JPH0743117B2 - Boiler combustion condition monitoring device - Google Patents

Boiler combustion condition monitoring device

Info

Publication number
JPH0743117B2
JPH0743117B2 JP63000354A JP35488A JPH0743117B2 JP H0743117 B2 JPH0743117 B2 JP H0743117B2 JP 63000354 A JP63000354 A JP 63000354A JP 35488 A JP35488 A JP 35488A JP H0743117 B2 JPH0743117 B2 JP H0743117B2
Authority
JP
Japan
Prior art keywords
flame
combustion
temperature
burner
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63000354A
Other languages
Japanese (ja)
Other versions
JPH01179815A (en
Inventor
享 木村
敏彦 東
俊介 天笠
健二郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP63000354A priority Critical patent/JPH0743117B2/en
Publication of JPH01179815A publication Critical patent/JPH01179815A/en
Publication of JPH0743117B2 publication Critical patent/JPH0743117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラの燃焼状態を監視する装置に係り、特
にボイラから排出される排ガス成分を推定するのに好適
なボイラ燃焼状態監視装置に関する。
The present invention relates to an apparatus for monitoring a combustion state of a boiler, and more particularly to a boiler combustion state monitoring apparatus suitable for estimating exhaust gas components discharged from the boiler. .

〔従来の技術〕[Conventional technology]

従来の装置は、例えば、特開昭60−228818号公報に記載
のようにバーナ出口近傍の火炎形状を輝度分布として計
測し、計測した火炎から酸化炎形状を抽出し、バーナ出
口部と抽出された酸化炎との間の位置に関する情報に基
づいて灰中未燃分を推定する装置となつている。しか
し、灰中未燃分に強く影響する燃料ボリユーム及び燃焼
火炎温度分布の影響については何ら配慮されていない。
また、酸化炎がバーナ軸を境に1個ずつ存在する様な火
炎以外には適用できないという問題がある。
The conventional device, for example, as described in JP-A-60-228818, measures the flame shape in the vicinity of the burner outlet as a luminance distribution, extracts the oxidizing flame shape from the measured flame, and extracts the burner outlet portion. It is a device to estimate the unburned content in ash based on the information on the position between the oxidative flame and the oxidative flame. However, no consideration is given to the influence of the fuel volume and the combustion flame temperature distribution, which strongly influence the unburned matter in ash.
Further, there is a problem that it cannot be applied to other flames than one in which an oxidizing flame exists one by one with a burner axis as a boundary.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記従来技術は、燃焼状態をバーナ燃焼火炎におけるた
だ一つの断面形状でのみ、すなわち平面的に評価してい
るので、この一つの燃焼火炎の断面形状には表れない燃
焼火炎の他の部分の特徴については評価することはでき
ず、ボイラの燃焼焼状態を精度良く監視することはでき
なかった。
Since the above-mentioned conventional technique evaluates the combustion state with only one cross-sectional shape of the burner combustion flame, that is, in a plan view, the characteristics of other portions of the combustion flame that do not appear in the cross-sectional shape of this one combustion flame However, it was not possible to accurately evaluate the combustion state of the boiler.

本発明の目的は、ボイラの燃焼状態に関するバーナ燃焼
火炎の特徴量を立体的に把握して精度良くボイラの燃焼
状態を監視することのできるボイラ燃焼状態監視装置を
提供することにある。
An object of the present invention is to provide a boiler combustion state monitoring device capable of three-dimensionally grasping the characteristic amount of the burner combustion flame relating to the combustion state of the boiler and accurately monitoring the combustion state of the boiler.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するための本発明に係るボイラ状態監視
装置は、バーナを備える発電用ボイラの燃焼状態を監視
するボイラ燃焼状態監視装置において、 (a)前記バーナの中心軸の直角方向から、前記バーナ
の燃焼火炎全体の側面の火炎形状を撮像する撮像手段
と、 (b)前記撮像手段により撮像された火炎形状を、所定
温度範囲毎に複数の領域に分割して前記火炎形状の温度
分布を求める温度分布演算手段と、 (c)前記火炎形状を前記バーナの中心軸に直交する面
で複数の区間に分割し、この分割された各々の面におけ
る前記燃焼火炎の断面温度分布を、前記中心軸から、前
記温度分布演算手段により求められた温度分布内に存在
する温度領域の境界線までの距離と、前記所定温度範囲
とに基づいて推定する断面温度分布推定手段と、 (d)前記断面温度分布推定手段により推定された複数
の断面温度分布と、予め定められた前記バーナの中心軸
方向の距離と前記燃焼火炎中の灰中未燃焼分との関係特
性とに基づいて、前記ボイラの燃焼状態を推定する手
段、 とを有することを特徴とする。
A boiler state monitoring device according to the present invention for achieving the above object is a boiler combustion state monitoring device for monitoring a combustion state of a power generation boiler including a burner, wherein: (a) a direction perpendicular to a central axis of the burner, An image pickup means for picking up an image of the flame shape on the side surface of the entire combustion flame of the burner; and (b) dividing the flame shape picked up by the image pickup means into a plurality of regions for each predetermined temperature range to obtain a temperature distribution of the flame shape. (C) The flame shape is divided into a plurality of sections on a plane orthogonal to the central axis of the burner, and the cross-sectional temperature distribution of the combustion flame on each of the divided planes is defined as the center. A distance from the axis to a boundary line of a temperature region existing in the temperature distribution obtained by the temperature distribution calculating unit, and a cross-section temperature distribution estimating unit estimating based on the predetermined temperature range, (D) Based on a plurality of cross-section temperature distributions estimated by the cross-section temperature distribution estimation means, and a predetermined relational characteristic between the distance in the central axis direction of the burner and the unburned ash content in the combustion flame. And means for estimating the combustion state of the boiler.

