JPS60169015A - Burning condition diagnosing method - Google Patents

Burning condition diagnosing method

Info

Publication number
JPS60169015A
JPS60169015A JP2170284A JP2170284A JPS60169015A JP S60169015 A JPS60169015 A JP S60169015A JP 2170284 A JP2170284 A JP 2170284A JP 2170284 A JP2170284 A JP 2170284A JP S60169015 A JPS60169015 A JP S60169015A
Authority
JP
Japan
Prior art keywords
combustion state
diagnosing
detected
wavelengths
wave length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2170284A
Other languages
Japanese (ja)
Inventor
Mitsuyo Nishikawa
西川 光世
Nobuo Kurihara
伸夫 栗原
Kenichi Soma
憲一 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2170284A priority Critical patent/JPS60169015A/en
Publication of JPS60169015A publication Critical patent/JPS60169015A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To monitor and diagnose continuously the burning condition by a method wherein at least two wave length emission quantities or luminance distributions are detected from a flame under a boiler operation condition, then the correlation between said two factors is obtained. CONSTITUTION:An emission of a flame 3 detected by an optical fiber 5 which is protected by a cooling device 4 is distributed to plural passages by utilizing a half miller 6. Each specific wave length light is extracted from the distributed light by utilizing band-pass-filter 7, 7' having respectively different permeable wave length. The specific wave length lights are converted to electric signals with light receiving elements 8, 8', then inputted to integrator 9, 9'. Thus, different wave length light volumes Wlambda1, Wlambda2 are obtained. A correlation value P1 obtained from Wlambda1, Wlambda2 with a calculating device 11 is outputted to a comparator 12, then compared and verified with the burning condition previously stored in a memory device. Thereby, the burning condition is diagnosed precisely, accordingly, the accomodate process can be indicated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃焼時の少なくとも2つ以上の発光スペクトル
を検出し前記スペクトルの量を表わす指標の前記検出さ
れたスペクトル間の相関値から燃焼状態を診断する燃焼
状態診断方法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention detects at least two emission spectra during combustion, and determines the combustion state from the correlation value between the detected spectra of an index representing the amount of the spectra. The present invention relates to a method for diagnosing a combustion state.

〔発明の背景〕[Background of the invention]

従来、ボイラ炉内の火炎から燃焼状態を知るための方法
として、バーナ・ノズルの対向壁面に取り付けられた覗
き窓からITVカメラを用いて監視する方法あるいは炉
壁に取り付けられている覗き窓から目視点検する方法や
伝熱管を用いた温度管理などによる方法がある。しかし
、これらの方法は、運転員が目視し、経験と勘を頼りに
判断しているので熟練を必要とすると共に運転員にとっ
て負担になっていた。自動監視装置としては、フレーム
・デテクタによるバーナ点火・消火の判定装置が火炉保
護のために使用されている程度であった。
Conventionally, methods for determining the combustion state from the flame in a boiler furnace include monitoring using an ITV camera through a viewing window installed on the wall facing the burner nozzle, or visual observation through a viewing window installed on the furnace wall. There are methods such as inspection and temperature control using heat transfer tubes. However, these methods require skill and are a burden to the operator, as the operator visually observes and makes decisions based on experience and intuition. The only automatic monitoring device used was a flame detector to determine burner ignition and extinguishment for furnace protection.

ボイラ運転中の燃焼状態の監視については、従来から定
量化された基準値というものが無かったため、その判断
は運転員の負担となり迅速な対処ができないという問題
があった。
Regarding the monitoring of the combustion state during boiler operation, there has been no quantified reference value in the past, so there has been a problem in that the decision-making becomes a burden on the operators and prompt action cannot be taken.

また、IT■カメラによる燃焼状態の監視では、炉壁の
覗き窓に取り付けられたITVカメラを用いて、対向壁
のバーナ・ノズルを映して監視するため、定格運転に近
くなると火炎が渦巻いた状態となυ、燃焼状態を的確に
判断することが非常に難しく、熟練運転員の経験と勘に
頼らざるを得なかった。
In addition, when monitoring the combustion status using an IT camera, an ITV camera attached to a viewing window on the furnace wall is used to monitor the burner nozzle on the opposite wall, so when the rated operation is approached, the flame becomes swirly. However, it was extremely difficult to accurately judge the combustion state, and the operator had no choice but to rely on the experience and intuition of experienced operators.

