 255 ° C. When the treatment is performed at a temperature exceeding 300 ° C, the structure changes to a rock salt type structure, and the electrode performance is remarkably deteriorated. Therefore, attention is necessary. Basically, it is preferred that the temperature be as low as possible so that the lithium nitrate melts reliably. Therefore, it is most preferably around 270 ° C.

また、イオン交換反応は濃度差により生じるのでLiはNaに対して相当の量が必要であること、後処理で洗浄するのにLi塩を必要以上に過剰にするのは現実的でないことから、Li/Na比が5〜10倍が好ましい。   In addition, since the ion exchange reaction occurs due to a difference in concentration, Li requires a considerable amount with respect to Na, and it is not realistic to make the Li salt excessive more than necessary for washing in the post-treatment. The Li / Na ratio is preferably 5 to 10 times.

さらに、反応時間は、短時間である場合にはイオン交換反応が十分に進行しない恐れがあるが、本発明の製造方法で用いるNa−Ni−Ti複合酸化物は、反応のしやすい材料であり、かつ、長時間の反応は岩塩型構造への構造変化の恐れもあることから1〜24時間が好ましく、短時間で十分な試料が得られることから、さらに好ましくは1〜5時間である。   Furthermore, when the reaction time is short, the ion exchange reaction may not proceed sufficiently, but the Na—Ni—Ti composite oxide used in the production method of the present invention is a material that is easy to react. In addition, a long-time reaction is preferably 1 to 24 hours because there is a risk of structural change to a rock salt structure, and more preferably 1 to 5 hours because a sufficient sample can be obtained in a short time.

上述のことから、最も好ましくはLi/Na比が約5倍の硝酸リチウム中において、約270℃で3〜5時間の処理が良い。過剰なリチウム塩等は水、メタノール等の溶剤で洗浄する。   From the above, it is most preferable to perform the treatment at about 270 ° C. for 3 to 5 hours in lithium nitrate having a Li / Na ratio of about 5 times. Wash excess lithium salt with a solvent such as water or methanol.

また複数のリチウム塩を混合して用いた場合には、塩の溶融温度が低下することからより低い温度での処理も可能となる。リチウム塩には溶融温度条件を満たせば、いかなる塩を利用することも可能であるが、入手の容易さ、取り扱いのしやすさから、硝酸リチウム、塩化リチウム、水酸化リチウムの組み合わせが簡便である。例えば、硝酸リチウムと塩化リチウムのmol%比88:12混合塩は約244℃、硝酸リチウムと水酸化リチウムのmol%比61:39混合塩は約186℃で溶融するので、温度条件により選択すればよい。   When a plurality of lithium salts are mixed and used, the melting temperature of the salt decreases, so that treatment at a lower temperature is possible. Any salt can be used as long as the lithium salt satisfies the melting temperature condition, but the combination of lithium nitrate, lithium chloride, and lithium hydroxide is simple because it is easily available and easy to handle. . For example, a 88:12 mol% ratio salt of lithium nitrate and lithium chloride melts at about 244 ° C, and a 61:39 mol% ratio of lithium nitrate and lithium hydroxide melts at about 186 ° C. That's fine.

処理温度としては、温度が低すぎるとイオン交換反応が十分に進行しない恐れがあること、また300℃を超えた温度で処理を行うと、岩塩型構造への構造変化が生じ、電極性能を著しく低下させるため注意が必要であることから、200〜300℃が好ましい。さらに好ましくは250〜270℃である。   Regarding the processing temperature, if the temperature is too low, the ion exchange reaction may not proceed sufficiently, and if the processing is performed at a temperature exceeding 300 ° C., a structural change to a rock salt type structure occurs and the electrode performance is remarkably improved. Since attention is required to lower the temperature, 200 to 300 ° C. is preferable. More preferably, it is 250-270 degreeC.

また、前述した理由により、Li/Na比は5〜10倍が好ましい。反応時間も同様に1〜24時間が好ましく、さらに好ましくは1〜5時間である。   For the reasons described above, the Li / Na ratio is preferably 5 to 10 times. Similarly, the reaction time is preferably 1 to 24 hours, more preferably 1 to 5 hours.