〔作用〕[Action]

本発明によれば、バーナ中心軸に直交する断面の燃焼火
炎の温度分布を推定し、この断面温度分布をバーナ出口
近傍から燃焼火炎の後流端までの間に複数検出し、この
複数の断面温度分布と、バーナの中心軸方向の距離と前
記燃焼火炎中の灰中未燃焼分との関係特性とに基づいて
前記ボイラの燃焼状態を評価するので、燃焼火炎の一つ
の断面形状では把握できなかった、ボイラ燃焼状態に関
する燃焼火炎の特徴量(温度、輝度等)の立体的な分布
を把握することができると共に、バーナから噴出された
燃料が、バーナ出口から燃焼火炎後流端に至るまでの燃
焼状況、特に燃焼火炎中の灰中未燃分を的確に推定する
ことができる。
According to the present invention, the temperature distribution of the combustion flame in the cross section orthogonal to the central axis of the burner is estimated, a plurality of this cross section temperature distribution is detected from the vicinity of the burner outlet to the wake end of the combustion flame, and the plurality of cross sections are detected. Since the combustion state of the boiler is evaluated based on the temperature distribution and the relationship characteristics between the distance in the central axis direction of the burner and the unburned content in the ash in the combustion flame, it can be grasped with one cross-sectional shape of the combustion flame. It was possible to grasp the three-dimensional distribution of the characteristic amount (temperature, brightness, etc.) of the combustion flame related to the boiler combustion state, which was not available, and the fuel ejected from the burner from the burner outlet to the downstream end of the combustion flame. It is possible to accurately estimate the combustion state of, especially unburned ash content in the combustion flame.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に示す。第1図におい
て、1はバーナ、2は火炎、3は火炉、4は冷却装置、
5はイメージフアイバー、6は分光器、7はハーフミラ
ー、8は干渉フイルター、9はITVカメラ、10はアナロ
グ/デジタル変換装置、11はデジタル画像記憶装置、12
は計算機、13は表示装置、14は波長λフィルタ、15は
火炎温度分布輪切り第i区間、16は火炎温度分布輪切り
断面積、17は火炎温度分布評価計算処理概念図である。
An embodiment of the present invention will be shown below in FIG. In FIG. 1, 1 is a burner, 2 is a flame, 3 is a furnace, 4 is a cooling device,
5 is an image fiber, 6 is a spectroscope, 7 is a half mirror, 8 is an interference filter, 9 is an ITV camera, 10 is an analog / digital conversion device, 11 is a digital image storage device, 12
Is a calculator, 13 is a display device, 14 is a wavelength λ 2 filter, 15 is the i-th section of the flame temperature distribution round slice, 16 is the flame temperature distribution round slice cross-sectional area, and 17 is a flame temperature distribution evaluation calculation processing conceptual diagram.

ボイラ運転中の燃焼火炎2を第1図に示すようにイメー
ジフアイバー5を2本用いてバーナ近傍火炎、火炎中後
流域火炎を計測し各々分光器6を介して、例えば波長60
0,700nmの輝度分布に分光し各々ITVカメラ9で撮像す
る。尚、イメージフアイバー対物レンズ系に広角レンズ
を使用してイメージフアイバー1本で火炎を計測するこ
とも可能である。その映像信号をアナログ/デジタルに
変換装置10により各々デジタル画像データに変換しデジ
タル画像記憶装置11に記憶する。
As shown in FIG. 1, the combustion flame 2 during the operation of the boiler is measured by using two image fibers 5 for the flame near the burner and the flame in the wake region of the flame, and each of them is measured, for example, at a wavelength of 60 through the spectroscope 6.
The brightness distribution of 0,700 nm is divided and each is photographed by the ITV camera 9. It is also possible to measure the flame with one image fiber by using a wide-angle lens for the image fiber objective lens system. The video signal is converted into digital image data by an analog / digital conversion device 10 and stored in a digital image storage device 11.

