JPH059693B2 - - Google Patents

Info

Publication number
JPH059693B2
JPH059693B2 JP58200996A JP20099683A JPH059693B2 JP H059693 B2 JPH059693 B2 JP H059693B2 JP 58200996 A JP58200996 A JP 58200996A JP 20099683 A JP20099683 A JP 20099683A JP H059693 B2 JPH059693 B2 JP H059693B2
Authority
JP
Japan
Prior art keywords
flame
region
image
reducing
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58200996A
Other languages
Japanese (ja)
Other versions
JPS6093231A (en
Inventor
Mitsuyo Nishikawa
Nobuo Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58200996A priority Critical patent/JPS6093231A/en
Publication of JPS6093231A publication Critical patent/JPS6093231A/en
Publication of JPH059693B2 publication Critical patent/JPH059693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/18Flame sensor cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はボイラの燃焼状態を診断する方法に係
り、特に石炭を燃料とした時のNOx(ちつ素酸化
物)の発生量の予測及びその低減を目的とした燃
焼状態診断方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for diagnosing the combustion state of a boiler, and in particular to a method for predicting the amount of NO x (nitrogen oxide) generated when coal is used as fuel. The present invention relates to a method for diagnosing combustion conditions aimed at reducing the amount of combustion.

〔発明の背景〕[Background of the invention]

ボイラ、特に石炭を燃料としたボイラでは、
NOxの発生量を極力低減する必要があり、この
NOxの発生量は燃焼状態と密接に関連している。
このため、ボイラの燃焼状態の監視、診断が行わ
れるが、従来のボイラ炉内の火炎から燃焼状態を
知るための方法としては、バーナ・ノズルの対向
壁面に取り付けられた覗き窓をITVカメラを用
いて監視する方法、及び炉壁に取り付けられてい
る覗き窓から点検する方法、伝熱管の温度管理な
どがある。しかしボイラ運転中の燃焼状態の監視
については、従来から定量化された基準値という
ものが無かつたため、これらの方法は、運転員が
目視し経験と勘を頼りに判断することから、塾練
を必要とすると共に運転員にとつて負担になつて
いた。特に、ITVカメラによる燃焼状態の監視
では、炉壁の覗き窓に取り付けられたITVカメ
ラを用いて対向壁のバーナ・ノズルを映して監視
するため、定格運転に近くなると火炎が渦巻いた
状態となり、燃焼状態を的確に判断することが非
常に難しく、特別に熟練した運転員の経験と勘に
頼らざるを得なかつた。また、自動監視装置とし
ては、フレーム・デテクタによるバーナ点火・消
火の判定装置が火炉保護のために使用されている
が、これでは燃焼状態を知ることはできない。
Boilers, especially coal-fired boilers,
It is necessary to reduce the amount of NO x generated as much as possible, and this
The amount of NO x generated is closely related to combustion conditions.
For this reason, the combustion status of the boiler is monitored and diagnosed, but the conventional method for determining the combustion status from the flame inside the boiler furnace is to use an ITV camera to monitor the viewing window attached to the wall facing the burner nozzle. There are two methods: monitoring through a viewing window attached to the furnace wall, and controlling the temperature of heat exchanger tubes. However, since there has been no quantified standard value for monitoring combustion conditions during boiler operation, these methods require operators to visually observe and make judgments based on experience and intuition. This required a lot of effort and was a burden to the operator. In particular, when monitoring the combustion status using an ITV camera, the ITV camera attached to the viewing window on the furnace wall is used to monitor the burner nozzle on the opposite wall, so when the rated operation is approached, the flame becomes swirling. It was extremely difficult to accurately judge the combustion state, and it was necessary to rely on the experience and intuition of specially skilled operators. Furthermore, as an automatic monitoring device, a burner ignition/extinguishing determination device using a flame detector is used to protect the furnace, but this does not allow the combustion state to be known.

