JPS60244821A - Processing method of fire image - Google Patents

Processing method of fire image

Info

Publication number
JPS60244821A
JPS60244821A JP59100537A JP10053784A JPS60244821A JP S60244821 A JPS60244821 A JP S60244821A JP 59100537 A JP59100537 A JP 59100537A JP 10053784 A JP10053784 A JP 10053784A JP S60244821 A JPS60244821 A JP S60244821A
Authority
JP
Japan
Prior art keywords
brightness
flame
combustion
brightness distribution
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100537A
Other languages
Japanese (ja)
Inventor
Atsushi Yokogawa
横川 篤
Hisanori Miyagaki
宮垣 久典
Toshihiko Azuma
東 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59100537A priority Critical patent/JPS60244821A/en
Publication of JPS60244821A publication Critical patent/JPS60244821A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To automate control over dust coal by picking up an image of flames of flames of the dust coal through an image pickup camera and calculating the shape and brightness of a volatile component combustion area from the difference in brightness distribution between an oxidation area and a reduction area. CONSTITUTION:The brightness distribution 1A of the oxidation area 1 at constant distance from the center line B-B' of flames is measured along a line A-A'. There is the volatile component combustion area 2 present near a burner opening part, so the brightness distribution 1A is the sum of the brightness of the oxidation area and the brightness of the volatile component combustion area. Then, a brightness distribution 1B on a center line B-B' is measured to obtain the brightness distribution of the reduction area 3. Then, the brightness distribution of only an oxidation area near the burner opening part is estimated from the brightness distribution 1B. Then, the difference between the brightness distribution 1A and estimated brightness distribution is calculated to obtain the brightness distribution of only the volatile component combustion area 2.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、微粉炭燃焼プロセスの火炎画像を撮像カメラ
でとらえ燃焼状態の診断に必要な火炎構造中の特徴量を
抽出する火炎画像処理方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a flame image processing method that captures a flame image of a pulverized coal combustion process with an imaging camera and extracts feature quantities in the flame structure necessary for diagnosing the combustion state. .

〔発明の背景〕[Background of the invention]

従来、火炉内の火炎画像を撮像カメラでとらえ燃焼状態
を診断する技術はなく、運転員がのぞき窓から肉眼で燃
焼状態をとらえ、運転員の経験で燃焼状態を把握、監視
を行ってきた。しかし、この方法では、燃焼状態の常時
監視ができない他、燃焼状態の診断を運転員の経験にゆ
だねるため、高効率燃焼、或いは低NOX燃焼における
制御の自動化が実現できないという問題があった。
Until now, there was no technology for diagnosing the combustion state by capturing images of the flame inside the furnace with an imaging camera. Instead, operators had to observe the combustion state with their naked eyes through a peephole, and used their experience to understand and monitor the combustion state. However, with this method, the combustion state cannot be constantly monitored, and the diagnosis of the combustion state is left to the operator's experience, so there is a problem that automation of control for high efficiency combustion or low NOx combustion cannot be realized.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、撮像カメラでとらえた微粉炭燃焼にお
ける火炎画像から、燃焼診断に必要な火炎の特徴量とし
て揮発分燃焼領域の形状・輝・度を′抽出する火炎画像
処理方法を提供することにある。
An object of the present invention is to provide a flame image processing method for extracting the shape, brightness, and intensity of a volatile combustion region as flame feature values necessary for combustion diagnosis from a flame image of pulverized coal combustion captured by an imaging camera. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明は火炉内の火炎の画像処理において、バーナ開口
部近傍の火炎を透隙し、中心線と並行な線上のバーナ開
口部からの距離に対する第1の輝度分布曲線を抽出し、
該バーナの開口部径の少なくとも2倍以上離れた部分の
輝度分布が、酸化領域輝度と還元領域輝度との和で表わ
されることを利用して火炎の根元部における酸化と還元
燃焼による第2の輝度分布曲線を推定し、該第1と第2
の輝度分布曲線における輝度の差が揮発分燃焼による輝
度であると推定することに特徴がある。
In image processing of a flame in a furnace, the present invention extracts a first brightness distribution curve with respect to distance from the burner opening on a line parallel to the center line by passing through the flame near the burner opening,
By utilizing the fact that the brightness distribution in a portion separated by at least twice the diameter of the burner opening is expressed by the sum of the brightness in the oxidized region and the brightness in the reduced region, the second Estimating the brightness distribution curve, the first and second
It is characterized by estimating that the difference in brightness in the brightness distribution curve is the brightness due to volatile matter combustion.