デジタル画像記憶装置11に入力するための映像信号をア
ナログ/デジタルに変換するタイミングは、アナログ/
デジタル変換実行のタイミング信号18を用いる。本実施
例ではアナログ/デジタル変換実行のためのタイミング
信号18を計算機12から与えるようになつているが、マニ
ユアル操作で与えても効果は変わらない。
The timing for converting the video signal to be input to the digital image storage device 11 into analog / digital is analog / digital.
The timing signal 18 for executing the digital conversion is used. In this embodiment, the timing signal 18 for executing the analog / digital conversion is supplied from the computer 12, but the effect does not change even if it is supplied by the manual operation.

デジタル画像記憶装置11に記憶されたバーナ近傍画像・
火炎中後流域画像の各々例えば波長600,700nmの輝度情
報を用いて計算機で温度分布を計算する。以下に火炎デ
ジタル画像の各座標点の温度を算出する方法について示
す。尚、計測時の波長の選定は、任意の2つの波長を選
んでも効果は同じである。
Burner neighborhood image stored in the digital image storage device 11
A temperature distribution is calculated by a computer using the brightness information of wavelengths of 600 and 700 nm, respectively, in each image of the wake region in the flame. The method of calculating the temperature at each coordinate point of the flame digital image is shown below. It should be noted that the same effect can be obtained by selecting two arbitrary wavelengths at the time of measurement.

Weinの式を用いて、波長600,700nmの各座標点の輝度と
温度の関係は(1),(2)式で示される。
Using Wein's equation, the relationship between the brightness and the temperature at each coordinate point at wavelengths of 600 and 700 nm is expressed by equations (1) and (2).

ここで、R1(i,j):(i,j)座標の波長700nmの輝度 R2(i,j):(i,j)座標の波長600nmの輝度 ε1:波長700nmの実効放射率 ε2:波長600nmの実効放射率 λ1:波長700nm λ2:波長600nm T(i,j):(i,j)座標の温度 c1:第1放射定数(3.7403×10-5erg・cm2/s) c2:第2放射定数(1.4387cm/K゜) (1),(2)式の(i,j)座標の波長700,600nmの輝度
比をとり、(i,j)座標の温度Tを解くと(3)式とな
る。
Where R 1 (i, j): luminance at wavelength 700nm in (i, j) coordinates R 2 (i, j): luminance at wavelength 600nm in (i, j) coordinates ε 1 : effective emissivity at wavelength 700nm ε 2 : Effective emissivity at wavelength 600 nm λ 1 : Wavelength 700 nm λ 2 : Wavelength 600 nm T (i, j): Temperature at (i, j) coordinates c 1 : First radiation constant (3.7403 × 10 -5 erg · cm) 2 / s) c 2 : Second radiation constant (1.4387cm / K °) Take the luminance ratio of wavelength (700,600nm) of (i, j) coordinate of formulas (1) and (2), and calculate (i, j) coordinate. When the temperature T is solved, the equation (3) is obtained.

座標全点について(3)式に示す計算を計算機で行なう
ことにより各座標の温度を求めることができる。
The temperature at each coordinate can be obtained by performing the calculation shown in the formula (3) for all the coordinate points with a computer.

以上、火炎から計測した2つの波長の輝度分布を用いた
2色高温計法を応用した火炎温度分布を求める手法につ
いて説明したが、火炎からの1つの波長の輝度分布から
も温度分布を求めることができる、以下にその手法を示
す。
The method of obtaining the flame temperature distribution by applying the two-color pyrometer method using the luminance distribution of two wavelengths measured from the flame has been described above, but the temperature distribution is also obtained from the luminance distribution of one wavelength from the flame. The method is shown below.

火炎の波長・輝度(放射強度)・温度の関係は(4)式
に示すプランクの式で表わすことができる。
The relationship between flame wavelength, brightness (radiation intensity), and temperature can be expressed by Planck's equation (4).

但し、λ:波長(μm) T:絶対温度K゜ R:波長λの温度 c1:第1放射定数(3.7403×10-5erg・cm2/s) c2:第2放射定数(1.4387cm・K゜) (4)式を応用し(5)式で火炎画像温度情報全点に実
施すれば火炎温度分布が求まる。
Where λ: wavelength (μm) T: absolute temperature K ° R: temperature of wavelength λ c1: first radiation constant (3.7403 × 10 -5 erg · cm 2 / s) c2: second radiation constant (1.4387 cm · K) °) If the equation (4) is applied and the flame image temperature information is applied to all points in the equation (5), the flame temperature distribution can be obtained.