上述のことから、最も好ましくはLi/Na比が約5倍とした複数のリチウム塩中において、250〜270℃で3〜5時間の処理が良い。過剰なリチウム塩等は水、メタノール等の溶剤で洗浄する。   From the above, it is most preferable to perform treatment at 250 to 270 ° C. for 3 to 5 hours in a plurality of lithium salts having a Li / Na ratio of about 5 times. Wash excess lithium salt with a solvent such as water or methanol.

本発明の製造方法によって製造されたNa−Ni−Ti複合酸化物を前駆体に使用し合成したLi−Ni−Ti複合酸化物を正極活物質に用いて電池正極を形成するには、前記方法で製造されたLi−Ni−Ti複合酸化物粉末とポリテトラフルオロエチレンのごとき結着剤粉末との混合物をステンレス等の支持体上に圧着成形する。或いは、かかる活物質粉末に導電性を付与するためアセチレンブラックのような導電性粉末を混合し、これをさらにポリテトラフルオロエチレンのような結着剤粉末を所要に応じて加え、この混合物を金属容器に入れる、あるいはステンレス等の支持体上に圧着成形する、あるいは有機溶剤等の溶媒中に分散してスラリー状にして金属基板上に塗布する、等の手段によって形成される。   In order to form a battery positive electrode using a Li—Ni—Ti composite oxide synthesized by using the Na—Ni—Ti composite oxide produced by the production method of the present invention as a precursor, as a positive electrode active material, A mixture of the Li—Ni—Ti composite oxide powder produced in step 1 and a binder powder such as polytetrafluoroethylene is compression-molded on a support such as stainless steel. Alternatively, in order to impart conductivity to the active material powder, a conductive powder such as acetylene black is mixed, and a binder powder such as polytetrafluoroethylene is further added as necessary, and this mixture is added to a metal. It is formed by a means such as placing in a container, pressure forming on a support such as stainless steel, or dispersing in a solvent such as an organic solvent to form a slurry and applying it onto a metal substrate.

前記Li−Ni−Ti複合酸化物を正極活物質に用いる電池では、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として有することにより、リチウムイオンが正極と負極の間を行き来する電池となる。例えば、負極活物質としては、リチウム金属、リチウム−アルミニウム合金、リチウム−炭素化合物、リチウム含有窒化物など、従来公知の材料を用いることができる。   A battery using the Li—Ni—Ti composite oxide as a positive electrode active material has a negative electrode containing a material capable of reversibly inserting / extracting lithium or inserting / extracting lithium, and lithium ions are electrically connected to the positive electrode and the negative electrode. By having a substance that can move for performing a chemical reaction as an electrolyte substance, a battery in which lithium ions travel between the positive electrode and the negative electrode is obtained. For example, as the negative electrode active material, conventionally known materials such as lithium metal, lithium-aluminum alloy, lithium-carbon compound, and lithium-containing nitride can be used.

前記Li−Ni−Ti複合酸化物を正極活物質に用いる電池では、電解質として、例えばジメトキシエタン、ジエトキシエタン、2−メチルテトラヒドロフラン、エチレンカーボネート、プロピレンカーボネート、メチルホルメート、ジメチルスルホキシド、アセトニトリル、ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート等の有機溶媒に、リチウム塩を溶解した非水電解質溶媒、或いは固体電解質、高分子電解質、前記有機溶媒を担持させた高分子電解質等が使用できる。   In a battery using the Li—Ni—Ti composite oxide as a positive electrode active material, for example, dimethoxyethane, diethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, propylene carbonate, methyl formate, dimethyl sulfoxide, acetonitrile, butyrolactone are used as the electrolyte. , Non-aqueous electrolyte solvents in which lithium salts are dissolved in organic solvents such as dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, or the like, or solid electrolytes, polymer electrolytes, polymer electrolytes carrying the organic solvents, etc. Can be used.