〔発明の実施例〕[Embodiments of the invention]

はじめに本発明の基礎的事項について述べる。 First, the basic matters of the present invention will be described.

本発明は、微粉炭燃焼で、特に低NOX・高効率燃焼を
目的とした微粉炭燃焼方式における火炎構造に着目した
。即ち、微粉炭燃焼は、乾留ガス(揮発分)とコークス
(固形炭素)に分離して着火・燃焼され、その火炎構造
は第1図(a)に示される。第1図(a)〜(C)をも
とに微粉炭燃焼プロセスを説明する。
The present invention focuses on the flame structure of pulverized coal combustion, particularly in a pulverized coal combustion method aiming at low NOx and high efficiency combustion. That is, in pulverized coal combustion, carbonized gas (volatile matter) and coke (solid carbon) are separated and ignited and burned, and the flame structure is shown in FIG. 1(a). The pulverized coal combustion process will be explained based on FIGS. 1(a) to (C).

第1図(a)は火炎の構造例を示し、1は酸化領域を、
2は揮発分燃焼領域を、3は還元領域を示している。
Figure 1(a) shows an example of the structure of a flame, where 1 indicates the oxidized region,
2 indicates the volatile matter combustion region, and 3 indicates the reduction region.

次に燃焼プロセスについて簡単に説明する。第1図(a
)において、 ■ −次空気と混合してバーナより炉内に噴出された微
粉炭は、高温の炉壁および火炎からの放射熱を受けて急
速に加熱され、微粉炭粒の一部が亀裂崩壊してさらに微
細粒と々る。同時に、揮発分が乾留されて、微粉炭粒の
約500倍もの容積の乾留ガスを急激放出する。
Next, the combustion process will be briefly explained. Figure 1 (a
), the pulverized coal that is mixed with air and ejected into the furnace from the burner is rapidly heated by the radiant heat from the high-temperature furnace wall and flame, causing some of the pulverized coal grains to crack and collapse. Then, the particles become even finer. At the same time, the volatile matter is carbonized and carbonized gas with a volume approximately 500 times that of the pulverized coal grains is rapidly released.

■ 乾留ガスが乾留ガスを放出した残りのコークス状の
オキ周辺を取巻く粒子間に介在する空気と反応し、拡散
燃焼する(揮発分燃焼領域を形成)。
■ The carbonized gas reacts with the air that is present between the particles surrounding the coke-like wood that has released the carbonized gas, resulting in diffuse combustion (forming a volatile combustion region).

■ 脱殻になったコークス粒は、軽石状になり浮力が大
きくなって固形炭素が表面燃焼する(還元・酸化領域を
形成)。
■ The dehulled coke grains become pumice-like and become more buoyant, causing solid carbon to burn on the surface (forming a reduction/oxidation region).

火炎構造は、外炎に酸素過剰の状態で揮発分と固形分が
燃焼する酸化領域1、酸化領域の中でも、バーナ近傍に
は燃焼速度の速い揮発分の燃焼より成る揮発分燃焼領域
2が形成され、内炎には酸素不足の状態で固形分の燃焼
より成る還元領域3が構成される。
The flame structure consists of an oxidation region 1 in which volatile matter and solid matter are burned in a state of excess oxygen in the outer flame, and a volatile matter combustion region 2 formed near the burner where volatile matter is burned at a high combustion rate. The inner flame is configured with a reduction region 3 consisting of combustion of solids in an oxygen-deficient state.