以上、(5)式を実現するためには第1図の2つの計測
波長のうちのどちらかの波長を用いれば良い。また、第
3図の様なシステム構成でも実現できる。
As described above, in order to realize the expression (5), either one of the two measurement wavelengths in FIG. 1 may be used. It can also be realized by the system configuration shown in FIG.

以下、算出されたバーナ近傍火炎及び火炎中後流域の温
度分布を用いて第2図に示すフローチヤートに従つて火
炎温度体積的評価を行なう。
Hereinafter, the flame temperature volumetric evaluation is performed according to the flow chart shown in FIG. 2 by using the calculated temperature distribution of the flame near the burner and the wake region in the flame.

1.100:バーナ近傍火炎温度分布と火炎中後流域温度分布
をつなぎ合わせる。
1.100: Connect the flame temperature distribution near the burner and the wake region temperature distribution in the flame.

バーナ近傍火炎温度分布と火炎中後流域温度分布をひと
つの火炎温度分布になるようにつなぎ合わせる。
The flame temperature distribution near the burner and the wake region temperature distribution in the flame are connected so as to form one flame temperature distribution.

2.110:火炎温度分布を設定した温度範囲毎に複数の領域
に分ける。
2.110: Divide the flame temperature distribution into multiple areas for each set temperature range.

第4図(a)に示す火炎が1000゜K〜1800゜Kの温度範
囲で温度が分布しているとすると、それを例えば200゜
K毎に等温線をひくと第4図(b)のように温度範囲毎
に複数の領域に分かれる。このような方法で、ある設定
範囲で複数の領域に分割する。領域を分ける設定温度範
囲は、火炎温度分布の温度最低値と最高値を考慮して決
定すれば良い。
Assuming that the flame shown in FIG. 4 (a) has a temperature distribution in the temperature range of 1000 ° K to 1800 ° K, if an isothermal line is drawn every 200 ° K for example, it is shown in FIG. 4 (b). Thus, the temperature range is divided into a plurality of regions. By such a method, a certain setting range is divided into a plurality of areas. The set temperature range for dividing the region may be determined in consideration of the minimum temperature value and the maximum temperature value of the flame temperature distribution.

以下、第4図に示した温度分布の火炎を用いて説明す
る。
Hereinafter, description will be given using the flame having the temperature distribution shown in FIG.

3.120:第i番目の区間の複数に分解された各領域の平均
温度を求める。
3.120: Obtain an average temperature of each region decomposed into a plurality of i-th intervals.

第5図(a)に示す様に火炎温度分布から第i区間だけ
取り出すと第5図(b)となる、この第i区間内の各温
度領域に対して平均温度を求める。第5図(b)では、
3つの領域に対して各々平均温度が求まることになる。
(ここで第i区間とは、バーナ出口近傍から燃焼火炎後
流端までのバーナ燃焼火炎の火炎画像を複数の区間に分
割し、その区間のバーナ出口から第i番目の区間を表わ
す。) 平均温度の求め方について火炎温度1000〜1199゜Kの領
域19を例にとつて示すと、火炎温度1000〜1199゜K領域
19の平均温度を求めるには(6)式を用いて求める。
As shown in FIG. 5 (a), when only the i-th section is extracted from the flame temperature distribution, FIG. 5 (b) is obtained, and the average temperature is obtained for each temperature region in the i-th section. In FIG. 5 (b),
The average temperature is obtained for each of the three regions.
(Here, the i-th section represents the i-th section from the burner outlet of the section by dividing the flame image of the burner combustion flame from the vicinity of the burner outlet to the downstream end of the combustion flame into a plurality of sections.) Taking the region 19 of flame temperature 1000 to 1199 ° K as an example to find the temperature, the flame temperature 1000 to 1199 ° K region
To obtain the average temperature of 19, use equation (6).

ここで火炎温度1000〜1199゜K領域の度数とは、火炎温
度1000〜1199゜K領域の温度情報数である。
The frequency in the flame temperature range of 1000 to 1199 ° K is the number of temperature information in the flame temperature range of 1000 to 1199 ° K.

4.130:火炎を同心円とし、第i区間の各温度領域の平均
温度関数と度数の積を求める。
4.130: The flame is concentric, and the product of the average temperature function and the frequency of each temperature region in the i-th section is calculated.

火炎を同心円と仮定すると、第6図(a)に示す火炎温
度分布(第4図に示した温度分布と同じ)の第i区間15
の断面は第6図(b)に示す温度領域に分割できる。同
様に第j区間23の断面は第6図(c)、第k区間24の断
面は第6図(d)に示す温度領域に分割できる。第i区
間の断面である第7図を用いて各温度領域の平均温度の
関数と度数の積Tiを求める方法を(7)式に示す。
Assuming that the flames are concentric circles, the i-th section 15 of the flame temperature distribution shown in FIG. 6 (a) (same as the temperature distribution shown in FIG. 4)
The cross section of can be divided into the temperature regions shown in FIG. 6 (b). Similarly, the cross section of the j-th section 23 can be divided into the temperature regions shown in FIG. 6C and the k-th section 24 can be divided into the temperature regions shown in FIG. 6D. A method for obtaining the product T i of the function of the average temperature and the frequency in each temperature region is shown in the equation (7) using FIG. 7 which is a cross section of the i-th section.