一方、物体像抽出の典型的な方法として、光の波長領域
別のフィルタを数種類用いて波長領域毎の写真をとり、
そのフィルムをサンプリング及び量子化して計算機に取
り入れ、特定物体のスペクトル組成の特徴を利用して特
定物体の抽出、認識を行う方法がある。
On the other hand, a typical method for extracting an object image is to use several types of filters for different wavelength regions of light and take photos for each wavelength region.
There is a method of sampling and quantizing the film, inputting it into a computer, and extracting and recognizing a specific object using the characteristics of the spectral composition of the specific object.

しかし、このような従来の方法の欠点として次のような
事が揚げられる。
However, such conventional methods have the following drawbacks.

特定物体をそのスペクトル分布の形状だけにより認識す
るため、同じスペクトル分布を持つ他の雑音物をも抽出
してしまう。このような欠点を除去する方法として、数
枚のスペクトル成分間のアナログ演算を行うことにより
、雑音物をできるだけ含まないようにして特定物体を抽
出する特定物体抽出装置が、最近提案されている(特公
昭58−39102号)。
Since a specific object is recognized only by the shape of its spectral distribution, other noise objects with the same spectral distribution are also extracted. As a method to eliminate such drawbacks, a specific object extraction device has recently been proposed that extracts a specific object while minimizing the inclusion of noise objects by performing analog calculations between several spectral components ( Special Publication No. 58-39102).

物体に光或いは他の放射線を当てて形状を抽出する場合
には、このような方法、装置は非常に有効なものとなり
得る。
Such methods and devices can be very effective when extracting the shape of an object by exposing it to light or other radiation.

しかし、燃焼中の火炎を形状抽出、特徴抽出する場合、
輻射される波長帯は光の波長だけでは無い。火炎には熱
的な発光スペクトル分布と、燃料に含有或いは燃焼中に
生じる化学成分が発光して生じるスペクトル分布がある
However, when extracting the shape and features of a burning flame,
The wavelength band that is radiated is not only the wavelength of light. Flame has a thermal emission spectral distribution and a spectral distribution caused by the emission of chemical components contained in fuel or produced during combustion.

熱的なスペクトル分布は、紫外から可視、赤外領域と波
長が長くなるにしたがい、その絶対発光量が増加する傾
向にある。また化学成分の発光スペクトル分布は、熱的
な発光スペクトル分布とは無関係に現われ、同じスペク
トル分布を持つ化学成分の発光スペクトルは雑音ではあ
り得ない、と言う特徴がある。これは、燃焼時の火炎特
有の現象である。
In the thermal spectral distribution, the absolute amount of light emitted tends to increase as the wavelength increases from the ultraviolet to the visible to infrared regions. Furthermore, the emission spectrum distribution of chemical components appears independently of the thermal emission spectrum distribution, and the emission spectra of chemical components having the same spectral distribution cannot be noise. This is a phenomenon peculiar to flame during combustion.

本発明は、燃焼時特有の物理現象(例えば、近紫外領域
の化学成分の発光スペクトル分布など)に着目し、燃焼
状態を良好かつ的確に把握する方法を提案する。
The present invention focuses on physical phenomena unique to combustion (for example, the emission spectrum distribution of chemical components in the near-ultraviolet region), and proposes a method for well and accurately understanding the combustion state.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ボイラ運転中の火炎から少なくとも2
つの波長の発光量或いは輝度分布を検出し、その相関か
ら燃焼状態を連続的に監視し診断する方法を提供するこ
とにある。
The object of the present invention is to prevent at least 2
The object of the present invention is to provide a method for continuously monitoring and diagnosing the combustion state by detecting the luminescence amount or luminance distribution of two wavelengths and from the correlation thereof.