一方、物体像抽出の典型的な方法として、光の
波長領域別のフイルタを数種類用いて波長領域毎
の写真をとり、そのフイルムをサンプリング及び
量子化して計算機に取り入れ、特定物体のスペク
トル組成の特徴を利用してソフトウエアにより特
定物体の抽出、認識を行う方法がある。或いは上
記の過程をアナログ技術を用いて行う方法もあ
る。しかし、このような従来方法では、特定物体
をそのスペクトル分布の形状だけにより認識する
ため、同じスペクトル分布を持つ他の雑音物があ
るとこれも検出してしまうという問題がある。こ
の問題点を除去する方法としては、数枚のスペク
トル成分間で積極的にアナログ演算を行うことに
より、雑音成分をできるだけ含まないようにして
特定物体を抽出する特定物体抽出装置があり、こ
の方法は物体に光あるいは他の放射線をあてて形
状を抽出する場合には非常に有効なものとなり得
る。しかし、燃焼状中の火炎を形状抽出、特徴抽
出する場合、輻射される波長帯は光の波長だけで
はなく、また火炎には熱的な発光スペクトル分布
と、燃料に含有されていたり燃焼によつて生じる
化学成分が発光して生じるスペクトル分布があ
り、特にこの化学成分による発光が見られる還元
領域の大小がNOx発生量が大きく影響する。し
かもこの還元領域の輝度と熱的発光スペクトルを
主とする酸化領域の輝度が後述のように近い値に
なることがあるため、従来の特定物体抽出装置で
は、上記のような火炎の性質によつてその状態の
検出は困難である。
On the other hand, as a typical method for extracting object images, several types of filters for different wavelength regions of light are used to take photographs for each wavelength region, and the films are sampled, quantized, and input into a computer to determine the characteristics of the spectral composition of a specific object. There is a method that uses software to extract and recognize specific objects. Alternatively, there is also a method of performing the above process using analog technology. However, in such conventional methods, since a specific object is recognized only by the shape of its spectral distribution, there is a problem that if there is another noise object having the same spectral distribution, this will also be detected. As a method to eliminate this problem, there is a specific object extraction device that extracts a specific object while minimizing noise components by proactively performing analog calculations between several spectral components. can be very useful when extracting shapes by shining light or other radiation onto objects. However, when extracting the shape and features of a flame in a combustion state, the radiated wavelength band is not only the wavelength of light, but also the thermal emission spectrum distribution and There is a spectral distribution that is generated by the chemical components that emit light, and in particular, the size of the reduction region in which light emission from these chemical components can be seen is greatly influenced by the amount of NO x generated. Moreover, because the brightness of this reduced region and the brightness of the oxidized region, which is mainly composed of thermal emission spectra, can be close to each other as described below, conventional specific object extraction devices are However, it is difficult to detect this condition.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、NOxの発生量を精度良く推
定することのできる燃焼状態診断方法を提供する
ことにある。
An object of the present invention is to provide a combustion state diagnosis method that can accurately estimate the amount of NO x generated.

〔発明の概要〕[Summary of the invention]

上記目的は、石炭の燃焼による火炎の発光を撮
像することにより火炎画像を計測し燃焼状態を監
視する診断方法において、前記石炭が熱分解して
生成される還元剤の発する波長帯で火炎画像を撮
像し、前記火炎画像の輝度をそのレベルによつて
定まる制限値を用いて酸化炎領域と還元炎領域と
に分け、得られた前記還元炎領域からNOxと相
関がある指標を求めて燃焼状態を診断すること
で、達成される。
The above purpose is to obtain a flame image in a wavelength band emitted by a reducing agent produced by thermal decomposition of coal in a diagnostic method that measures the flame image and monitors the combustion state by imaging the emission of flame due to the combustion of coal. The brightness of the flame image is divided into an oxidizing flame region and a reducing flame region using a limit value determined by the level, and an index correlated with NO x is determined from the obtained reducing flame region and combustion is performed. This is achieved by diagnosing the condition.