第1図(b)は、火炎中の還元領域と酸化領域における
バーナからの距離に対する輝度分布を示し、3還元領域
の輝度分布(B−B’ )は、固形分の燃焼輝度を示す
のに対し、1酸化領域の輝度分布(A−A’ )は、固
形分の燃焼輝度4と揮発分の燃焼輝度5が加算された輝
度分布を示す。揮発分の燃焼領域がバーナからの距離X
/D=0〜1、の区間に形成されていることは、第1図
(C)からも実証される。但しDはバーナ開口径を示す
Figure 1(b) shows the brightness distribution with respect to the distance from the burner in the reduction region and oxidation region in the flame, and the brightness distribution (B-B') in the three reduction regions shows the combustion brightness of solids. On the other hand, the brightness distribution (A-A') in one oxidation region shows a brightness distribution in which the solid content combustion brightness 4 and the volatile content combustion brightness 5 are added. The combustion area of volatile matter is the distance from the burner
It is also demonstrated from FIG. 1(C) that it is formed in the range /D=0 to 1. However, D indicates the burner opening diameter.

第1図(b)でIAは第1図(a)酸化領域(A−A’
)における輝度分布を、IBは第1図(a)における還
元領域における輝度分布を、4は固形分の、すなわち酸
化領域中の固形分の占める輝度分布を、5は揮発分によ
る輝度分布を示している。横軸はバーナ先端部からの距
離であるが、バーナ開口部径で正規化しX/Dで示して
いる。
In Fig. 1(b), IA is the oxidized region (A-A') in Fig. 1(a).
), IB is the brightness distribution in the reduced region in Fig. 1(a), 4 is the brightness distribution occupied by the solid content, that is, the solid content in the oxidized region, and 5 is the brightness distribution due to the volatile matter. ing. The horizontal axis is the distance from the burner tip, which is normalized by the burner opening diameter and shown as X/D.

第1図(C)は酸化領域(A−A’)における生成ガス
分布を示している。
FIG. 1(C) shows the generated gas distribution in the oxidation region (A-A').

バーナからの距離X/D=O〜1、の区間で二酸化炭素
(Cow )は急激に増大し、酸素(02)は急激に減
少している。これは、揮発分の燃焼速度が固形分の燃焼
速度に比較して速いことからこの区間で揮発分の燃焼が
おこなわれていることを示している。X/D<1.0で
は揮発分燃焼領域を、X/D)1.0では酸化領棹を示
している。
Carbon dioxide (Cow) rapidly increases and oxygen (02) rapidly decreases in the distance X/D=O~1 from the burner. This indicates that volatile matter is being burned in this section because the burning rate of volatile matter is faster than that of solid matter. X/D<1.0 indicates a volatile combustion region, and X/D) 1.0 indicates an oxidation region.

以上より、火炎の輝度分布を観測し、観測された輝度分
布を固形分の燃焼輝度と揮発分の燃焼輝度に分離する、
つまり、固形分の燃焼輝度に対する相対輝度に変換する
輝度変換を用いて、火炎中の揮発分燃焼領域の形状・輝
度を抽出することができる。
From the above, the brightness distribution of the flame is observed, and the observed brightness distribution is separated into the combustion brightness of solid content and the combustion brightness of volatile matter.
In other words, the shape and brightness of the volatile matter combustion region in the flame can be extracted using brightness conversion that converts the solid content combustion brightness into relative brightness.

輝度変換の基準となる固形分の輝度分布は、還元領域で
は観測される輝度分布がそのまま固形分の輝度分布に等
しい、しかし、酸化領域・揮発分燃焼領域では観測され
る輝度分布には揮発分の燃焼輝度を含むため、次に示す
方法で固形分の燃焼゛輝度を推定する。
The brightness distribution of solid content, which is the basis for brightness conversion, is that the brightness distribution observed in the reduction region is directly equal to the brightness distribution of solid content, but in the oxidation region and volatile matter combustion region, the brightness distribution observed does not include volatile matter The combustion brightness of the solid content is estimated using the method shown below.

第1の方法は、固形分の輝度分布を火炎中心線上の輝度
分布で近似する。火炎領域で処理の対象となるのは、揮
発分燃焼領域を含むバーナからの距離がX/D=O〜2
位の区間であり、この区間内では固形分の燃焼速度は揮
発分に比較して遅いため、揮発分の燃焼が支配的となり
、酸化領域・揮発分燃焼領域の固形分燃焼輝度を火炎中
心線上の輝度分布で近似しても大差ない。
The first method approximates the brightness distribution of the solid content by the brightness distribution on the flame center line. The flame area to be treated is the distance from the burner including the volatile combustion area: X/D=O~2
In this area, the combustion rate of solids is slower than that of volatiles, so the combustion of volatiles becomes dominant, and the brightness of solids combustion in the oxidation region and volatile combustion region rises above the flame center line. There is not much difference even if it is approximated by the brightness distribution of .