〔発明の概要〕[Summary of the invention]

本発明は、ボイラ運転中の火炎から少なくとも2つ以上
の波長帯で検出した発光量或いは発光輝度分布を検出し
、前記検出値の相関喧の違いが燃焼状態の相違に関係す
ることに着目し、相関値に応じた燃焼状態を予め記憶し
ておき、実測された相関値に対応する燃焼状態をもって
前記火炎の燃焼状態であると診断することに特徴がある
The present invention detects the amount of luminescence or luminance distribution detected in at least two wavelength bands from a flame during boiler operation, and focuses on the fact that the difference in the correlation between the detected values is related to the difference in the combustion state. The present invention is characterized in that the combustion state corresponding to the correlation value is stored in advance, and the combustion state corresponding to the actually measured correlation value is diagnosed as the combustion state of the flame.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図に示す。第1図(a)におい
て、1はボイラ火炉を、2はバーナ口、3は火炎を示し
ている。冷却装置4で保護された光ファイバ5でとらえ
た火炎3の発光はハーフミラ−6を使って複数1本実施
例では2つ)に分岐し、分岐した光から各々通過波長の
異なるバンド・パス・フィルター7.7′を使って特定
波長の光を取り出す。特定波長の光は、受光素子8,8
′を使って電気信号に変換され積分器9.9′に入力さ
れる。10は積分のタイミング信号15を積分器9.9
′に与えるタイミング信号発生器である。
An embodiment of the present invention is shown in FIG. In FIG. 1(a), 1 indicates a boiler furnace, 2 indicates a burner port, and 3 indicates a flame. The light emitted from the flame 3 captured by the optical fiber 5 protected by the cooling device 4 is branched into a plurality of light beams (in this embodiment, two beams) using a half mirror 6, and the branched light is divided into bandpasses with different passing wavelengths. A filter 7.7' is used to extract light of a specific wavelength. Light of a specific wavelength is transmitted to light receiving elements 8, 8.
' is converted into an electrical signal and input to an integrator 9.9'. 10 is an integrator 9.9 which transmits the integration timing signal 15.
is a timing signal generator that provides

求められた異なる波長の光量”i + WJ□は、ここ
で、t:時間、i:燃焼条件、λ:波長で与えられ、演
算装置11でそれら光量の相関値PLすなわち燃焼条件
蓋における相関値を例えば(2)式でめる。
The obtained light amount of different wavelengths "i + WJ□" is given here by t: time, i: combustion condition, and λ: wavelength, and the arithmetic unit 11 calculates the correlation value PL of these light amounts, that is, the correlation value at the combustion condition cover. For example, it can be expressed by equation (2).

PI=Wλ1,1/WJ2− ・・・・旧・・(2)W
JI、+、Wλ2,1 とから演算装置11でめた相関
1tP+は、比較装置12に出力される。比較装置12
では、予め記憶装置に記憶しておいた燃焼状態と比較照
合する。記憶装置13には燃焼状態の診断条件設定値W
LM丁t + W+、ut2+ PLMrを記憶してお
り、例えば第1表に示すような比較照合により燃焼状態
を診断する。
PI=Wλ1,1/WJ2-...Old...(2)W
The correlation 1tP+ determined by the arithmetic unit 11 from JI,+, Wλ2,1 is output to the comparator 12. Comparison device 12
Then, the combustion state is compared with the combustion state previously stored in the storage device. The storage device 13 stores diagnostic condition setting values W for the combustion state.
It stores LM t+W+, ut2+ PLMr, and diagnoses the combustion state by comparing and checking as shown in Table 1, for example.

ここでWJI、lは燃焼状態1におけるバンド・バス・
フィルター(波長λI )を通過した信号ux(t)の
時間積分値、Wλ3.、は燃焼状態iにおけるバンド・
パス・フィルター(波長λ2)を通過した信号L’5(
t)の時間41゛1分値で、ともに時間0〜1.の積分
値を示しでいる。WLMTIはλlについての診断基準
値であり% WLMτ2はλ2についての診断基準値、
PLMT はWJI、亀とWλ8,1 との比について
の診断基準値をぞhぞれ示している。そして0≦Wλ(
(WLMTI のとき正常燃焼状態で診断結果Aとする
。以下WJ2.Pについても同様で第1表に示しだ関係
を満足するときそれぞれA、Bと判定する。
Here, WJI, l is the band/bass ratio in combustion state 1.
The time integral value of the signal ux(t) passed through the filter (wavelength λI), Wλ3. , is the band in combustion state i.
The signal L'5(
t) time 41゛1 minute value, both times 0 to 1. It shows the integral value of . WLMTI is the diagnostic reference value for λl, % WLMτ2 is the diagnostic reference value for λ2,
PLMT indicates the diagnostic standard values for the ratio of WJI, turtle and Wλ8,1, respectively. and 0≦Wλ(
(During WLMTI, the diagnosis result is A in a normal combustion state. The same applies to WJ2.P below, and when the relationship shown in Table 1 is satisfied, it is determined to be A or B, respectively.