石炭燃焼時に生成されるNOxの量は、石炭の
熱分解により生成された還元剤による発光が見ら
れる還元炎領域の大きさ、形状等との相関が大き
い。そこで、本発明では、前記還元剤による発光
領域つまり還元炎領域を求めるに当たり、還元剤
の発光波長帯で火炎画像を撮像し、得られた火炎
画像を制限値を用いて酸化炎領域と還元炎領域と
に別けている。このため、得られた還元炎領域の
大きさ、形状等のNOx発生量と高い相関関係を
有し、この還元炎領域の大きさ、形状等から精度
良くNOx発生量を推定することが可能になる。
The amount of NO x produced during coal combustion has a strong correlation with the size, shape, etc. of the reducing flame region where light is emitted by the reducing agent produced by thermal decomposition of coal. Therefore, in the present invention, in order to determine the light emitting region due to the reducing agent, that is, the reducing flame region, a flame image is captured in the light emission wavelength band of the reducing agent, and the obtained flame image is divided into the oxidizing flame region and the reducing flame region using a limit value. It is divided into areas. Therefore, the size, shape, etc. of the obtained reducing flame region have a high correlation with the amount of NOx generated, and it is possible to estimate the amount of NOx generated with high accuracy from the size, shape, etc. of this reducing flame region. Become.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。同図に於て
ボイラ火炉1(上部から見た図)内のバーナ2か
らの燃料が火炎3を形成している。冷却装置4で
保護されたイメージフアイバ5によりとらえられ
た火炎3からの放射光のうち、帯域通過フイルタ
6を用いて特定の1波長帯λの発光7が撮像装置
8で受像される。撮像装置8で電気信号(アナロ
グ信号)に変換された画像信号9はA/D変換装
置10でデジタル信号11に変換され画像記憶装
置12に記憶される。記憶された画像データ11
は電子計算機13に取り込まれ、監視・診断処理
の結果14が出力される。
An embodiment of the present invention is shown in FIG. In the figure, fuel from a burner 2 in a boiler furnace 1 (viewed from the top) forms a flame 3. Among the emitted light from the flame 3 captured by the image fiber 5 protected by the cooling device 4, the emitted light 7 in a specific wavelength band λ is imaged by the imaging device 8 using the bandpass filter 6. An image signal 9 converted into an electric signal (analog signal) by the imaging device 8 is converted into a digital signal 11 by an A/D conversion device 10 and stored in an image storage device 12. Stored image data 11
is taken into an electronic computer 13, and a result 14 of monitoring/diagnosis processing is output.

第2図にイメージ・フアイバ5でとらえた火炎
3のA/D変換結果を示す。第2図の火炎3にお
いて、発光輝度が高い部分には酸化炎(完全燃焼
領域)、燃料が熱により化学成分に分解されNOx
に対する還元剤が生成される部分には還元炎(熱
分解領域)が形成される。このような火炎におい
ては、還元炎で生成される還元剤が、酸化炎で生
成されるNOxを他の化学成分に還元するものと
考えられる。この事から還元剤生成の多少が
NOx濃度に大きく依存し、その生成量を知る事
はNOx濃度低減に大きな意味を持つ。しかし、
特定の波長帯λでとらえられた第2図の火炎3
は、第3図に示すようなスペクトルを有してい
る。即ち火炎の熱的な発光スペクトルS1(酸化炎)
及びS2(還元炎)は、一般に波長が長くなるに従
つて大きくなる傾向にあるが、酸化炎は完全燃焼
しており輝度、温度とも還元炎に比べると高くな
る。一方、化学成分の発光スペクトルS3は還元炎
の領域でその熱的発光スペクトルS2上に重つて輝
線スペクトルとして現れる。そこで領域通過フイ
ルタ6の通過領域λがこの化学成分による発光ス
ペクトルS3を含む場合には、還元炎の領域ではス
ペクトルS2とS3のレベルの和が酸化炎領域のスペ
クトルS1のレベルに近い値になる可能性があり、
このため輝度レベルによる領域の分離には工夫を
要する。
FIG. 2 shows the A/D conversion results of the flame 3 captured by the image fiber 5. In flame 3 in Figure 2, the part with high luminance is an oxidation flame (complete combustion region), and the fuel is decomposed into chemical components by heat and NO x
A reducing flame (thermal decomposition region) is formed in the area where the reducing agent is generated. In such a flame, the reducing agent produced in the reducing flame is thought to reduce NO x produced in the oxidizing flame to other chemical components. This shows that the amount of reducing agent produced is
It is highly dependent on the NO x concentration, and knowing the amount produced has great significance in reducing the NO x concentration. but,
Flame 3 in Figure 2 captured in a specific wavelength band λ
has a spectrum as shown in FIG. That is, the thermal emission spectrum of the flame S 1 (oxidation flame)
and S 2 (reducing flame) generally tend to increase as the wavelength becomes longer, but oxidizing flame burns completely and has higher brightness and temperature than reducing flame. On the other hand, the emission spectrum S 3 of the chemical component appears as a bright line spectrum superimposed on its thermal emission spectrum S 2 in the reduction flame region. Therefore, if the pass region λ of the region pass filter 6 includes the emission spectrum S 3 due to this chemical component, the sum of the levels of spectra S 2 and S 3 in the reducing flame region will be the same as the level of the spectrum S 1 in the oxidizing flame region. The values may be close,
For this reason, it is necessary to devise ways to separate regions based on brightness levels.