また前記電池の放電・充電を繰り返し行うことで、これを二次電池として用いることもできる。   In addition, the battery can be used as a secondary battery by repeatedly discharging and charging the battery.

さらにセパレータ、電池ケース等の構造材料等の他の要素についても従来公知の各種材料が使用でき、特に制限はない。   Furthermore, conventionally known various materials can be used for other elements such as a structural material such as a separator and a battery case, and there is no particular limitation.

以下実施例によって本発明を具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

図1は本発明による製造方法によって製造されたNa−Ni−Ti複合酸化物を前駆体に使用し合成したLi−Ni−Ti複合酸化物を、正極活物質に用いる電池の一具体例であるコイン型電池の断面図であり、図中1は封口板、2はガスケット、3は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。   FIG. 1 is a specific example of a battery using, as a positive electrode active material, a Li—Ni—Ti composite oxide synthesized by using a Na—Ni—Ti composite oxide produced by the production method according to the present invention as a precursor. 1 is a cross-sectional view of a coin-type battery, in which 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, 5 is a separator, and 6 is a positive electrode mixture pellet.

実施例1では、次のようにして製造した試料aを用いた。Na塩にはNaCOを用い、NiTiOとモル比1:1で混合し、Ar中で950℃、36時間焼成し、淡緑色のNa−Ni−Ti複合酸化物の粉末を得た。次にこのNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOと混合し、Ar中で270℃、3時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。このようにして得られたLi−Ni−Ti複合酸化物試料をaとする。 In Example 1, the sample a manufactured as follows was used. Na 2 CO 3 was used as the Na salt, mixed with NiTiO 3 at a molar ratio of 1: 1, and baked in Ar at 950 ° C. for 36 hours to obtain a light green Na—Ni—Ti composite oxide powder. . Next, this Na—Ni—Ti composite oxide was used as a precursor and mixed with LiNO 3 so that the Li / Na ratio was 5, and ion exchange treatment was performed in Ar at 270 ° C. for 3 hours. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The Li—Ni—Ti composite oxide sample thus obtained is designated as a.

この試料aの粉末を導電剤(アセチレンブラック)、結着剤(ポリテトラフルオロエチレン)と共に混合の上、ロール成形し、正極合剤ペレット6(厚さ0.3mm、直径15mm)とした。   The powder of sample a was mixed with a conductive agent (acetylene black) and a binder (polytetrafluoroethylene) and roll-molded to form positive electrode mixture pellets 6 (thickness 0.3 mm, diameter 15 mm).

次にステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入し、負極4の上にポリプロピレン製で微孔性のセパレータ5、正極合剤ペレット6をこの順序に配置し、電解液としてエチレンカーボネートとジメチルカーボネートの等容積混合溶媒にLiPFを溶解させた1規定溶液を適量注入して含浸させた後に、ステンレス製の正極ケース3を被せてかしめることにより、厚さ2mm、直径23mmのコイン型電池を作製した。 Next, a metal lithium negative electrode 4 placed under pressure on a stainless sealing plate 1 is inserted into a recess of a polypropylene gasket 2, and a polypropylene microporous separator 5 and a positive electrode mixture are formed on the negative electrode 4. The pellets 6 are arranged in this order, and after impregnating an appropriate amount of a 1N solution in which LiPF 6 is dissolved in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate as an electrolytic solution, the stainless steel positive electrode case 3 is covered. By caulking, a coin-type battery having a thickness of 2 mm and a diameter of 23 mm was produced.