Ti={x(Ti1−T0α・Si1}+y(Ti2−T0β
Si2} +{z(Ti3−T0γ・Si3} …(7) 但し Ti1:火炎温度1000〜1199゜K領域平均温度 Ti2:火炎温度1200〜1399゜K領域平均温度 Ti3:火炎温度1400〜1599゜K領域平均温度 T0:着火温度 Si1:π(l2−m2):火炎温度1000〜1199゜K領域 Si2:π(m2−n2):火炎温度1200〜1399゜K領域 Si3:πn2:火炎温度1400〜1599゜K領域 x,y,z:係数(但しx,y,z>0) α,β,γ:係数 (バーナ構造,炭種,空気供給方法等で決定する係数) 以上、第i区間の平均温度の関数と度数の積Tiを求めた
が、これと同様な方法でバーナ出口(第1区間)から火
炎末端(第n区間)までの各平均温度の関数と度数の積
T1〜Ti〜Tnを求める。
T i = {x (T i1 −T 0 ) α・ S i1 } + y (T i2 −T 0 ) β
S i2 } + {z (T i3 −T 0 ) γ・ S i3 }… (7) where T i1 is flame temperature 1000 to 1199 ° K region average temperature T i2 is flame temperature 1200 to 1399 ° K region average temperature T i3 : Flame temperature 1400 to 1599 ° K region average temperature T 0 : Ignition temperature S i1 : π (l 2 −m 2 ): Flame temperature 1000 to 1199 ° K region S i2 : π (m 2 −n 2 ): Flame Temperature 1200 to 1399 ° K region S i3 : πn 2 : Flame temperature 1400 to 1599 ° K region x, y, z: Coefficients (however, x, y, z> 0) α, β, γ: Coefficients (burner structure, charcoal As described above, the product T i of the function of the average temperature in the i-th section and the frequency was obtained as described above. The same method was used to calculate the product from the burner outlet (first section) to the flame end (first section). The product of the function and the frequency of each average temperature up to n intervals)
Calculate T 1 to T i to T n .

5.140:第1区間〜第n区間までの各区間の平均温度の関
数と度数の積を用いて灰中未燃分推定指標を求める。
5.140: The unburned ash content estimation index is calculated using the product of the function of the average temperature and the frequency of each section from the 1st section to the nth section.

以下、各区間の平均温度関数と度数の積を用いて灰分中
未燃分推定指標を求める方法について示す。
Hereinafter, a method of obtaining an unburned carbon content estimation index in ash by using the product of the average temperature function and the frequency of each section will be described.

第i区間の平均温度の関数と度数の積Tiは、第i区間の
燃焼状態(燃焼ボリユーム・燃焼温度分布)を代表する
燃焼指標だと考えられる。例えば、微粉炭燃焼火炎の場
合、バーナ近傍では、着火がうまくいかないと揮発分の
抽出による揮発分燃焼が促進されないので、火炎温度は
上昇せず燃焼ボリユームも小さいと考えられTiは小さく
なる。また火炎中流域でバーナ近傍での揮発分抽出・火
炎中後流域での微粉炭の酸素との拡散等の影響により燃
焼が促進されないとTiは小さくなると考えられる。
The product T i of the function of the average temperature in the i-th section and the frequency is considered to be a combustion index representing the combustion state (combustion volume / combustion temperature distribution) in the i-th section. For example, in the case of a pulverized coal combustion flame, if the ignition is not successful in the vicinity of the burner, the volatile component combustion is not promoted by the extraction of the volatile component, so the flame temperature does not rise and the combustion volume is considered to be small, and T i becomes small. In addition, T i is considered to be small unless combustion is promoted due to the effects of volatile matter extraction near the burner in the middle flame region and diffusion of pulverized coal with oxygen in the latter stream region of the flame.

ここで第8図に灰中未燃分が燃焼過程でどの様に減少し
ていくかを示す。縦軸に灰中未燃分、横軸にバーナ軸距
離をとり実験炉での実験結果をプロツトした。この図か
らわかるように灰中未燃分は燃焼が進むにつれて連続的
に減少していくことがわかる。
Here, Fig. 8 shows how unburned ash content decreases in the combustion process. The unburned content in ash is plotted on the vertical axis and the burner axial distance is plotted on the horizontal axis, and the experimental results in the experimental furnace are plotted. As can be seen from this figure, the unburned content in ash continuously decreases as combustion progresses.