そこで今第4図に示した入力画像に対し、直線
lmに沿つた輝度レベルを例示すると第5図P1(点
線)に示すようになる。この曲線P1の中央のく
ぼみの部分は第4図の斜線で示した還元炎領域に
相当し、その両側が酸化炎領域に相当する。この
ためこの両領域を区別するように適当な上限制限
値C2を設定し、入力輝度レベルの中央部のレベ
ルC2より低い部分を還元炎領域、高い部分を酸
化炎領域とみなすことができるが、入力画像のレ
ベルP1の分布のままでは、この中央部のレベル
差が前述のように小さくなり、正確な領域の区別
が困難になる。また、ある程度以上の輝度レベル
を対象として抽出するために下限制限値C1を設
けてこのレベルC1以上だけを観測すればよいが、
そうすると曲線P1の場合にはレベルC1とC2との
間にある酸化炎の境界領域の幅L0が大きくなり、
どこまでを酸化炎領域と見なすかが不明確にな
る。本実施例ではこのような問題点を解決するた
めに、入力画像のスペクトルP1の輝度をX(i,
j)とした時(i,jは画像の座標)、境界のコ
ントラストの強調を行うために式(1)〜(3)のような
演算処理を行う。
Therefore, for the input image shown in Figure 4, a straight line
An example of the luminance level along lm is shown in FIG. 5 P 1 (dotted line). The concave part at the center of this curve P1 corresponds to the reducing flame region indicated by diagonal lines in FIG. 4, and both sides thereof correspond to the oxidizing flame region. Therefore, an appropriate upper limit value C 2 can be set to distinguish between these two regions, and the part lower than the central input brightness level C 2 can be regarded as the reducing flame region, and the higher part can be regarded as the oxidizing flame region. However, if the level P1 distribution of the input image remains unchanged, the level difference in the center becomes small as described above, making it difficult to accurately distinguish between regions. Also, in order to extract luminance levels above a certain level, it is sufficient to set a lower limit value C 1 and observe only levels above this level C 1 .
Then, in the case of curve P 1 , the width L 0 of the boundary region of the oxidation flame between levels C 1 and C 2 increases,
It becomes unclear to what extent the oxidation flame region should be considered. In this embodiment, in order to solve such problems, the brightness of spectrum P 1 of the input image is changed to X(i,
j) (i, j are image coordinates), arithmetic processing such as equations (1) to (3) is performed to emphasize the contrast of the boundary.