(比較例1)
比較例1では、次のようにして製造した試料Aを用いる他は、実施例1と同様にしてリチウム電池を作製した。まずNaCOとNi(OH)とTiOをモル比1:1:1で混合し、Ar中で950℃、36時間焼成し、淡緑色のNa−Ni−Ti複合酸化物の粉末を得た。次にこのNa−Ni−Ti複合酸化物を前駆体として、Li/Na比が5となるようにLiNOと混合し、Ar中で270℃、3時間のイオン交換処理を行った。得られた混合物を蒸留水で洗浄し、可溶成分を除去した後、空気中90℃で乾燥し、淡緑色の粉末を得た。このようにして得られたLi−Ni−Ti複合酸化物試料をAとする。
(Comparative Example 1)
In Comparative Example 1, a lithium battery was produced in the same manner as in Example 1 except that Sample A produced as follows was used. First, Na 2 CO 3 , Ni (OH) 2 and TiO 2 are mixed at a molar ratio of 1: 1: 1, fired in Ar at 950 ° C. for 36 hours, and light green Na—Ni—Ti composite oxide powder Got. Next, this Na—Ni—Ti composite oxide was used as a precursor and mixed with LiNO 3 so that the Li / Na ratio was 5, and ion exchange treatment was performed in Ar at 270 ° C. for 3 hours. The obtained mixture was washed with distilled water to remove soluble components, and then dried in air at 90 ° C. to obtain a light green powder. The Li—Ni—Ti composite oxide sample thus obtained is designated as A.

実施例1および比較例1で得たNa−Ni−Ti複合酸化物およびLi−Ni−Ti複合酸化物(試料aおよび試料A)について、構造およびNiとTiの価数を分析したところ、全ての複合酸化物は、空間群R−3mに帰属される層状構造を有し、かつ、Niは2価、Tiは4価の状態であった。   The structure and the valences of Ni and Ti were analyzed for the Na—Ni—Ti composite oxide and the Li—Ni—Ti composite oxide (sample a and sample A) obtained in Example 1 and Comparative Example 1. The composite oxide had a layered structure belonging to the space group R-3m, and Ni was bivalent and Ti was tetravalent.

また、NiとTiの比について評価したところ、試料AにおいてはNi/Ti=0.97であったが、試料aにおいてはNi/Ti=1.00であった。   When the ratio of Ni and Ti was evaluated, Ni / Ti = 0.97 in sample A, but Ni / Ti = 1.00 in sample a.

また、これらの電池について、電流密度0.1mA/cmで2.0〜4.3Vの電圧幅で充放電させたところ、電池として機能した。さらにn−1サイクル目の放電容量に対するnサイクル目の放電容量の比で容量保持率を求めたところ、図2に示したようになった。比較例1の電池に対して、実施例1の電池において容量保持率が向上しており、電池特性の優れた電池を実現することが出来た。 Moreover, when these batteries were charged / discharged at a current density of 0.1 mA / cm 2 and a voltage width of 2.0 to 4.3 V, they functioned as batteries. Further, when the capacity retention ratio was determined by the ratio of the discharge capacity at the nth cycle to the discharge capacity at the n-1th cycle, it was as shown in FIG. Compared to the battery of Comparative Example 1, the capacity retention rate of the battery of Example 1 was improved, and a battery having excellent battery characteristics could be realized.

NiとTiの比が1のNa−Ni−Ti複合酸化物を前駆体に用いることにより、NiとTiの比が1のLi−Ni−Ti複合酸化物を合成することが可能となり、その結果、より優れた電池特性を有する電池の実現も可能となる。   By using a Na—Ni—Ti composite oxide having a Ni / Ti ratio of 1 as a precursor, it becomes possible to synthesize a Li—Ni—Ti composite oxide having a Ni / Ti ratio of 1 as a result. Therefore, it is possible to realize a battery having more excellent battery characteristics.

本発明の実施例におけるコイン型電池の構成例を示す断面図。Sectional drawing which shows the structural example of the coin-type battery in the Example of this invention. n−1サイクル目の放電容量に対するnサイクル目の放電容量の比で示した、充放電試験時における実施例1および比較例1の電池の容量保持率を示す図。The figure which shows the capacity | capacitance retention of the battery of Example 1 and the comparative example 1 at the time of a charging / discharging test shown by ratio of the discharge capacity of the nth cycle with respect to the discharge capacity of the n-1 cycle.