以上より、各区間の平均温度の関数と度数の積Tiを、各
区間での燃焼率とし、各区間の燃焼分を導びき、最終的
に残存する灰中未燃分を推定する。各区間の燃焼分を
(6)式のように定義する。
From the above, the product T i of the function of the average temperature of each section and the frequency is set as the combustion rate in each section, the combustion component of each segment is derived, and the final unburned ash content is estimated. The amount of combustion in each section is defined as in equation (6).

第i区間燃焼分 =Ti×第i区間直前の残存未燃分 …(8) サクソンベール炭の微粉炭燃焼を例にとつて示すと以下
の様になる。
I-th section combustion component = T i × remaining unburned content immediately before i-th segment (8) The following is an example of pulverized coal combustion of Saxon bale coal.

第1区間燃焼分(着火直後の燃焼分) =T1×(燃焼分が零の時の残存未燃分:82%) 第2区間燃焼分 =T2×(82−第1区間燃焼分) 第i区間燃焼分 =Ti×(i−1区間までの残存未燃分) 第n区間燃焼分(燃焼終了直前の区間) =Tn×(n−1区間までの残存未燃分) 燃焼終了時の残存未燃分 =(n−1区間までの残存未燃分)−(第n区間燃焼
分) …(9) このように燃焼終了時の灰中未燃分は、各区間の燃焼分
を求め(9)式で推定できる。ここで燃焼分が零の時の
残存未燃分が82%になる理由について示す。灰中未燃分
とは(10)式の様に定義される。
1st section combustion (combustion immediately after ignition) = T 1 × (remaining unburned content when combustion is zero: 82%) 2nd section combustion = T 2 × (82 − 1st section combustion) I-th section combustion = T i × (remaining unburned content up to i-1 section) n-th section combustion (section immediately before the end of combustion) = T n × (remaining unburned content up to n-1 section) combustion Remaining unburned content at the end = (remaining unburnt content up to n-1 section)-(nth section combustion content) (9) Thus, the unburnt ash content at the end of combustion is the combustion of each section. Minutes can be obtained and estimated by the equation (9). Here, the reason why the residual unburned content becomes 82% when the combustion content is zero is shown. Unburnt content in ash is defined as in equation (10).

但し、μ:未燃焼率 A:原炭の灰分割合 サクソンベール炭の原炭割合は18%であり、燃焼分が零
の時は未燃焼率が100〔%〕であるから(10)式にこれ
ら数値を代入して求めた値が82〔%〕となる。
However, μ: unburned rate A: ash content ratio of raw coal The raw coal ratio of Saxon Bale coal is 18%, and when the burned content is zero, the unburned rate is 100 [%]. The value obtained by substituting these numerical values is 82%.

以上、温度を用いて灰中未燃分を推定する方法示した
が、火炎輝度分布を用いて同様な方法により灰中未燃分
を推定可能である。
Although the method of estimating the unburnt content in ash using temperature has been described above, the unburned content in ash can be estimated by a similar method using the flame intensity distribution.

6,150:表示装置に灰中未燃分推定結果を表示する。6,150: Display the result of estimation of unburned ash content on the display.

以上で求めた灰中未燃分推定結果をCRTに表示する。
尚、第5図(a)に示す火炎温度分布を設定温度領域毎
に彩色し表示する及び選択した部分の燃焼率を表示する
などを行なえば火炎の任意の部分の燃焼状態を知ること
ができる。
The ash unburnt content estimation result obtained above is displayed on the CRT.
The flame state of any part of the flame can be known by coloring the flame temperature distribution shown in FIG. 5 (a) for each set temperature region and displaying the combustion rate of the selected part. .