第2表は前記第1表で得られたWλi、Wλ2゜Pにつ
いての判断結果による燃焼状態の判定例とその対応操作
の例を示している。
Table 2 shows examples of combustion state determination based on the determination results for Wλi and Wλ2°P obtained in Table 1, and examples of corresponding operations.

なお上記でいう燃焼条件1とは、例えば負荷の大きさあ
るいは燃料の種類などから決まる燃焼条件である。第1
表による診断は比較診断装置12で、@2表による診断
は診断装置14でおこなう。
Note that the combustion condition 1 mentioned above is a combustion condition determined by, for example, the size of the load or the type of fuel. 1st
Diagnosis using the table is performed by the comparative diagnostic device 12, and diagnosis using the @2 table is performed by the diagnostic device 14.

22は第2表における状態判定および対応操作を記憶し
ている記憶装置である。
22 is a storage device that stores the state determination and corresponding operations in Table 2.

第1図(b)はu h (t) 、 (C)はuz(t
)(7)例を示t、−tc−t、−、ル。
Figure 1(b) shows u h (t), (C) shows uz(t
) (7) Give an example t, -tc-t, -, le.

(d)Hタイミング信号発生器10からのタイミング信
号であって例えばoxtlの積分周期を決める信号15
を示している。そして診断装置14では診断結果による
対応操作指示16をオペレータに指示する。
(d) A signal 15 which is a timing signal from the H timing signal generator 10 and determines the integration period of, for example, oxtl.
It shows. The diagnostic device 14 then instructs the operator to perform corresponding operation instructions 16 based on the diagnostic results.

第1図(e)はフィルター7.7′の特性の1例で透過
率は共に46〜47%である。波長が短かくなる圧した
がって透過率は低下する。第1図(e)は炭素ラジカル
(C2=発光波長516.5■)、炭火水素ラジカル(
CH:発光波長430.9m)の例である。C2ラジカ
ル、CHラジカルの発光はその生成が燃焼状態に大きく
左右される波長である。
FIG. 1(e) shows an example of the characteristics of filters 7 and 7', both of which have transmittances of 46 to 47%. As the wavelength becomes shorter, the transmittance decreases. Figure 1(e) shows carbon radicals (C2 = emission wavelength 516.5■), hydrocarbon radicals (
This is an example of CH: emission wavelength 430.9 m). The emission of light from C2 radicals and CH radicals has wavelengths whose generation largely depends on the state of combustion.

第1図の例では、us(t)、 uz(t) o o 
〜t 、 Kツいての積分値を用いた例であるが、それ
ぞれの平均値を用いてもよい。また、検出した信号の積
分値をめないで相関を計算することも可能である。
In the example in Figure 1, us(t), uz(t) o o
In this example, integral values of ~t and K are used, but their average values may also be used. It is also possible to calculate the correlation without using the integral value of the detected signal.

この場合、積分器9、タイミング信号発生器1゜が不用
になる。
In this case, the integrator 9 and timing signal generator 1° become unnecessary.

第2図は本発明の他の実施例を1す。通過波長の真なる
複数(本実施例では2つ)のバンド・パス・フィルター
7.7′を使って特定波長の映像をイメージファイバ2
3でとらえ、ハーフ・ミラー6、フィルター7を通して
ITVカメラ21゜21′で受け、イメージ信号をA/
D変換器19゜19′を介してイメージ記憶装置17に
入力する。
FIG. 2 shows another embodiment of the present invention. Using band pass filters 7 and 7' with a plurality of passing wavelengths (two in this embodiment), images of specific wavelengths are transferred to the image fiber 2.
3, passed through half mirror 6 and filter 7, received by ITV camera 21°21', and sent the image signal to A/
It is input to the image storage device 17 via the D converter 19°19'.

20はA/D変換タイミング信号である。20 is an A/D conversion timing signal.