第2の方法は、揮発分燃焼領域の抽出精度を向上させる
ため、火炎中心線上の輝度分布に補正演算を施し、固形
分の輝度分布として用いる。火炎中心線上の輝度分布を
Ro(x)とすると、中心線から距離yにおける固形分
の輝度分布R,(x、y)を次式で近似する。
In the second method, in order to improve the accuracy of extraction of the volatile matter combustion region, a correction calculation is performed on the brightness distribution on the flame center line, and the result is used as the brightness distribution of the solid content. When the brightness distribution on the flame center line is Ro(x), the brightness distribution R, (x, y) of the solid content at a distance y from the center line is approximated by the following equation.

肌(x、 y)=K(y)XRo←) ・・・・・・(
1)ここに、K(y) :補正係数、 但し、火炎中心では、K(o)=1.0.R1(x、o
)=&1(X)補正係数K (y)の設定方法としては
、色々考えられるが、その−例を次に示す。
Skin (x, y)=K(y)XRo←) ・・・・・・(
1) Here, K(y): Correction coefficient. However, at the flame center, K(o)=1.0. R1(x, o
)=&1(X) There are many possible ways to set the correction coefficient K (y), examples of which are shown below.

゛第2図に本発明の一実施例を示す。6は微粉炭燃焼用
ボイラ火炉、7は微粉炭燃焼用バーナ、8はイメージ・
ファイバ、9は撮像カメラ、10は火炎画像入力装置、
11はA/D変換器、12はメモリ、13は火炎画像処
理装置、14は燃焼状態診断装置、15はCRTディス
プレイ装置である。微粉炭燃焼用ボイラ火炉6内で、微
粉炭燃焼用バーナ7により微粉炭を燃焼した時の火炎を
、耐火性をもたせ火炉内に設置されたイメージ−ファイ
バ8でとらえ、撮像カメラ9で電気信号に変換される。
゛An embodiment of the present invention is shown in Fig. 2. 6 is a boiler furnace for pulverized coal combustion, 7 is a burner for pulverized coal combustion, 8 is an image
9 is an imaging camera, 10 is a flame image input device,
11 is an A/D converter, 12 is a memory, 13 is a flame image processing device, 14 is a combustion state diagnosis device, and 15 is a CRT display device. The flame produced when pulverized coal is burned by a pulverized coal combustion burner 7 in a pulverized coal combustion boiler furnace 6 is captured by an image fiber 8 installed in the furnace with fire resistance, and an electrical signal is transmitted by an imaging camera 9. is converted to

電気信号に変換された火炎画像データは、画像入力装置
10に取り込まれ、A/D変換器11でA/D変換され
た後メモリ12に記憶される。メモリに記憶された火炎
画像データは、火炎画像処理装置13に取り込まれ、以
下に述べる処理を実行、処理結果は燃焼診断装置14に
送られ燃焼状態を診断し、火炎状態をCRTディスプレ
イ15に表示する。
The flame image data converted into electrical signals is taken into the image input device 10, subjected to A/D conversion by the A/D converter 11, and then stored in the memory 12. The flame image data stored in the memory is taken into the flame image processing device 13, which executes the processing described below, and the processing results are sent to the combustion diagnosis device 14, which diagnoses the combustion state and displays the flame state on the CRT display 15. do.

次に本発明である火炎画像処理装置の処理内容について
述べる。
Next, the processing contents of the flame image processing apparatus according to the present invention will be described.