以上、燃焼火炎1個に対しての灰中未燃分推定方法を示
したが、実缶は複数バーナで構成されており(m段×n
列)各段の燃焼状態は異なつている。そのため缶全体の
灰中未燃分を推定するためには、少なくとも段毎に燃焼
火炎を計測し灰中未燃分を推定する必要がある。
As above, the method of estimating the unburned ash content for one combustion flame has been shown, but the actual can is composed of multiple burners (m stages x n
Row) The combustion state of each stage is different. Therefore, in order to estimate the unburned ash content of the entire can, it is necessary to measure the combustion flame at least for each stage to estimate the unburned ash content.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、ボイラ燃焼状態
に関する燃焼火炎の特徴量の立体的な分布を抽出するこ
とができるため、燃焼火炎全体にわたって上記特徴量を
把握でき、精度良くボイラ燃焼状態を監視することがで
きる。
As described above, according to the present invention, since the three-dimensional distribution of the characteristic amount of the combustion flame related to the boiler combustion state can be extracted, the characteristic amount can be grasped over the entire combustion flame, and the boiler combustion state can be accurately generated. Can be monitored.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例を示す構成図、第2図は計算
機の概略処理フロー図、第3図は単波長で火炎を計測す
る際の構成図、第4図は火炎の温度領域分割の概念図、
第5図(a)は画像メモリ上の火炎温度分布概念図、第
5図(b)は第i区間説明図、第6図(a)は火炎温度
分布、第6図(b)は第i区間を同心円とした時の断面
図、第6図(c)は第j区間を同心円とした時の断面
図、第6図(d)は第k区間を同心円とした時の断面
図、第7図は第i区間を同心円とした時の断面図、第8
図はバーナ軸距離に対する灰中未燃分値の減少を示す特
性図である。 1……バーナ、2……火炎、3……火炉、4……冷却装
置、5……イメージフアイバー、6……分光器、7……
ハーフミラー、8……波長λフイルタ、9……ITVカ
メラ、10……アナログ/デジタル変換装置、11……デジ
タル画像記憶装置、12……計算機、13……表示装置、14
……波長λフイルタ、15……火炎温度分布輪切り第i
区間、16……火炎温度分布輪切り断面積、17……計算機
処理概念図、18……アナログ/デジタル変換タイミング
信号、19……火炎温度1000〜1199゜K領域、20……火炎
温度1200〜1399゜K領域、21……火炎温度1400〜1599゜
K領域、22……火炎温度1600〜1800゜K領域、23……画
像メモリJ座標、24……画像メモリI座標、25……i輝
度情報、26……第j区間、27……第k区間。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a schematic process flow chart of a computer, FIG. 3 is a block diagram when measuring a flame with a single wavelength, and FIG. 4 is a flame temperature region. Conceptual diagram of division,
FIG. 5 (a) is a conceptual diagram of the flame temperature distribution on the image memory, FIG. 5 (b) is an explanatory diagram of section i, FIG. 6 (a) is the flame temperature distribution, and FIG. 6 (b) is i. FIG. 6 (c) is a sectional view when the section is concentric, and FIG. 6 (d) is a sectional view when the section k is concentric. The figure shows a sectional view when the i-th section is a concentric circle.
The figure is a characteristic diagram showing a decrease in the unburned ash content with respect to the burner axial distance. 1 ... Burner, 2 ... Flame, 3 ... Furnace, 4 ... Cooling device, 5 ... Image fiber, 6 ... Spectroscope, 7 ...
Half mirror, 8 ... Wavelength λ 1 filter, 9 ... ITV camera, 10 ... Analog / digital conversion device, 11 ... Digital image storage device, 12 ... Computer, 13 ... Display device, 14
...... Wavelength λ 2 filter, 15 …… Flame temperature distribution rounded i
Section, 16 …… Flame temperature distribution cross section, 17 …… Conceptual diagram of computer processing, 18 …… Analog / digital conversion timing signal, 19 …… Flame temperature 1000 to 1199 ° K region, 20 …… Flame temperature 1200 to 1399 ° K area, 21 ... Flame temperature 1400 to 1599 ° K area, 22 ... Flame temperature 1600 to 1800 ° K area, 23 ... Image memory J coordinate, 24 ... Image memory I coordinate, 25 ... i Luminance information , 26 …… section j, 27 …… section k.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 健二郎 宮城県宮城郡七ケ浜町吉田浜字細田17番地 火力アパート426号 (56)参考文献 特開 昭60−244821(JP,A) 特開 昭61−93311(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenjiro Takahashi, No. 17 Hosoda, Hosoda, Yoshidahama, Shichigahama-cho, Miyagi-gun, Miyagi Prefecture (56) References JP-A-60-244821 (JP, A) JP-A-61 -93311 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】バーナを備える発電用ボイラの燃焼状態を
監視するボイラ燃焼状態監視装置において、 (a)前記バーナの中心軸のほぼ直角方向から、前記バ
ーナの燃焼火炎全体の側面の火炎形状を撮像する撮像手
段と、 (b)前記撮像手段により撮像された火炎形状を、所定
温度範囲毎に複数の領域に分割して前記火炎形状の温度
分布を求める温度分布演算手段と、 (c)前記火炎形状を前記バーナの中心軸に直交する面
で複数の区間に分割し、この分割された各々の面におけ
る前記燃焼火炎の断面温度分布を、前記中心軸から、前
記温度分布演算手段により求められた温度分布内に存在
する温度領域の境界線までの距離と、前記所定温度範囲
とに基づいて推定する断面温度分布推定手段と、 (d)前記断面温度分布推定手段により推定された複数
の断面温度分布と、予め定められた前記バーナの中心軸
方向の距離と前記燃焼火炎中の灰中未燃焼分との関係特
性とに基づいて、前記ボイラの燃焼状態を推定する手
段、 とを有することを特徴とするボイラ燃焼状態監視装置。
1. A boiler combustion state monitoring device for monitoring a combustion state of a power generation boiler equipped with a burner, comprising: (a) determining a flame shape of a side surface of an entire combustion flame of the burner from a direction substantially perpendicular to a central axis of the burner. Image capturing means for capturing an image; (b) temperature distribution calculation means for dividing the flame shape captured by the image capturing means into a plurality of regions for each predetermined temperature range to obtain a temperature distribution of the flame shape; The flame shape is divided into a plurality of sections on a plane orthogonal to the central axis of the burner, and the cross-sectional temperature distribution of the combustion flame on each of the divided surfaces is obtained from the central axis by the temperature distribution calculating means. Section temperature distribution estimating means for estimating based on the distance to the boundary line of the temperature region existing in the temperature distribution and the predetermined temperature range; and (d) estimation by the section temperature distribution estimating means. Means for estimating the combustion state of the boiler based on a plurality of cross-sectional temperature distributions, a predetermined distance between the burner in the direction of the central axis of the burner, and a relationship characteristic between the unburned content in ash in the combustion flame. A boiler combustion state monitoring device comprising:
JP63000354A 1988-01-06 1988-01-06 Boiler combustion condition monitoring device Expired - Lifetime JPH0743117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000354A JPH0743117B2 (en) 1988-01-06 1988-01-06 Boiler combustion condition monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000354A JPH0743117B2 (en) 1988-01-06 1988-01-06 Boiler combustion condition monitoring device