X(i,j)={x(i,j)/m}n ………(1) X(i,j)={x(i,j)}n−M ………(2) X(i,j)={x(i,j)/m}n−M………(3) 但しX(i,j)は強調後の画像データ、nは
累乗値(>1)m、Mは濃度階調から定まる定数
である。例えば式(1)でm=C2とした時の境界強
調画像を第5図P0に示す。同図から明らかなよ
うに中央近辺の両領域のレベル差は拡大されてそ
の区別が容易になるとともに、酸化炎の境界巾が
図示のようにLと小さくなる。従つて直線lmを
第4図の図示の方向に移動させて上記のような処
理を行えば第4図に示すような境界強調画像が得
られる。更にこの画像に対して、制限値C1−C2
間の画像データだけを保存し、C2以上及びC1
下のデータを除去(0クリア)すると酸化炎の領
域は一定値となり、第6図に示すような画像が得
られる。しかしこのままではまだ酸化炎の境界線
の巾Lが残るから、これを除去するために例えば
メデイアン処理による雑音消去を用いればよい。
こうして抽出した画像をもとに還元炎領域の面
積、体積、位置、形状、方向などを計算機処理に
よつてしらべ、燃焼時の状態を監視し、NOx
生を低減する指標とすることができる。以上のよ
うな本発明の処理方法の概略フローチヤートは第
7A図に示されている。
X(i,j)={x(i,j)/m} n ………(1) X(i,j)={x(i,j)} n −M ………(2) X( i, j)={x(i, j)/m} n −M……(3) However, X(i, j) is the image data after emphasis, n is the power value (>1) m, and M is This is a constant determined from the density gradation. For example, a boundary enhanced image when m=C 2 in equation (1) is shown in FIG. 5 P 0 . As is clear from the figure, the level difference between the two regions near the center is enlarged, making it easier to distinguish between them, and the boundary width of the oxidizing flame becomes small to L as shown in the figure. Therefore, by moving the straight line lm in the direction shown in FIG. 4 and performing the above processing, a boundary-enhanced image as shown in FIG. 4 can be obtained. Furthermore, for this image, the limit value C 1 −C 2
If only the image data in between is saved and the data above C2 and below C1 is removed (cleared to 0), the oxidation flame area becomes a constant value, and an image as shown in FIG. 6 is obtained. However, if this continues, the width L of the boundary line of the oxidation flame will still remain, so in order to remove this width, for example, noise cancellation by median processing may be used.
Based on the images extracted in this way, the area, volume, position, shape, direction, etc. of the reduction flame region can be examined by computer processing, and the state during combustion can be monitored and used as an index for reducing NO x generation. . A schematic flowchart of the treatment method of the present invention as described above is shown in FIG. 7A.

なお、式(1)〜(3)で示した累積演算の代わりに、
第8図の曲線を用いてコントラストを強調するこ
とも可能である。第8図の曲線は、少なくとも次
に示す領域から成ることを特徴とする。但し同図
でNは階調のレベル数を表わす。
Note that instead of the cumulative operation shown in equations (1) to (3),
It is also possible to emphasize the contrast using the curve shown in FIG. The curve of FIG. 8 is characterized in that it consists of at least the following regions. However, in the figure, N represents the number of gradation levels.

領域1,3:変換後の階調/入力画像の階調<1 領域2:変換後の階調/入力画像の階調>1 この曲線による処理は、式(1)〜(3)のような累乗
演算及びレベルC1,C2間の抽出と本質的には同
じであり、この処理を計算機内へとり込んでから
行つても、火炎画像入力時にアナログ的方法でオ
ンライン処理しても効果は同じである。この方法
の処理フローの概要は第7B図に示されている。
Areas 1 and 3: Gradation after conversion/Gradation of input image<1 Area 2: Gradation after conversion/Gradation of input image>1 Processing using this curve is as shown in equations (1) to (3). It is essentially the same as the exponentiation operation and the extraction between levels C 1 and C 2 , and it is effective even if this processing is carried out after being imported into the computer or processed online using an analog method when inputting the flame image. are the same. An overview of the process flow of this method is shown in Figure 7B.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、運転員の経験や勘に頼らなく
ても精度の良いNOx発生量(濃度)の推定が遂
次あるいは連続的に可能となるので、運転員の負
担を大幅に低減できると共に、このNOxの推定
値に基づいてNOxの発生量を低減させたり、空
燃比の最適化を図ることが可能となる。
According to the present invention, it is possible to estimate the NO x generation amount (concentration) with high accuracy one after another or continuously without relying on the operator's experience or intuition, so the burden on the operator can be significantly reduced. At the same time, it is possible to reduce the amount of NO x generated or to optimize the air-fuel ratio based on this estimated value of NO x .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は
画像記憶装置に記憶した画像データの一例を示す
図、第3図は酸化炎と還元炎の輝度スペクトルの
例を示す図、第4図は入力画像と境界強度画像を
示す図、第5図は入力画像と境界強調画像の1つ
の走査線上のレベル分布例を示す図、第6図は還
元炎と酸化炎の境界線を示す図、第7A図及び第
7B図は本実施例の電子計算機内の処理の概略フ
ローを示す図、第8図は境界強調のための曲線の
一例を示す図である。 3…火炎、6…帯域通過フイルタ、7…特定波
長帯の火炎の発光、8…撮像装置、13…電子計
算機、C1…下限制限値、C2…上限制限値。
FIG. 1 is a diagram showing an example of the present invention, FIG. 2 is a diagram showing an example of image data stored in an image storage device, and FIG. 3 is a diagram showing an example of brightness spectra of an oxidizing flame and a reducing flame. Figure 4 shows an input image and a boundary intensity image, Figure 5 shows an example of level distribution on one scanning line of an input image and a boundary enhanced image, and Figure 6 shows the boundary line between a reducing flame and an oxidizing flame. 7A and 7B are diagrams showing a schematic flow of processing within the computer of this embodiment, and FIG. 8 is a diagram showing an example of a curve for boundary emphasis. 3...Flame, 6...Band pass filter, 7...Emission of flame in a specific wavelength band, 8...Imaging device, 13...Electronic computer, C1 ...Lower limit value, C2 ...Upper limit value.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭の燃焼による火炎の発光を撮像すること
により火炎画像を計測し燃焼状態を監視する診断
方法において、前記石炭が熱分解して生成される
還元剤の発する波長帯で火炎画像を撮像し、前記
火炎画像の輝度をそのレベルによつて定まる制限
値を用いて酸化炎領域と還元炎領域とに分け、得
られた前記還元炎領域からNOxと相関がある指
標を求めて燃焼状態を診断することを特徴とする
燃焼状態診断方法。
1. In a diagnostic method for measuring the flame image and monitoring the combustion state by imaging the emission of flame due to the combustion of coal, the flame image is imaged in a wavelength band emitted by a reducing agent produced by thermal decomposition of the coal, The brightness of the flame image is divided into an oxidizing flame region and a reducing flame region using a limit value determined by its level, and an index correlated with NO x is obtained from the obtained reducing flame region to diagnose the combustion state. A combustion state diagnosis method characterized by:
JP58200996A 1983-10-28 1983-10-28 Method for diagnosing igniting condition Granted JPS6093231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200996A JPS6093231A (en) 1983-10-28 1983-10-28 Method for diagnosing igniting condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200996A JPS6093231A (en) 1983-10-28 1983-10-28 Method for diagnosing igniting condition