微粉炭燃焼時の火炎画像をイメージ・ファイバでとらえ
、撮像カメラで電気信号に変え映像化すると第3図(a
)が得られる(火炎画像入力装置メモリに記憶される)
。同図(a)は、イメージ・ファイバでとらえた全画面
の画像データを示しており、この画像データより目的と
するバーナ近傍(図(a)の黒ワク部分)の画像データ
を取り出し火炎画像処理装置に取込む(切出し処理)、
切出し処理の目的は、前記(1)式が近似的に成立する
範囲に画像データを制限すること、他のバーナ部の影響
を取除くこと、画像処理装置での処理における演算時間
とメモリ容量の関係から決まるデータサイズに縮少する
ことである。切出し処理された画像データを同図(b)
に示す。次に、切出し処理された画像データに対し、後
の処理を容易にするため、及び画像データをCRTディ
スプレイ等に表示した場合の画像の認識を容易にするた
め、画像データを回転させる。回転させる方法としては
、色々考えられるが、その1例を以下に示す。つまり、
画像データに次の1次変換(アフィン変換)を施す。
When the flame image during pulverized coal combustion is captured with an image fiber and converted into an electrical signal using an imaging camera and visualized, the result shown in Figure 3 (a) is
) is obtained (stored in the flame image input device memory)
. Figure (a) shows the image data of the entire screen captured by the image fiber, and from this image data, the image data near the target burner (black area in Figure (a)) is extracted and flame image processing is performed. Input into the device (cutting process),
The purpose of the extraction processing is to limit the image data to a range where the above equation (1) approximately holds true, to remove the influence of other burner parts, and to reduce the calculation time and memory capacity of the processing in the image processing device. It is to reduce the data size to a value determined by the relationship. The extracted image data is shown in the same figure (b).
Shown below. Next, the extracted image data is rotated in order to facilitate subsequent processing and to facilitate image recognition when the image data is displayed on a CRT display or the like. There are many possible ways to rotate, one example of which is shown below. In other words,
The following linear transformation (affine transformation) is applied to the image data.

第3図(b)の画像データに回転処理を行った結果を同
図(C)に示す。又、回転後の画像データの輝度分布を
同図(d)に示す。輝度は、右方向に、バーナから離れ
る程高くなる。(d′)は(d)のC−C’、D−D’
断面の輝度分布を示している。次に、画像データより火
炎部分とバーナ部・炉壁部を分離し、火炎領域を抽出す
る。この目的は、後の処理において、還元炎の輝度が火
炉炉壁部の輝度より低いと火炉炉壁部を火炎と誤認し、
画像データ上ノイズとなって生じるのを防ぐためである
The result of rotation processing performed on the image data of FIG. 3(b) is shown in FIG. 3(C). Further, the brightness distribution of the image data after rotation is shown in FIG. 2(d). The brightness increases as you move to the right and away from the burner. (d') is C-C', D-D' of (d)
It shows the brightness distribution of the cross section. Next, the flame part and the burner part/furnace wall part are separated from the image data, and the flame region is extracted. The purpose of this is that in later processing, if the brightness of the reducing flame is lower than the brightness of the furnace wall, the furnace wall will be mistakenly recognized as a flame.
This is to prevent noise from occurring in the image data.

火炎領域分離の方法としては、ある輝度レベル以下の画
像データを輝度Oに置き換えるしきい値処理が簡単な方
法である。画像データIP(i、j)をしきい値tに関
して、各画素の輝度をとする。しきい値の設定方法とし
ては、バーナにおける燃焼量が一定、又は燃焼パターン
が固定されている場合は、画像データ輝度分布より一定
輝度レベル又は燃焼パターンに合せた輝度レベルのパタ
ーンに固定してよい。燃焼量の変動が太きい、或いは不
規則に変動する場合は、しきい値を固定することはむず
かしい。この場合、しきい値を次の方法で決定する。ま
ず、火炎領域の占める面積を設定、次に画像データより
各輝度レベルの頻度(面積に相当する)を計算、画像デ
ータ中の最大輝度より輝度レベル毎の頻度を加算し、そ
の加算結果がはじめに設定された面積(火炎領域の面積
)を超えた時点の輝度レベルをもって、しきい値とする
。この方法によると、しきい値が毎回適切な値に更新さ
れるため、バーナ燃焼量に左右されr適切な処理がおこ
なわれる。
A simple method for flame region separation is threshold processing in which image data below a certain brightness level is replaced with brightness O. Let the brightness of each pixel of image data IP(i,j) be expressed by a threshold value t. As a method for setting the threshold value, if the combustion amount in the burner is constant or the combustion pattern is fixed, it may be fixed to a constant brightness level from the image data brightness distribution or to a brightness level pattern that matches the combustion pattern. . When the combustion amount fluctuates widely or irregularly, it is difficult to fix the threshold value. In this case, the threshold value is determined by the following method. First, set the area occupied by the flame area, then calculate the frequency (corresponding to the area) of each brightness level from the image data, add the frequency of each brightness level from the maximum brightness in the image data, and the addition result is the first. The brightness level at the time when the set area (area of the flame region) is exceeded is taken as the threshold value. According to this method, since the threshold value is updated to an appropriate value every time, appropriate processing is performed depending on the burner combustion amount.