イメージ記憶装置17に取シ込んだ波長別のイメージデ
ータ(一定時間の平均画像或いは瞬時画像)を電子計算
機18に入力し、イメージデータに予め記憶しておいた
発光輝度(或いは温度)に対する設定値TLM? 以下
を0クリアする処理(以後、クリッピング処理と呼ぶ)
をtlどこす。クリッピング処理の考え方を第3図(a
)(b)に丞す。第3図(a)は波長λ1でとらえた火
炎画像である。この画像のt−t’断面の発光輝度分布
をめ(第3図(b) ) 、設定値TLM? でクリッ
ピング処理する。
The image data for each wavelength (average image or instantaneous image over a certain period of time) taken into the image storage device 17 is inputted into the electronic computer 18, and the set value for the luminescence brightness (or temperature) stored in advance in the image data is inputted into the computer 18. TLM? Processing to clear the following to 0 (hereinafter referred to as clipping processing)
Where is the tl. The concept of clipping processing is shown in Figure 3 (a
) (b). FIG. 3(a) is a flame image captured at wavelength λ1. Observe the luminance distribution of the t-t' cross section of this image (Fig. 3(b)), and find the set value TLM? Perform clipping processing with .

第4図(a)(b)にクリッピング処理で抽出したTL
M?以上の部分を示す(破線は、クリッピング処理前の
外郭部分である)。
Figure 4 (a) and (b) show the TL extracted by clipping processing.
M? The above portion is shown (the broken line is the outline portion before clipping processing).

求められた波長λ!、λ2での抽出部分の面積AJ s
 m AJ2 をめ、例えば(3)式を用いて相関値P
+を計算する。
The obtained wavelength λ! , the area of the extracted part at λ2 AJ s
m AJ2 , for example, using equation (3), the correlation value P
Calculate +.

P+=Aλ1 / Aλ2 ・旧・・・市川・・(3)
求めたAJI * AJ* # P量は、前記実施例第
1表。
P+=Aλ1 / Aλ2 ・Old...Ichikawa...(3)
The determined AJI*AJ*#P amount is shown in Table 1 of the above example.

第2表と同様の方法で燃焼状態の診断に用すられる。但
し、第1表において、Wλ1はAJI 、WJ!はAI
として用いる。
It is used for diagnosing combustion conditions in the same manner as in Table 2. However, in Table 1, Wλ1 is AJI, WJ! is AI
used as

第1図あるいは第2図の実施例は2波長の場合について
述べたが、燃焼状態に関係がある他の波長、他の複数波
長についてそれぞれ相関をめる方法であってもよい。
Although the embodiment shown in FIG. 1 or FIG. 2 has been described in the case of two wavelengths, it is also possible to use a method of correlating other wavelengths or a plurality of other wavelengths that are related to the combustion state.

また相関の例として第1図の実施例では異なる波長の信
号の時間積分値の比の例を示したが、相関を表わす指標
としては比に限るものではない。
Furthermore, as an example of correlation, the example of the ratio of time integral values of signals of different wavelengths is shown in the embodiment of FIG. 1, but the index representing correlation is not limited to the ratio.

例えば差信号をとってもよい。For example, a difference signal may be taken.