Publications (2)

Publication Number Publication Date
JPH01179815A JPH01179815A (en) 1989-07-17
JPH0743117B2 true JPH0743117B2 (en) 1995-05-15

Family

ID=11471492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000354A Expired - Lifetime JPH0743117B2 (en) 1988-01-06 1988-01-06 Boiler combustion condition monitoring device

Country Status (1)

Country Link
JP (1) JPH0743117B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465819A (en) * 2015-12-31 2016-04-06 合肥金星机电科技发展有限公司 Visual flame detection system of gasifier and control method of system
KR20160059493A (en) * 2014-11-18 2016-05-27 고등기술연구원연구조합 Press vacuum sintering furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6251941B2 (en) * 2014-08-19 2017-12-27 三菱日立パワーシステムズ株式会社 boiler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244821A (en) * 1984-05-21 1985-12-04 Hitachi Ltd Processing method of fire image
JPH06105124B2 (en) * 1984-10-15 1994-12-21 株式会社日立製作所 Method and apparatus for estimating boiler exhaust gas components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160059493A (en) * 2014-11-18 2016-05-27 고등기술연구원연구조합 Press vacuum sintering furnace
CN105465819A (en) * 2015-12-31 2016-04-06 合肥金星机电科技发展有限公司 Visual flame detection system of gasifier and control method of system

Also Published As

Publication number Publication date
JPH01179815A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
US5677532A (en) Spectral imaging method and apparatus
US6247918B1 (en) Flame monitoring methods and apparatus
Wang et al. The research on the estimation for the NOx emissive concentration of the pulverized coal boiler by the flame image processing technique
JPH0316564B2 (en)
Svensson et al. Calibration of an RGB, CCD Camera and Interpretation of its Two-Color Images for KL and Temperature
CN110769194A (en) Heat source monitoring and identifying method and system based on double-light fusion
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
Orteu et al. An innovative method for 3-D shape, strain and temperature full-field measurement using a single type of camera: principle and preliminary results
JPH0743117B2 (en) Boiler combustion condition monitoring device
Sankaranarayanan et al. Investigation of sooting flames by color-ratio pyrometry with a consumer-grade DSLR camera
TW201321728A (en) Non-contact temperature measuring method
JPH02157502A (en) Temperature monitoring device for boiler tube
CN112525951A (en) Heating imaging device and method for associating radiation image with accumulated dust temperature
TW201423068A (en) Non-contact temperature measurung method
CN1069960C (en) Method and apparatus for detecting combustion temperature profile in boiler chamber at power station
CN107655350A (en) A kind of novel industrial furnace monitoring diagnosis device and method
CN101339072A (en) Flame status checking method
JP2963009B2 (en) Combustion determination / control method and determination / control device using color image
JPS60169015A (en) Burning condition diagnosing method
JP6166156B2 (en) Combustion analyzer
JPH01312319A (en) Boiler combustion state monitoring device
JP3035389B2 (en) Combustion system and combustion evaluation device
Pei et al. Temperature recognition for normal temperature metal based on the statistical features of visible image and K-nearest neighbor algorithm
DE10066074B4 (en) Method for evaluating stratified charge combustion for direct injection gasoline engines
CN113378370B (en) Method for evaluating temperature uniformity of hot-rolled strip steel in width direction