しきい値処理結果の画像データを第3図(e)に、その
輝度分布を同図(f)に示す。(f′ )は(f)のC
−C’ 、D−D’断面の輝度分布を示している。
The image data resulting from the threshold processing is shown in FIG. 3(e), and its luminance distribution is shown in FIG. 3(f). (f') is C of (f)
-C', shows the brightness distribution of the DD' cross section.

次に、しきい値処理された火炎画像データから酸化炎中
の揮発分燃焼領域の形状・輝度分布を抽出する。酸化炎
抽出法として、前記同様、あるしきい値でしきい値処理
したのでは、第3図(Dの輝度分布より明らかなように
、酸化炎領域串還元炎領域の両方共バーナから右方向へ
離れる程輝度が増大しているため、簡単に分離すること
はできない。そこで、第1図に示しだ様に、酸化領域に
おける燃焼は、微粉炭中の固形分と揮発分の燃焼であり
、火炎中心部の還元領域の燃焼は、固形分の燃焼でおる
ことに着目し、還元炎における輝度レベルを基準として
、火炎画像に変換処理すればよい。つまり、火炎領域に
おいて還元炎の輝度レベルからの相対輝度レベルに変換
する輝度変換を施すことにより、酸化炎における揮発分
燃焼領域を抽出することができる。
Next, the shape and brightness distribution of the volatile combustion region in the oxidation flame are extracted from the threshold-processed flame image data. As for the oxidation flame extraction method, if threshold processing is performed using a certain threshold as described above, as is clear from the brightness distribution in Fig. 3 (D), both the oxidation flame region and the reduction flame region are Since the brightness increases as the coal moves away from the coal, it cannot be easily separated. Therefore, as shown in Figure 1, the combustion in the oxidation region is the combustion of solid content and volatile content in the pulverized coal. Focusing on the fact that the combustion in the reduction region at the center of the flame is the combustion of solid matter, it is sufficient to perform conversion processing into a flame image using the brightness level of the reduction flame as a reference.In other words, the brightness level of the reduction flame in the flame region By applying brightness conversion to the relative brightness level of , the volatile combustion region in the oxidizing flame can be extracted.

具体的処理方法は、基準となる輝度つまり、還元炎の輝
度として還元炎中心の輝度分布(第3図(f)でc−c
’綾線上輝度分布)を基準として、Y軸方向にそのX座
標における基準輝度からの相対輝度に変換する。
The specific processing method is based on the standard brightness, that is, the brightness of the reducing flame, and the brightness distribution at the center of the reducing flame (c-c in Figure 3(f)).
``Brightness distribution on the twilight line'' is used as a reference, and the brightness is converted into relative brightness from the reference brightness at the X coordinate in the Y-axis direction.

R′″’(i、 j)JL(i、 j) Ro(i、j
) ・・・・・・(4)ここで、R(IT J) :変
換前の輝度R(i、 j) :変換後の輝度 R−(r *j)’基準輝度 ++J’それぞれ、XIY座標 又、基準輝度R−(++ j)は次式で与えられる。
R''''(i, j) JL(i, j) Ro(i, j
) ・・・・・・(4) Here, R(IT J): Luminance before conversion R(i, j): Luminance after conversion R-(r*j)'Reference luminance++J', respectively, XIY coordinates Further, the reference luminance R-(++j) is given by the following equation.

Ro(i、 j )=K (j )Xも(i) ・・・
・・・(5)ここで、K(j):補正係数 Ro(i):火炎中心線上の輝度 補正係数K(j)は、火炎中心線上からY軸方向におけ
る固形分の輝度分布を補正するもので、揮発分の燃焼が
終了し、固形分の燃焼のみから成゛る領域(画像データ
上でバーナから最も遠い最右端)の輝度をもとに次式で
計算する。
Ro(i, j)=K(j)X also(i)...
...(5) Here, K(j): Correction coefficient Ro(i): Brightness correction coefficient on the flame center line K(j) corrects the brightness distribution of solid content in the Y-axis direction from the flame center line The brightness is calculated using the following formula based on the brightness of the area (the rightmost end farthest from the burner on the image data) that consists only of solid matter after the combustion of volatile matter has finished.