また3波長、4波長による相関をとる場合、それぞれの
波長の信号比をとってもよいし、例えば3波長、4波長
のトータル信号に対するそれぞれの波長の信号の比をと
る方法であってもよい。
In addition, when determining the correlation between three wavelengths and four wavelengths, the signal ratio of each wavelength may be taken, or, for example, the ratio of the signal of each wavelength to the total signal of three wavelengths or four wavelengths may be taken.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することによシ、運転員の経験や勘に頼る
ことなくボイラ運転時の燃焼状態を適格に診断し、その
対応処置を指示することができる。
By implementing the present invention, it is possible to properly diagnose the combustion state during boiler operation without relying on the operator's experience or intuition, and to instruct countermeasures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は本発明の
他の実施例を示す図、第3図はクリッピング処理の考え
方を示す図、第4図は波長別に抽出した部分を示す図で
ある。 1・・・ボイラ火炉、2・・・バーナ口、3・・・火炎
、4・・・冷却管、5・・・光ファイバ(或いはイメー
ジファイバ)、6・・・ハーフ・ミラー、7・・・バン
ド・バス・フィルター、8・・・受光装置、9・・・積
分器、10・・・タイミング信号発生器、11・・・相
関演算装置、12・・・比較装置、13・・・比較条件
記憶装置、14・・・判定装置、15・・・積分タイミ
ング信号、16・・・判定結果出力信号、17・・・イ
メージ記憶装置、18・・・電子語算機、19・・・A
/D変換器、20・・・A/D変換タイミング信号、2
1・・−撮像装置、22・・・判定条件記憶装置。 代理人 弁理士 高橋明夫 お 1図 箭2図 第3図 (幻 疹尤輝度−
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the invention, Fig. 3 is a diagram showing the concept of clipping processing, and Fig. 4 is a diagram showing portions extracted by wavelength. FIG. DESCRIPTION OF SYMBOLS 1... Boiler furnace, 2... Burner mouth, 3... Flame, 4... Cooling pipe, 5... Optical fiber (or image fiber), 6... Half mirror, 7...・Band bus filter, 8... Light receiving device, 9... Integrator, 10... Timing signal generator, 11... Correlation calculation device, 12... Comparison device, 13... Comparison Condition storage device, 14... Judgment device, 15... Integral timing signal, 16... Judgment result output signal, 17... Image storage device, 18... Electronic word calculator, 19... A
/D converter, 20...A/D conversion timing signal, 2
1...-Imaging device, 22... Judgment condition storage device. Agent: Akio Takahashi, Patent Attorney Figure 1, Figure 2, Figure 3 (Phantom brightness -

Claims (1)

【特許請求の範囲】 1、火炉内の燃焼状態を診断する方法において、燃焼時
に生じる複数の波長における発光スペクトル量をそれぞ
れ検出し、検出された発光スペクトル量と前記複数波長
ごとにあらかじめ定められた燃焼状態診断基準値との大
小関係から前記火炉の燃焼状態を診断することを特徴と
する燃焼状態診断方法。 2、前記特許請求の範囲第1項記載において、前記検出
された複数波長ごとの発光スペクトル量間の相関を表わ
す指標を演算し、前記相関を表わす指標に対するあらか
じめ定められた燃焼状態診断基準値との大小関係から前
記火炉の燃焼状態を診断することを特徴とする燃焼状態
診断方法。 3、前記特許請求の範囲第1項記載において、前記複数
波長ごとに検出された発光スペクトル量と前記検出され
た発光スペクトル量の前記複数波長間の相対値を表わす
指標とについてそれぞれあらかじめ定められた燃焼状態
診断基準値との大小関係の組合せから前記火炉の燃焼状
態の診断をおこなうことを特徴とする燃焼状態診断方法
。 4、前記特許請求の範囲第1項記載において、前記検出
された発光スペクトル量のあらかじめ定められた時間積
分値を演算し、前記演算された積分値に対する燃焼状態
診断基準値との大小関係から前記火炉の燃焼状態を診断
することを特徴とする燃焼状態診断方法。 5、前記特許請求の範囲第1項記載において、前記複数
の波長は炭素ラジカル波長と炭火水素ラジカル波長であ
ることを特徴とする燃焼状態診断方法。
[Claims] 1. In a method for diagnosing the combustion state in a furnace, the amount of emission spectrum at a plurality of wavelengths generated during combustion is detected, and the detected amount of emission spectrum is combined with a predetermined amount for each of the plurality of wavelengths. A method for diagnosing a combustion state, comprising diagnosing a combustion state of the furnace based on a magnitude relationship with a reference value for diagnosing a combustion state. 2. In claim 1, an index representing the correlation between the detected emission spectrum amounts for each of the plurality of wavelengths is calculated, and a predetermined combustion state diagnosis reference value for the index representing the correlation is calculated. A method for diagnosing a combustion state, comprising diagnosing a combustion state of the furnace based on a magnitude relationship between . 3. In the scope of claim 1, the amount of emission spectrum detected for each of the plurality of wavelengths and the index representing the relative value of the amount of emission spectrum detected between the plurality of wavelengths are each predetermined. A method for diagnosing a combustion state, comprising diagnosing a combustion state of the furnace based on a combination of magnitude relationships with a combustion state diagnosis reference value. 4. In claim 1, a predetermined time integral value of the detected emission spectrum amount is calculated, and the above-described value is determined based on the magnitude relationship between the calculated integral value and a combustion state diagnosis reference value. A combustion state diagnosis method characterized by diagnosing the combustion state of a furnace. 5. The method for diagnosing a combustion state according to claim 1, wherein the plurality of wavelengths are a carbon radical wavelength and a hydrocarbon radical wavelength.
JP2170284A 1984-02-10 1984-02-10 Burning condition diagnosing method Pending JPS60169015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2170284A JPS60169015A (en) 1984-02-10 1984-02-10 Burning condition diagnosing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170284A JPS60169015A (en) 1984-02-10 1984-02-10 Burning condition diagnosing method