Publications (2)

Publication Number Publication Date
JPS6093231A JPS6093231A (en) 1985-05-25
JPH059693B2 true JPH059693B2 (en) 1993-02-05

Family

ID=16433768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200996A Granted JPS6093231A (en) 1983-10-28 1983-10-28 Method for diagnosing igniting condition

Country Status (1)

Country Link
JP (1) JPS6093231A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241135B2 (en) 2004-11-18 2007-07-10 Honeywell International Inc. Feedback control for modulating gas burner

Also Published As

Publication number Publication date
JPS6093231A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
US4555800A (en) Combustion state diagnostic method
US4814868A (en) Apparatus and method for imaging and counting moving particles
WO2011016420A1 (en) Solar cell defect inspection apparatus, defect inspection method and program
JPH01501565A (en) Image analysis method for spray fuel combustion
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
JPH059693B2 (en)
JP2004104727A (en) Smoke detection device
JPS60169015A (en) Burning condition diagnosing method
JP5279236B2 (en) Target imaging detector
JP5956935B2 (en) Image processing method and image processing apparatus
JPS60263012A (en) Flame monitoring method
JP3133387B2 (en) Flame calorific value measuring device using image processing
JP4008312B2 (en) Coal gasification plant and coal gasification plant monitoring method
JP2021038871A (en) Method of observing combustion field, observation device, and observation program
JP3035389B2 (en) Combustion system and combustion evaluation device
KR100711364B1 (en) An Exhaust Smoke Recognition and Auto-alarm Device and Method using Picture Image Analysis
JPH10232198A (en) Visible-smoke monitor
JP3112002B2 (en) Particle monitor device
JP3083623B2 (en) Burner tip nozzle blockage detection device and detection method
JP2010190755A (en) Device and method for diagnosing deterioration of sensor
JPH059694B2 (en)
KR100370348B1 (en) Method and device for extracting flame image characteristics of burning diagnosis
JPS60244821A (en) Processing method of fire image
JP2724839B2 (en) Combustion state diagnosis method and apparatus
JPH04352077A (en) Detector for emission of smoke or dust due to image processing