ここで五□〇 :X座標の最大値 画像データ長として、バーナからの距離X/D==2近
辺を設定すれば、画像データの右端では、第1図(b)
に示される様に揮発分の影響はなく、固形分の燃焼輝度
のみから成す、(6)式で示される補正係数K(j)を
用いた補正を行うことにより、固形分の輝度分布を精度
良く近似できる、輝度変換により抽出された揮発分燃焼
領域の抽出結果を第3図(g)に、その輝度分布を同図
(h)に示す。(h′)は(h)におけるD−D’断面
上の輝度分布である。
Here, 5□〇: Maximum value of X coordinate If the image data length is set to around the distance X/D from the burner = 2, the right end of the image data will be as shown in Figure 1 (b).
As shown in (6), there is no effect of volatile content, and the brightness distribution of solid content can be corrected by using the correction coefficient K(j) shown in equation (6), which is composed only of the combustion brightness of solid content. FIG. 3(g) shows the extraction result of the volatile matter combustion region extracted by brightness conversion, which can be well approximated, and FIG. 3(h) shows its brightness distribution. (h') is the brightness distribution on the DD' cross section in (h).

このように、微粉炭燃焼が微粉炭中の固形分と揮発分の
燃焼より成り、酸化炎では固形分と揮発分、還元炎では
固形分の燃焼が行なわれていることに着目し、還元炎領
域での輝度レベルで火炎画像データを輝度変換すること
により、酸化炎中の′揮発分燃焼領域の形状・輝度を抽
出することができる。
In this way, we focused on the fact that pulverized coal combustion consists of the combustion of solids and volatiles in pulverized coal, and that oxidation flames burn solids and volatiles, and reduction flames burn solids. By converting the flame image data to the brightness level in the region, the shape and brightness of the volatile combustion region in the oxidizing flame can be extracted.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することにより、微粉炭燃焼時の燃焼状態
監視1診断、低NOX燃焼制御、高効率燃焼制御等に不
可欠な微粉炭燃焼火炎中の揮発分燃焼領域の形状・輝度
を抽出することができる。
By implementing the present invention, it is possible to extract the shape and brightness of the volatile combustion region in a pulverized coal combustion flame, which is essential for combustion state monitoring 1 diagnosis during pulverized coal combustion, low NOx combustion control, high efficiency combustion control, etc. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の適用対象となる微粉炭燃焼火炎の構
造図を示す。第2図は、本発明の一実施例を示す。第3
図は、本発明である火炎画像処理装置の処理過程におけ
る火炎画像データとその輝度分布を示す。 6・・・微粉炭燃焼用ボイラ火炉、7・・・微粉炭燃焼
用バーナ、8・・・イメージファイバ、9・・・撮像カ
メラ、10・・・火炎画像入力装置、11・・・A/D
変換器、12・・・メモリ、13・・・火炎画像処理装
置、14・・・燃焼状態診断装置、15・・・CRTデ
ィスプレイ装置。 Y I 図 (久) 第 2 図 イ
FIG. 1 shows a structural diagram of a pulverized coal combustion flame to which the present invention is applied. FIG. 2 shows an embodiment of the invention. Third
The figure shows flame image data and its brightness distribution in the processing process of the flame image processing device according to the present invention. 6... Boiler furnace for pulverized coal combustion, 7... Burner for pulverized coal combustion, 8... Image fiber, 9... Imaging camera, 10... Flame image input device, 11... A/ D
Converter, 12... Memory, 13... Flame image processing device, 14... Combustion state diagnosis device, 15... CRT display device. Y I Figure (Kyu) Figure 2 I

Claims (1)

【特許請求の範囲】 1、微粉炭を燃料として燃焼をおこなう火炉内の火炎の
画像処理方法において、 該火炉内のバーナ開口部近傍の火炎を撮像カメラで撮像
し、 該バーナからの燃料噴射方向の中心線から直角方向に特
定の距離だけ離れだ該中心線と平行な線上のバーナ開口
部からの距離に対する第1の輝度分布曲線を該撮像され
た火炎データから抽出し、該バーナ開口部径の少なくと
も2倍以上離れた部分の輝度分布が該火炎中の酸化領域
輝度と還元領域輝度との和で表わされるξとを利用して
該火炎の根元部における酸化と還元燃焼による第2の輝
度分布曲線を推定し、 該火炎根元部における該第1の輝度分布曲線の値と該第
2の輝度分布曲線との差が揮発分燃焼による輝度である
と推定し、 該撮像データから揮発分による燃焼領域を抽出すること
を特徴とする火炎画像処理方法。
[Claims] 1. An image processing method for flame in a furnace that performs combustion using pulverized coal as fuel, which comprises: capturing an image of the flame in the vicinity of a burner opening in the furnace with an imaging camera; and determining the direction of fuel injection from the burner. A first brightness distribution curve with respect to the distance from the burner opening on a line parallel to the center line that is perpendicular to the center line is extracted from the imaged flame data, and the diameter of the burner opening is determined. The second brightness due to oxidation and reductive combustion at the base of the flame is calculated using estimating a distribution curve, estimating that the difference between the first brightness distribution curve and the second brightness distribution curve at the flame root is the brightness due to volatile matter combustion, and determining the brightness due to volatile matter combustion from the imaging data. A flame image processing method characterized by extracting a combustion region.
JP59100537A 1984-05-21 1984-05-21 Processing method of fire image Pending JPS60244821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100537A JPS60244821A (en) 1984-05-21 1984-05-21 Processing method of fire image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100537A JPS60244821A (en) 1984-05-21 1984-05-21 Processing method of fire image

Publications (1)

Publication Number Publication Date
JPS60244821A true JPS60244821A (en) 1985-12-04

Family

ID=14276699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100537A Pending JPS60244821A (en) 1984-05-21 1984-05-21 Processing method of fire image

Country Status (1)

Country Link
JP (1) JPS60244821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179815A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Boiler combustion status monitoring device
CN100387903C (en) * 2006-02-21 2008-05-14 西安热工研究院有限公司 Detection distance determining method for flame detector of coal powder fired boiler burner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179815A (en) * 1988-01-06 1989-07-17 Hitachi Ltd Boiler combustion status monitoring device
CN100387903C (en) * 2006-02-21 2008-05-14 西安热工研究院有限公司 Detection distance determining method for flame detector of coal powder fired boiler burner

Similar Documents

Publication Publication Date Title
JP3160273B2 (en) System and method for minimizing slag carryover during steel production
AT509866B1 (en) METHOD FOR DETERMINING THE TIME OF IGNITION IN THE INFLATION METHOD
JPH06220789A (en) Method and apparatus for monitoring and controlling black liquor recovery oven
CN1877249A (en) Laser detection apparatus and method for in-furnace information
JP6164173B2 (en) Converter discharge flow determination device, converter discharge flow determination method, hot metal pretreatment method, and converter pretreatment operation method
CN106755683A (en) A kind of blast-furnace roasting band temperature field detection device based on colorimetric method
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
AT400714B (en) METHOD AND DEVICE FOR CERAMIC WELDING
JPS60244821A (en) Processing method of fire image
TWI231352B (en) Method and device for characterizing or controlling zones of temporal fluctuations of a scene
JP4845451B2 (en) Method and apparatus for detecting combustion region in combustion furnace
JP2000249670A (en) Displacement-measuring device at hot temperature
JP2019196845A (en) Method for observing combustion field, observing device and observing program
JP4873788B2 (en) Detection method of furnace conditions
JPS5855512A (en) Method for judging condition of blast furnace
JP5956935B2 (en) Image processing method and image processing apparatus
JP3133387B2 (en) Flame calorific value measuring device using image processing
JP2021039065A (en) Temperature distribution measurement method and measuring device
JP2021038871A (en) Method of observing combustion field, observation device, and observation program
JP2905026B2 (en) Converter ignition detection method
JP7104653B2 (en) How to operate the combustion equipment
JP2753839B2 (en) Method for monitoring and controlling combustion state
JPS599429A (en) Flame form inspecting method
JPH059693B2 (en)
JP2022144010A (en) Method, device and program for evaluating tuyere landscape of blast furnace