符号の説明Explanation of symbols

1 封口板
2 ガスケット
3 正極ケース
4 負極
5 セパレータ
6 正極合剤ペレット
1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

Claims (11)

Ni塩、Ti塩およびNa塩より、一般式NaNiTi1−y2−β(0.95≦b≦1.05、0.45≦y≦0.55、−0.1≦β≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するNa−Ni−Ti複合酸化物を製造するに際し、原料としてをNiTiO用い製造された前記Na−Ni−Ti複合酸化物のNaとLiをイオン交換し、一般式LiNiTi1−x2−α(0.95≦a≦1.05、0.45≦x≦0.55、−0.1≦α≦0.1)で表される、結晶構造が空間群R−3mに帰属される層状構造を有するLi−Ni−Ti複合酸化物とすることを特徴とするLi−Ni−Ti複合酸化物電極材料の製造方法。 Ni salts, of Ti salts and Na salts of the general formula Na b Ni y Ti 1-y O 2-β (0.95 ≦ b ≦ 1.05,0.45 ≦ y ≦ 0.55, -0.1 ≦ β ≦ 0.1), and when the Na—Ni—Ti composite oxide having a layered structure whose crystal structure belongs to the space group R-3m is produced, the above-described NiTiO 3 was used as a raw material. Na and Li of the Na—Ni—Ti composite oxide are ion-exchanged, and the general formula Li a Ni x Ti 1-x O 2-α (0.95 ≦ a ≦ 1.05, 0.45 ≦ x ≦ 0. 55, −0.1 ≦ α ≦ 0.1), a Li—Ni—Ti composite oxide having a layered structure in which the crystal structure belongs to the space group R-3m. -Manufacturing method of Ni-Ti complex oxide electrode material. 前記Na−Ni−Ti複合酸化物は、NiTiOおよびNa塩を不活性雰囲気中で焼成して製造することを特徴とする請求項1記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 The method for producing a Li-Ni-Ti composite oxide electrode material according to claim 1, wherein the Na-Ni-Ti composite oxide is produced by firing NiTiO 3 and a Na salt in an inert atmosphere. . 前記Na塩は炭酸ナトリウムであることを特徴とする請求項1または2記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 The method for producing a Li-Ni-Ti composite oxide electrode material according to claim 1 or 2, wherein the Na salt is sodium carbonate. 前記一般式においてy=0.5である請求項1から3のいずれか1項記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 4. The method for producing a Li—Ni—Ti composite oxide electrode material according to claim 1, wherein y is 0.5 in the general formula. 前記一般式においてx=0.5である請求項1から4のいずれか1項記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 5. The method for producing a Li—Ni—Ti composite oxide electrode material according to claim 1, wherein x is 0.5 in the general formula. 前記イオン交換は前記Na−Ni−Ti複合酸化物と硝酸リチウムを混合し、255〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とする請求項1から5のいずれか1項記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 6. The ion exchange according to claim 1, wherein the Na-Ni-Ti composite oxide and lithium nitrate are mixed and performed by a molten salt method at a temperature of 255 to 300 [deg.] C. for 1 to 24 hours. A method for producing a Li—Ni—Ti composite oxide electrode material according to claim 1. 前記イオン交換はLi/Na比が5〜10倍となる量の硝酸リチウム中で行う請求項6記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 The said ion exchange is a manufacturing method of the Li-Ni-Ti complex oxide electrode material of Claim 6 performed in the quantity of lithium nitrate which becomes Li / Na ratio 5-10 times. 前記イオン交換は、前記Na−Ni−Ti複合酸化物と複数のリチウム塩とを混合し、200〜300℃の温度で、1〜24時間、溶融塩法で行うことを特徴とする請求項1から5のいずれか1項記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 2. The ion exchange is performed by a molten salt method in which the Na—Ni—Ti composite oxide and a plurality of lithium salts are mixed and at a temperature of 200 to 300 ° C. for 1 to 24 hours. 6. A method for producing a Li—Ni—Ti composite oxide electrode material according to any one of items 1 to 5. 前記リチウム塩は、硝酸リチウム、塩化リチウム、水酸化リチウムであることを特徴とする請求項8記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 The method for producing a Li—Ni—Ti composite oxide electrode material according to claim 8, wherein the lithium salt is lithium nitrate, lithium chloride, or lithium hydroxide. 前記イオン交換はLi/Na比が5〜10倍となる量の混合したリチウム塩中で行う請求項9記載のLi−Ni−Ti複合酸化物電極材料の製造方法。 The method for producing a Li-Ni-Ti composite oxide electrode material according to claim 9, wherein the ion exchange is performed in a mixed lithium salt in an amount such that the Li / Na ratio is 5 to 10 times. 請求項1で製造されたLi−Ni−Ti複合酸化物を正極活物質として含む正極を有し、リチウムを可逆的に挿入・脱離あるいは吸蔵・放出できる物質を含む負極を有し、リチウムイオンが前記正極および前記負極と電気化学反応をするための移動を行い得る物質を電解質物質として含むことを特徴とする電池。 A positive electrode containing the Li—Ni—Ti composite oxide produced in claim 1 as a positive electrode active material, a negative electrode containing a material capable of reversibly inserting / extracting lithium or inserting / extracting lithium, and a lithium ion A battery comprising an electrolyte substance containing a substance capable of performing an electrochemical reaction with the positive electrode and the negative electrode.
JP2004202689A 2004-07-09 2004-07-09 Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material Expired - Fee Related JP3961514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004202689A JP3961514B2 (en) 2004-07-09 2004-07-09 Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004202689A JP3961514B2 (en) 2004-07-09 2004-07-09 Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material