Publications (1)

Publication Number Publication Date
JPS60169015A true JPS60169015A (en) 1985-09-02

Family

ID=12062389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170284A Pending JPS60169015A (en) 1984-02-10 1984-02-10 Burning condition diagnosing method

Country Status (1)

Country Link
JP (1) JPS60169015A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
US4756684A (en) * 1986-04-09 1988-07-12 Hitachi, Ltd. Combustion monitor method for multi-burner boiler
JPH04124517A (en) * 1990-09-17 1992-04-24 Yamatake Honeywell Co Ltd Flame detector
JPH04143515A (en) * 1990-10-02 1992-05-18 Mitsubishi Heavy Ind Ltd Detection of abnormality in burner
JP2001343280A (en) * 2000-06-02 2001-12-14 Yamatake Corp Flame detecting device
US7974755B2 (en) 2007-06-07 2011-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Motor vehicle acoustic noise reduction system
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
JP2013072574A (en) * 2011-09-27 2013-04-22 Tokyo Gas Co Ltd Combustion diagnostic device and method of diagnosing combustion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756684A (en) * 1986-04-09 1988-07-12 Hitachi, Ltd. Combustion monitor method for multi-burner boiler
JPS62276326A (en) * 1986-05-26 1987-12-01 Ishikawajima Harima Heavy Ind Co Ltd Diagnosis of combustion
JPH0335581B2 (en) * 1986-05-26 1991-05-28 Ishikawajima Harima Heavy Ind
JPH04124517A (en) * 1990-09-17 1992-04-24 Yamatake Honeywell Co Ltd Flame detector
JPH04143515A (en) * 1990-10-02 1992-05-18 Mitsubishi Heavy Ind Ltd Detection of abnormality in burner
JP2001343280A (en) * 2000-06-02 2001-12-14 Yamatake Corp Flame detecting device
US7974755B2 (en) 2007-06-07 2011-07-05 Toyota Motor Engineering & Manufacturing North America, Inc. Motor vehicle acoustic noise reduction system
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices
JP2013072574A (en) * 2011-09-27 2013-04-22 Tokyo Gas Co Ltd Combustion diagnostic device and method of diagnosing combustion

Similar Documents

Publication Publication Date Title
US6317205B1 (en) Method for monitoring an optical system having a front lens disposed immediately at a combustion chamber, and a device for carrying out the method
JP6690670B2 (en) Judgment device, judgment method and judgment program
JPH0316564B2 (en)
JPS60169015A (en) Burning condition diagnosing method
CN1162648C (en) Flame monitoring, diagnosing and measuring method and installation
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
JP2005226893A (en) Combustion diagnosing method and combustion diagnosing device
JP2657409B2 (en) Boiler tube temperature monitoring device
JPS60263012A (en) Flame monitoring method
CN105465819B (en) Gasification furnace visualizes flame detection system and its control method
EP3637080B1 (en) Leakage detection system and leakage detection method
JPS6093231A (en) Method for diagnosing igniting condition
JP3035389B2 (en) Combustion system and combustion evaluation device
JPH01179815A (en) Boiler combustion status monitoring device
JP3524412B2 (en) Burner combustion diagnostic device
JPH0882415A (en) Method and apparatus for diagnosing combustion in combustion furnace, and device for assisting operation
JPH04143515A (en) Detection of abnormality in burner
JPH02242012A (en) Searching boiler combustion control and its device
JPH01189414A (en) Unburnt component detector
Zeng et al. Flare Combustion Index in Lieu of Combustion Zone Net Heating Value
JP3083623B2 (en) Burner tip nozzle blockage detection device and detection method
JPS58124912A (en) Device for diagnosing abnormal state of detector
JPS60245921A (en) Method of monitoring combustion state
JPS6331691B2 (en)
KR100356272B1 (en) A combustion method for boiler burner