Publications (2)

Publication Number Publication Date
JP2006024487A JP2006024487A (en) 2006-01-26
JP3961514B2 true JP3961514B2 (en) 2007-08-22

Family

ID=35797604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004202689A Expired - Fee Related JP3961514B2 (en) 2004-07-09 2004-07-09 Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material

Country Status (1)

Country Link
JP (1) JP3961514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259078B2 (en) * 2006-11-22 2013-08-07 パナソニック株式会社 Non-aqueous electrolyte secondary battery positive electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5234272B2 (en) * 2008-10-31 2013-07-10 出光興産株式会社 All-solid lithium secondary battery
JP5152246B2 (en) * 2010-04-23 2013-02-27 株式会社豊田自動織機 Cathode active material for lithium ion secondary battery and lithium ion secondary battery
CN106450255B (en) * 2016-11-05 2019-01-29 中南大学 A kind of NiTiO of sodium-ion battery3/ C negative electrode material, preparation and application

Also Published As

Publication number Publication date
JP2006024487A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4832229B2 (en) Nonaqueous electrolyte secondary battery
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2012505520A (en) Cathode materials for lithium ion batteries with high specific discharge capacity and processes for synthesizing these materials
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
JP5245210B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
US20050153206A1 (en) Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
US20160190577A1 (en) Layered-spinel electrodes for lithium batteries
JP2011243585A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR100784637B1 (en) Synthetic method of lithium titanate spinel oxide material using a li based molten salt
US20100081056A1 (en) Non-aqueous electrolyte secondary battery, positive electrode active material used for the battery, and manufacturing method of the positive electrode active material
JP3961514B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
JPH1126018A (en) Lithium secondary battery
JP2005100922A (en) Electrode material manufacturing method of the same, and battery using the same
JP3961513B2 (en) Method for producing Li-Ni-Ti composite oxide electrode material and battery using the electrode material
JP4560168B2 (en) Method for producing composite oxide for non-aqueous lithium secondary battery
JP2002246024A (en) Lithium secondary battery
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JP3509477B2 (en) Manufacturing method of positive electrode active material for non-aqueous electrolyte secondary battery
JP2018043889A (en) Manganese oxide, manganese oxide mixture, and lithium secondary battery using the same
JPH04181660A (en) Nonaqueous secondary battery
JPH10116616A (en) Lithium secondary battery with nonaqueous electrolyte

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees