JPH01312319A - Boiler combustion state monitoring device - Google Patents

Boiler combustion state monitoring device

Info

Publication number
JPH01312319A
JPH01312319A JP14334488A JP14334488A JPH01312319A JP H01312319 A JPH01312319 A JP H01312319A JP 14334488 A JP14334488 A JP 14334488A JP 14334488 A JP14334488 A JP 14334488A JP H01312319 A JPH01312319 A JP H01312319A
Authority
JP
Japan
Prior art keywords
combustion
temperature
burner
image
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14334488A
Other languages
Japanese (ja)
Inventor
Toru Kimura
亨 木村
Naganobu Honda
本田 永信
Hisanori Miyagaki
宮垣 久典
Junzo Kawakami
川上 潤三
Hiroshi Matsumoto
弘 松本
Mitsuyo Nishikawa
西川 光世
Yoshio Watanabe
好夫 渡辺
Naokatsu Sakuma
佐久間 直勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP14334488A priority Critical patent/JPH01312319A/en
Publication of JPH01312319A publication Critical patent/JPH01312319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To make it possible to estimate stabilized and steady unburnt substances contained in ash and monitor combustion flames with accuracy and satisfactory result by evaluating combustion volume of flames, time changes in luminance or temperature or luminance or temperature rise from a burner. CONSTITUTION:Flames 2 during the operation of a boiler are measured by an image fiber 5 so as to obtain the image of each flame luminance through respective filters 8 and 9 by way of a spectroscope 6. This image is photographed with a photoelectric converter 10. The respective wavelength analog signals 17 and 18 are converted into digital image data respectively with an analog/digital converter 11 and stored in an image storage device 12. Then, an attempt is made to obtain a deviation from the average luminance of each image. The average luminance distribution is then obtained from each image. The temperature distribution is further obtained so that the rise in the temperature from a burner may be evaluated. Furthermore, the combustion volume is evaluated. Based on the evaluation, the unburnt substances in the ash can be calculated and displayed on a display device, which makes it possible to monitor the combustion state properly and accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラの燃焼状態の監視装置に係り、特に灰
中未燃分を推定するのに好適な監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a monitoring device for the combustion state of a boiler, and particularly to a monitoring device suitable for estimating unburned content in ash.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭60−228818号に記載のよ
うに、バーナ近傍の火炎形状を輝度分布として計測し、
計測した火炎画像から酸化炎形状を抽出し、バーナと抽
出した酸化炎との間の位置に関する情報に基づいて、灰
中未燃分を推定する装置となっていた。しかし灰中未燃
分に強く影響する火炎の燃焼ボリューム、輝度あるいは
温度の時間的変化、および輝度あるいは温度のバーナか
らの立ち上がり等については配慮されていなかった。ま
た、酸化炭がバーナ軸を境に1個ずつ存在するような火
炎以外には適用できないという問題があった。
Conventional devices measure the flame shape near the burner as a brightness distribution, as described in Japanese Patent Application Laid-Open No. 60-228818,
The device extracted the shape of the oxidizing flame from the measured flame image and estimated the unburned content in the ash based on information about the position between the burner and the extracted oxidizing flame. However, no consideration was given to the combustion volume of the flame, temporal changes in brightness or temperature, and the rise in brightness or temperature from the burner, etc., which strongly affect the unburned content in the ash. Another problem is that it cannot be applied to flames other than those in which oxidized carbon exists one by one on each side of the burner shaft.

〔発明が解決しようとする課題#〕[Problem to be solved by the invention #]

上記従来技術は、灰中未燃分を推定する際に、バーナと
抽出された酸化炎との間の位置に関する情報で、火炎の
着火性、火炎高温域大きさを評価し、灰中未燃分を推定
しようというものであるが、灰中未燃分に強く影響する
火炎の燃焼ボリューム、輝度あるいは温度の時間的変化
、および輝度あるいは温度のバーナからの立ち上がり等
について配慮がされておらず、炭種、バーナ、燃焼炉、
運用条件の違いに追従できる推定方法となっていない問
題があった。
When estimating the unburned content in the ash, the above conventional technology evaluates the ignitability of the flame and the size of the flame high temperature region using information regarding the position between the burner and the extracted oxidation flame, and estimates the unburned content in the ash. However, it does not take into account the combustion volume of the flame, temporal changes in brightness or temperature, and the rise in brightness or temperature from the burner, etc., which strongly affect the unburned content in the ash. Coal type, burner, combustion furnace,
There was a problem that the estimation method could not follow differences in operating conditions.

本発明の目的は、火炎の燃焼ボリューム、輝度あるいは
温度の時間的変化および輝度あるいは温度のバーナから
の立ち上がりを評価し、炭種、バーナ、燃焼炉、運用条
件の違いにも追従できる。
The purpose of the present invention is to evaluate temporal changes in flame combustion volume, brightness or temperature, and rise in brightness or temperature from a burner, and to be able to track differences in coal types, burners, combustion furnaces, and operating conditions.

安定かつ確実な灰中未燃分推定を行い、燃焼火炎を良好
かつ適確に監視することにある。
The objective is to perform stable and reliable estimation of unburned content in ash and to monitor combustion flames well and accurately.

〔課題庶を解決するための手段〕[Means for solving problems]

上記課題烏は、バーナの燃焼火炎を2つの分光スペク1
−ルに分光する分光器と、該2つの分光スペクトルを互
いに異なる波長の単色光にろ波するフィルタと、該単色
光を電気信号に変換する光電変換装置と、該電気信号を
デジタル値に変換するアナログ・デジタル変換装置と、
該デジタル値を画像として記憶するデジタル画像記憶装
置と、該デジタル画像記憶装置のデジタル記憶値よりボ
イラの燃焼状態を算出する計算機と、該燃焼状態を表示
する表示装置とから構成されるボイラ燃焼状態監視装置
において、前記計算機がボイラの燃焼状態として、バー
ナの燃焼火炎形状の各位置における輝度または温度を所
定位置と前記各位置との距離で重みづけした第1特徴量
と、前記燃焼火炎形状の面積を該燃焼火炎形状の各位置
における輝度または温度で重みづけをした第2の特徴量
と、前記燃焼火炎形状の各位置における輝度または温度
、該燃焼火炎形状の少なくとも1つの時間的変化を表わ
す第3の特徴量とから灰中未燃分を算出するボイラの燃
焼状態監視装置によって解決される。
The problem described above is to analyze the combustion flame of the burner in two spectroscopic spectra.
- a spectrometer that separates light into two spectra, a filter that filters the two spectra into monochromatic light of different wavelengths, a photoelectric conversion device that converts the monochromatic light into an electrical signal, and a photoelectric conversion device that converts the electrical signal into a digital value. an analog-to-digital converter,
A boiler combustion state comprising a digital image storage device that stores the digital value as an image, a computer that calculates the combustion state of the boiler from the digital storage value of the digital image storage device, and a display device that displays the combustion state. In the monitoring device, the computer calculates, as the combustion state of the boiler, a first feature quantity in which the brightness or temperature at each position of the combustion flame shape of the burner is weighted by the distance between a predetermined position and each position, and a first feature quantity of the combustion flame shape. A second feature value in which the area is weighted by the brightness or temperature at each position of the combustion flame shape, the brightness or temperature at each position of the combustion flame shape, and at least one temporal change in the combustion flame shape. This problem is solved by a boiler combustion state monitoring device that calculates the unburned content in the ash from the third characteristic amount.

〔作用〕[Effect]

バーナの燃焼火炎を分光器により2つの分光スペクトル
に分光し、フィルタを通して互に異る波長の単光色とし
、光電変換装置によって電気信号に変え、アナログ・デ
ジタル変換装置によりデジタル値とし、デジタル画像記
憶装置に記憶し、この記憶データを用いて計算機により
、バーナの燃焼火炎形状の各位置における輝度または温
度を算出してこれを所定位置と前記各位置との距離で重
みづけした第1特徴量と、燃焼火炎形状の面積をその各
位置における輝度または温度で重みづけした第2特徴量
と、燃焼火炎形状の各位置における輝度または温度、燃
焼火炎形状の少くとも1つの時間的変化を表わす第3特
徴量とから推定式を用いて灰中未燃分を算出し、表示装
置に表示して監視する。
The combustion flame of the burner is split into two spectra by a spectrometer, passed through a filter into monochromatic light of different wavelengths, converted into an electrical signal by a photoelectric conversion device, converted into a digital value by an analog-to-digital conversion device, and converted into a digital image. A first feature quantity stored in a storage device, and using this stored data, a computer calculates the brightness or temperature at each position of the combustion flame shape of the burner, and weights this by the distance between the predetermined position and each position. , a second characteristic value in which the area of the combustion flame shape is weighted by the brightness or temperature at each position, and a second characteristic value representing the brightness or temperature at each position of the combustion flame shape, and at least one temporal change in the combustion flame shape. The unburned content in the ash is calculated from the three feature values using an estimation formula, and is displayed on a display device for monitoring.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第4図により説明す
る。第1図において、1はバーナ、2は火炎、3はボイ
ラ、4は冷却装置、5はイメージファイバ、6は分光器
、7はハーフミラ−18はフィルタ(波長λ1透過)、
9はフィルタ(波長λ2透過)、10は光電変換装置、
11はアナログ/デジタル変換装置、12はデジタル画
像記憶装置。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. In FIG. 1, 1 is a burner, 2 is a flame, 3 is a boiler, 4 is a cooling device, 5 is an image fiber, 6 is a spectrometer, 7 is a half mirror, 18 is a filter (transmits wavelength λ1),
9 is a filter (transmits wavelength λ2), 10 is a photoelectric conversion device,
11 is an analog/digital converter, and 12 is a digital image storage device.

13は計算機、14は表示装置、15はアナログ/デジ
タル変換タイミング信号、16は各バーナ燃料供給量、
空気供給量(2次、3次空気配分等含む)、空気供給方
法(2次、3次レジスタ、ベーン開度等)信号制御、1
7は波長λ1アナログ信号、18は波長λ2アナログ信
号である。
13 is a calculator, 14 is a display device, 15 is an analog/digital conversion timing signal, 16 is each burner fuel supply amount,
Air supply amount (including secondary and tertiary air distribution, etc.), air supply method (secondary and tertiary register, vane opening, etc.) signal control, 1
7 is a wavelength λ1 analog signal, and 18 is a wavelength λ2 analog signal.

以下、実施例を第2図処理フローに従って説明する。Hereinafter, an embodiment will be described according to the process flow shown in FIG.

1)100:画像入力 ボイラ運転中の火炎2を、第1図に示すように、イメー
ジファイバ5を用いて計測し、分光器6を介して各フィ
ルタ(波長λ1透過)8.フィルタ(波長λ2透過)9
を通す。例えば、λ1=600nm、λZ =700n
mとすると、波長600nm、700nmの各火炎輝度
画像が得られる。
1) 100: Image input The flame 2 during boiler operation is measured using an image fiber 5, as shown in FIG. Filter (wavelength λ2 transmission) 9
Pass through. For example, λ1=600nm, λZ=700n
When m, flame brightness images at wavelengths of 600 nm and 700 nm are obtained.

その画像を光電変換装置10で撮像し、その各波長アナ
ログ信号17.18をアナログ/デジタル変換装@11
で各々デジタル画像データに変換し、デジモ画像機変記
憶装置12に記憶する。なお、デジタル画像記憶装置1
1に入力するための映像信号を、アナログ/デジタル変
換するタイミングは、アナログ/デジタル変換実行のタ
イミング信号15を用いる。本実施例では、アナログ/
デジタル変換実行のタイミング信号15を計算機13か
ら与えるようになっているが、マニュアル操作で与えて
も効果は変わらない。以上、処理を設定した周期で、設
定した数n回だけ繰り返す。なお、輝度画像だけで以下
処理をする場合は、分光器6を介さずフィルタだけを通
し、任意の1つの波長輝度画像だけで処理してもよい。
The image is captured by the photoelectric conversion device 10, and the respective wavelength analog signals 17 and 18 are transferred to the analog/digital conversion device @11.
Each image is converted into digital image data and stored in the digital image storage device 12. Note that the digital image storage device 1
The analog/digital conversion execution timing signal 15 is used to determine the timing for analog/digital conversion of the video signal to be input to the analog/digital conversion. In this example, analog/
Although the timing signal 15 for digital conversion execution is given from the computer 13, the effect remains the same even if it is given manually. The above process is repeated a set number n times at a set cycle. Note that if the following processing is to be performed using only the luminance image, it is also possible to pass only the filter through the filter without using the spectroscope 6, and to process only the luminance image of one arbitrary wavelength.

以下、処理は計算機13で行う。The following processing is performed by the computer 13.

2)110:各画像の平均輝度構ら偏差を求める。2) 110: Find the deviation from the average luminance structure of each image.

2つの波長に対してn枚のデジタル画像を得て、どちら
か任意の波長の各サンプリングした火炎輝度画像を、各
火炎輝度画像に対しである輝度レベル以下を零とする処
理により火炎のみを抽出する。
Obtain n digital images for two wavelengths, and extract only the flame by processing each sampled flame brightness image of any wavelength to zero the brightness level below a certain flame brightness image. do.

その処理後の各サンプリングした火炎輝度画像の平均輝
度より、その波長の平均輝度を求め、(1)式に示すよ
うに、各サンプリングした火炎画像の平均輝度より標準
偏差を求める。
The average brightness of the wavelength is determined from the average brightness of each sampled flame brightness image after the processing, and the standard deviation is determined from the average brightness of each sampled flame brightness image, as shown in equation (1).

ただし、σR:標準偏差 n :設定したサンプリング回数 γI :各サンプリングした画像の平均輝度 R:γ1から求めた、設定した波長 の平均輝度 以上求めた標準偏差が火炎の輝度の時間的変化を表わし
、その逆数を火炎の安定度X(=−)σ R とする。なお、2つの波長のうちどちらで標準偏差を求
めても効果は変わらない。また、各波長のサンプリング
した火炎輝度画像から、温度を求めてから標準偏差を求
めても、効果は変わらない。
However, σR: standard deviation n: set sampling number γI: average brightness of each sampled image R: the average brightness of the set wavelength calculated from γ1 The standard deviation calculated represents the temporal change in flame brightness, Let the reciprocal number be the flame stability X(=-)σ R . Note that the effect remains the same no matter which of the two wavelengths the standard deviation is used for. Furthermore, even if the temperature is determined from the flame brightness image sampled at each wavelength and then the standard deviation is determined, the effect remains the same.

また、標準偏差を求める際、任意の領域の火炎情報を用
いて処理を実施してもよい。
Further, when calculating the standard deviation, processing may be performed using flame information of an arbitrary region.

3)120:各画像より平均輝度分布を求める。3) 120: Find the average brightness distribution from each image.

各波長毎に各サンプリングした火炎画像の輝度分布を用
いて、(2)式に示すように、波長毎の平均輝度分布を
求める。
Using the brightness distribution of each sampled flame image for each wavelength, the average brightness distribution for each wavelength is determined as shown in equation (2).

R7oo(i + j )=□ ・・・(2) Reoo(i r j )=□ ただし、R7oo(it j)  :波長700nmの
画像の(11j)座標 の平均輝度、 Reoo(it 、j)  :波長600nmの画像の
(IIJ)座標 の平均輝度 γ7ooh(it j) :波長700nmのに番目に
サンプリング した画像の(i、j) 座標の輝度 γ700k(1+ j) :波長600nmのに番目に
サンプリング した画像の(i、j) 座標の輝度 4)130:温度分布を求める。
R7oo(i + j) = □ ... (2) Reoo(ir j) = □ However, R7oo(it j): Average brightness of the (11j) coordinate of the image with a wavelength of 700 nm, Reoo(it, j): Average brightness of the (IIJ) coordinate of the image with a wavelength of 600 nm γ7ooh (it j): The brightness of the (i, j) coordinate of the image sampled at the second time with a wavelength of 700 nm γ700k (1 + j): The brightness of the second sampled image with a wavelength of 600 nm Brightness of the (i, j) coordinates of the image 4) 130: Find the temperature distribution.

以上述めた各波長の平均輝度分布を用いて温度分布を計
算する。以′下に、火炎デジタル画像の各座標点の温度
を算出する方法について示す。
The temperature distribution is calculated using the average brightness distribution of each wavelength described above. The method for calculating the temperature at each coordinate point of the flame digital image is shown below.

Wienの式を用いて、波長λ1.λ2の各座標点の輝
度と温度の関係は、(3> 、(4)式で示される。
Using Wien's equation, the wavelength λ1. The relationship between the brightness and temperature of each coordinate point of λ2 is expressed by equation (3>, (4)).

ただし、R1(11J):  (11j)座標の波長7
00nmの輝度 R2(11J):  (11J)座標の波長600nm
の輝度 εl :波長700nmの実効放射率 ε2:波長600nmの実効放射率 λ1 :波長700nm λ2:波長600nm T (i、j):  (i、j)座標の絶対温度(°K
) C! :第1放射定数(37403X 105erg 
+i/ s ) C2:第2の放射定数(14381cm・0K)(3)
、(4)式の(i、j)座標の波長700nm、600
nmの輝度比をとり、(i、j)座標の温度Tで解くと
、(5)式となる。
However, R1 (11J): Wavelength 7 of (11j) coordinate
00nm brightness R2 (11J): (11J) coordinate wavelength 600nm
Luminance εl: Effective emissivity at wavelength 700 nm ε2: Effective emissivity at wavelength 600 nm λ1: Wavelength 700 nm λ2: Wavelength 600 nm T (i, j): Absolute temperature at (i, j) coordinates (°K
)C! :1st radiation constant (37403X 105erg
+i/s) C2: Second radiation constant (14381cm・0K) (3)
, the wavelength of the (i, j) coordinates in equation (4) is 700 nm, 600
If we take the brightness ratio in nm and solve it using the temperature T of the (i, j) coordinates, we get equation (5).

εにε2 座標全点について、(5)式に示す計算を計算機で行う
ことにより、各座標点の温度を求めることができる。以
上、火炎から計測した2つの波長の輝度分布を用いた2
色高温計法を応用した火炎温度分布を求める手法につい
て説明したが、火炎からの1つの波長の輝度分布からも
温度分布を求めることができる。以下、その手法を示す
ε to ε2 By performing the calculation shown in equation (5) on a computer for all coordinate points, the temperature of each coordinate point can be determined. In the above, we used the luminance distribution of two wavelengths measured from the flame.
Although the method for determining the flame temperature distribution applying the color pyrometer method has been described, the temperature distribution can also be determined from the luminance distribution of one wavelength from the flame. The method is shown below.

火炎の波長・輝度(放射強度)・温度の関係は、(4)
式に示すブランクの式で表わすことができる。
The relationship between flame wavelength, brightness (radiant intensity), and temperature is (4)
It can be expressed by the blank equation shown in Eq.

ただし、λ :波長(μm) T :絶対温度(0K) R:波長先の輝度 C1:第1放射定数(37403x i Oo−5er
 °C1+? / S ) C2:第2放射定数(14337cm ・0K)(6)
式を応用し、(7)式で火炎輝度画像全点に実施すれば
、火炎温度分布が求まる。
However, λ: Wavelength (μm) T: Absolute temperature (0K) R: Luminance at the wavelength C1: First radiation constant (37403x i Oo-5er
°C1+? /S) C2: Second radiation constant (14337cm ・0K) (6)
By applying the formula and applying formula (7) to all points in the flame brightness image, the flame temperature distribution can be found.

ただし、T (L j):  (it j)座標の絶対
温度 R(i、j):  (i、j)座標の輝度以上、(6)
式を実現するためには、第1図の分光器は必要なく、フ
ィルタを通した任意の1つの波長の輝度画像があればよ
い。
However, T (L j): Absolute temperature at the (it j) coordinate R (i, j): Greater than or equal to the brightness at the (i, j) coordinate, (6)
In order to realize the formula, the spectroscope shown in FIG. 1 is not necessary, and it is sufficient to have a luminance image of any one wavelength passed through a filter.

5)140:バーナからの温度立ち上がり評価第3図を
用いて以下説明する。第3図(a)に示すように、火炎
を考え、(7)式を用いて、バーナ軸各点の平均温度を
求める。
5) 140: Evaluation of temperature rise from burner This will be explained below using FIG. As shown in FIG. 3(a), considering a flame, the average temperature at each point on the burner shaft is determined using equation (7).

□ ΣTxt Tx+=□          ・・・(7)ただし、
〒マ、:バーナ軸X+区の平均温度M  :バーナ軸x
1区の座標点数 T x I:バーナ軸X+区の各点の温度ΣTxt:バ
ーナ軸上X、軸上X原書 点温度の和 a  :バーナ出口位置 b  :バーナの大きさ等で決定する位置 以上、バーナ軸上の各区の平均温度を求めた。
□ ΣTxt Tx+=□ ...(7) However,
〒Ma,: Burner axis X + average temperature M: Burner axis x
Number of coordinate points in 1 section T x I: Burner axis , the average temperature of each section on the burner axis was determined.

この各平均温度を、横軸にバーナ軸距離、縦軸に平均温
度をとってプロットすると、第3図(b)のようになり
、バーナからの火炎の温度立ち上がり曲線が求まる。以
下、この火炎の温度立ち上がりの定量的評価方法を示す
If these average temperatures are plotted with the burner axis distance on the horizontal axis and the average temperature on the vertical axis, the result will be as shown in FIG. 3(b), and a temperature rise curve of the flame from the burner will be determined. A method for quantitatively evaluating the flame temperature rise will be described below.

微粉炭粒子の燃焼過程は、まず燃焼の初期に揮発分の分
解燃焼が行われ、その後コークス状の残留炭素質(チャ
ー)の表面燃焼が進行する。チャーの表面燃焼は、揮発
分の分解燃焼に比べて遅いので、微粉炭が完全に燃え切
るのに要する時間の大部分は、チャーの表面燃焼に関す
るものと考えられる。
In the combustion process of pulverized coal particles, volatile matter is decomposed and burned in the initial stage of combustion, and then coke-like residual carbon (char) is burned on the surface. Since the surface combustion of char is slower than the decomposition combustion of volatile matter, most of the time required for the pulverized coal to completely burn out is considered to be related to the surface combustion of char.

この揮発分の分解燃焼は、時間的に瞬時のものであるが
、微粉炭粒子はこの間にのちのチャーの燃焼速度を支配
する膨張現象を伴い、灰中未燃分に大きな影響を与える
。このように、灰中未燃分低減のためには、微粉炭粒子
の揮発分抽出による膨張現象を促進させる必要がある。
This decomposition and combustion of volatile matter is instantaneous, but during this time the pulverized coal particles are accompanied by an expansion phenomenon that later controls the burning rate of char, and this has a great effect on the unburned content in the ash. In this way, in order to reduce the unburned content in the ash, it is necessary to promote the expansion phenomenon due to extraction of volatile matter from pulverized coal particles.

そのためには、揮発分が十分微粉炭粒子から噴出して燃
焼する前に、溶融灰に閉じ込められるのを防ぐため、着
火してから急激な温度上昇が必要である。このことから
、バーナ出口から火炎温度が急激に上昇している方が灰
中未燃分も低減されると考え、バーナからの火炎温度の
立ち上がりもバーナからの距離で重みづけをして、(8
)式に示す評価方法をとった。
To this end, it is necessary to raise the temperature rapidly after ignition in order to prevent the volatile matter from being trapped in the molten ash before it is fully ejected from the pulverized coal particles and combusted. From this, we believe that if the flame temperature rises rapidly from the burner outlet, the unburned content in the ash will be reduced, and the rise in flame temperature from the burner is also weighted by the distance from the burner. 8
) The evaluation method shown in the formula was used.

ただし、G  :火炎温度立ち上がり特性〒]7:バー
ナ軸xL区の平均温度 xI :バーナ軸上Xt区の位置 xa :バーナ出口位置 xl、:バーナの大きさ等で決定する位置 なお、輝度を用いて、以上の評価を行うことも可能であ
る。
However, G: Flame temperature rise characteristic〒] 7: Average temperature of burner axis xL section xI: Position of Xt section on burner axis xa: Burner exit position xl,: Position determined by burner size, etc. Note that brightness is used It is also possible to perform the above evaluation.

6)150:燃焼ボリューム評価 第4図を用いて以下説明する。第4図(a)に示すよう
に、火炎を考える。例えば、バーナ軸上x1区21の各
点の温度の和は、第4図(b)のバーナ軸上X3区温度
面積28として表わされる。
6) 150: Combustion volume evaluation This will be explained below using FIG. Consider a flame as shown in Figure 4(a). For example, the sum of the temperatures at each point in the X1 zone 21 on the burner axis is expressed as the temperature area 28 in the X3 zone on the burner axis in FIG. 4(b).

このように、バーナ座標軸上の各区の温度面積の和を燃
焼ボリュームと考える。実際には、(9)式で示す計算
をすることになる。
In this way, the sum of the temperature areas of each zone on the burner coordinate axis is considered to be the combustion volume. In reality, the calculation shown in equation (9) will be performed.

■=Σ S (xt)  ・ΔX      ・・・(
9)ただし、V :燃焼ボリューム 5(xi):X+区の温度面積 a :バーナ出口位置 b :バーナの大きさで決定する位置 ΔX : X+−1とX、の区間の大きさなお、輝度を
用いて、以上の評価を行うことも可能である。
■=Σ S (xt) ・ΔX ...(
9) However, V: Combustion volume 5 (xi): Temperature area in X+ section a: Burner exit position b: Position determined by burner size ΔX: Size of section between X+-1 and X. It is also possible to perform the above evaluation using

7)160:灰中未燃分推定 以上で求めた火炎安定度X、バーナからの温度の立ち上
がりG、燃焼ボリュームVからの灰中未燃分を推定する
7) 160: Estimation of unburned content in the ash The unburned content in the ash is estimated from the flame stability X obtained above, the temperature rise G from the burner, and the combustion volume V.

火炎安定度Xは、バーナ近傍での燃焼状態の安定性を示
し、Xが大きいほど燃焼が安定しており、火炎の着火が
安定していることを示す。
The flame stability X indicates the stability of the combustion state near the burner, and the larger X is, the more stable the combustion is, and the more stable the ignition of the flame is.

バーナからの温度の立ち上がりGは、先に示した通り、
バーナからの温度の立ち上がりGが大きいということは
、灰中未燃分に大きく影響する揮発分の抽出による微粉
炭粒子の膨張現象が促進されていることを示す。
As shown earlier, the temperature rise G from the burner is
A large temperature rise G from the burner indicates that the expansion phenomenon of the pulverized coal particles is promoted due to the extraction of volatile matter, which greatly affects the unburned content in the ash.

燃焼ボリューム■は、バーナ近傍の火炎の燃焼温度およ
び火炎の広がりを評価するものであり、燃焼ボリューム
Vが大きいということは、燃焼温度が高い、あるいは燃
焼の広がりが大きい、あるいは燃焼温度が高く燃焼の広
がりが大きいことを意味し、微粉炭粒子の燃焼が促進さ
れていることを示す。
The combustion volume ■ evaluates the combustion temperature of the flame near the burner and the spread of the flame, and a large combustion volume V means that the combustion temperature is high, the spread of combustion is large, or the combustion temperature is high and the spread of the flame is high. This means that the spread of is large, indicating that the combustion of pulverized coal particles is promoted.

以上により、火炎の燃焼性は、(1)式に示す関数とな
る。
From the above, the combustibility of the flame becomes a function shown in equation (1).

F=f (X、G、V)        −(11)ま
た、(11)式を具体化すると、例えば(12)式のよ
うになる。
F=f (X, G, V) - (11) Furthermore, when formula (11) is concretely expressed, it becomes, for example, formula (12).

ただし、F:燃焼性 X:燃焼安定性 G:バーナからの温度の立ち上がり V:燃焼ボリューム a、b、c、αT’/T β :微粉粒度・燃料投入量・バーナ種 類・原炭性状・空気投入!(2次。However, F: Flammability X: Combustion stability G: Temperature rise from burner V: combustion volume a, b, c, αT'/T β : Fine particle size, fuel input amount, burner type Type, raw coal properties, air injection! (Secondary.

3次空気配分含む)・空気投入力 法(2次、3次レジスタ・ベーン 開度)等で決定する定数 (12)式で示した燃焼性より灰中未燃分を推定すると
、(13)式のようになる。なお、燃焼安定性X、バー
ナからの温度の立ち上がりG、燃焼ボリュームVの特徴
量を評価する際に、各々燃焼火炎の異なった任意の領域
を用いて実施してもよい。
When estimating the unburned content in the ash from the combustibility shown by the constant formula (12) determined by the air input force method (including tertiary air distribution), air input force method (secondary and tertiary registers, vane opening degree), etc., (13) It becomes like the formula. Note that when evaluating the characteristic quantities of the combustion stability X, the temperature rise G from the burner, and the combustion volume V, the evaluation may be performed using different arbitrary regions of the combustion flame.

UBC=に*F             ・・・(1
3)ただし、UBC:灰中未燃分 F  :燃焼性 K  :燃焼投入量・原炭性状・バー ナ種類・炉内状況で決定する 定数 8)170:バーナの燃料供給量、空気供給量および空
気供給方法制御 以上で示した灰中未燃分推定方法により得たバーナの灰
中未燃分値が、炭種、負荷、NOx規制値等の運用条件
下で、まだ下がると判断されれば、燃料供給量、空気供
給量(2次、3次空気配分含む)、空気供給方法の少な
くとも1つを制御することしこより、火炎の安定性、温
度の立ち上がり。
UBC=ni*F...(1
3) However, UBC: Unburned content in ash F: Combustibility K: Constant determined by combustion input amount, raw coal properties, burner type, and furnace condition 8) 170: Burner fuel supply amount, air supply amount, and air Supply method control If it is determined that the value of unburned content in the burner ash obtained by the method for estimating unburned content in ash shown above is still decreasing under the operating conditions such as coal type, load, NOx regulation value, etc. Flame stability and temperature rise are achieved by controlling at least one of the fuel supply amount, air supply amount (including secondary and tertiary air distribution), and air supply method.

燃焼ボリュームを改善し、炭種、負荷、NOx規制値等
の運用条件下でのミニマム灰中未燃分となるように、高
効率燃焼運転を行う。また1表示装置に灰中未燃分値あ
るいは安定性X、バーナからの温度の立ち上がりG、燃
焼ボリュームv等を表示すれば効果的であるし、監視装
置としても有効である。また、実際のボイラは複数のバ
ーナを有しているので、そのボイラの運用により計測す
るバーナを選択する。例えば、各段ごとにあるいは各ミ
ルごとに1個計測する方法などがある。
The combustion volume will be improved and high-efficiency combustion operation will be performed to achieve the minimum unburned content in the ash under operating conditions such as coal type, load, NOx regulation value, etc. Furthermore, it is effective to display the value of unburned content in ash or stability X, temperature rise G from the burner, combustion volume V, etc. on one display device, and it is also effective as a monitoring device. Furthermore, since an actual boiler has a plurality of burners, the burner to be measured is selected depending on the operation of the boiler. For example, there is a method of measuring one piece for each stage or for each mill.

本実施例により1次の効果を得ることができる。According to this embodiment, a first-order effect can be obtained.

(1)灰中未燃分推定することが可能となり、高効率燃
焼運転の指針が開ける。
(1) It becomes possible to estimate the unburned content in the ash, opening guidelines for highly efficient combustion operation.

(2)バーナ段ごとに計測することにより、各段の燃焼
状態が把握できる。
(2) By measuring each burner stage, the combustion state of each stage can be grasped.

(3)高燃料比炭・水スラリ等、様々な燃焼状態を把握
するのに有効である。
(3) Effective for understanding various combustion conditions such as high fuel ratio coal and water slurry.

(4)バーナ構造・空気供給方法に関係なく燃焼状態を
把握できる。
(4) The combustion state can be grasped regardless of the burner structure or air supply method.

(5)様々なボイラの運用にも追従した燃焼状態を把握
できる。
(5) It is possible to understand combustion conditions that follow various boiler operations.

(6)運転員の負担を@誠できる。(6) The burden on the operator can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によればバーナの燃焼火炎より火炎形状の各位置
における輝度または温度を算出してこれを所定位置と前
記各位置との距離で重みづけした第1特徴量と、燃焼火
炎形状の面積をその各位置における輝度または温度で重
みづけした第2特徴量と、燃焼火炎形状の各位置におけ
る輝度または温度、燃焼火炎形状の少くとも1つの時間
的変化を表わす第3特徴量とから推定式を用いて灰中未
燃分を算出し表示装置に表示できるので、燃焼状態を適
確に監視できる。
According to the present invention, the brightness or temperature at each position of the flame shape is calculated from the combustion flame of the burner, and the first feature quantity is weighted by the distance between a predetermined position and each position, and the area of the combustion flame shape is calculated. An estimation formula is calculated from the second feature weighted by the brightness or temperature at each position, and the third feature representing at least one temporal change in the brightness or temperature at each position of the combustion flame shape, or in the combustion flame shape. Since the unburned content in the ash can be calculated and displayed on the display device, the combustion status can be monitored accurately.

は計算機の概略処理フロー図、第3図(a)はバーナか
らの温度立ち上がり説明図、第3図(b)はバーナから
の温度立ち上がり曲線図、第4図(a)は燃焼ボリュー
ム説明図、第4図(b)はバーナ軸上各区の温度面積説
明図である。
is a schematic processing flow diagram of the computer, FIG. 3(a) is an explanatory diagram of the temperature rise from the burner, FIG. 3(b) is a diagram of the temperature rise curve from the burner, and FIG. 4(a) is an explanatory diagram of the combustion volume. FIG. 4(b) is an explanatory diagram of the temperature area of each section on the burner axis.

1・・・バーナ、2・・・火炎、6・・分光器、7・・
ハーフミラ−18・・フィルタ(波長λ1透過)、9・
・・フィルタ(波長λ2透過)、10・・・光電変換装
置、11・・・アナログ/デジタル変換装置、12・・
デジタル画像記憶装置、13・・・計算機、14・・・
表示装置。
1... Burner, 2... Flame, 6... Spectrometer, 7...
Half mirror 18...filter (wavelength λ1 transmission), 9...
... Filter (wavelength λ2 transmission), 10... Photoelectric conversion device, 11... Analog/digital conversion device, 12...
Digital image storage device, 13... Computer, 14...
Display device.

Claims (1)

【特許請求の範囲】[Claims] 1、バーナの燃焼火炎を2つの分光スペクトルに分光す
る分光器と、該2つの分光スペクトルを互に異なる波長
の単光色にろ波するフィルタと、該単光色を電気信号に
変換する光電変換装置と、該電気信号をデジタル値に変
換するアナログ・デジタル変換装置と、該デジタル値を
画像として記憶するデジタル画像記憶装置と、該デジタ
ル画像記憶装置のデジタル記憶値よりボイラの燃焼状態
を算出する計算機と、該燃焼状態を表示する表示装置と
から構成されるボイラ燃焼状態監視装置において、前記
計算機がボイラの燃焼状態として、バーナの燃焼火炎形
状の各位置における輝度または温度を所定位置と前記各
位置との距離で重みづけした第1特徴量と、前記燃焼火
炎形状の面積を該燃焼火炎形状の各位置における輝度ま
たは温度で重みづけした第2特徴量と、前記燃焼火炎形
状の各位置における輝度または温度、該燃焼火炎形状の
少くとも1つの時間的変化を表わす第3特徴量とから灰
中未燃分を算出することを特徴とするボイラ燃焼状態監
視装置。
1. A spectrometer that separates the combustion flame of the burner into two spectra, a filter that filters the two spectra into a single color with a different wavelength, and a photoelectric device that converts the single color into an electrical signal. A conversion device, an analog-to-digital conversion device that converts the electric signal into a digital value, a digital image storage device that stores the digital value as an image, and a combustion state of the boiler is calculated from the digital stored value of the digital image storage device. In a boiler combustion state monitoring device comprising a computer that displays the combustion state, and a display device that displays the combustion state, the computer calculates the brightness or temperature at each position of the combustion flame shape of the burner at a predetermined position and the combustion state of the boiler. a first feature weighted by the distance to each position; a second feature weighted the area of the combustion flame shape by the brightness or temperature at each position of the combustion flame shape; and each position of the combustion flame shape. A boiler combustion state monitoring device characterized in that the unburned content in the ash is calculated from the brightness or temperature at , and a third feature representing at least one temporal change in the shape of the combustion flame.
JP14334488A 1988-06-10 1988-06-10 Boiler combustion state monitoring device Pending JPH01312319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14334488A JPH01312319A (en) 1988-06-10 1988-06-10 Boiler combustion state monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14334488A JPH01312319A (en) 1988-06-10 1988-06-10 Boiler combustion state monitoring device

Publications (1)

Publication Number Publication Date
JPH01312319A true JPH01312319A (en) 1989-12-18

Family

ID=15336605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14334488A Pending JPH01312319A (en) 1988-06-10 1988-06-10 Boiler combustion state monitoring device

Country Status (1)

Country Link
JP (1) JPH01312319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229278B1 (en) * 2001-01-25 2007-06-12 Carlin Combustion Technology, Inc. Flame quality and fuel consumption monitoring methods for operating a primary burner
US20100050912A1 (en) * 2006-12-22 2010-03-04 Khd Humboldt Wedag Gmbh Method for controlling the operation of a rotary furnace burner
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229278B1 (en) * 2001-01-25 2007-06-12 Carlin Combustion Technology, Inc. Flame quality and fuel consumption monitoring methods for operating a primary burner
US20100050912A1 (en) * 2006-12-22 2010-03-04 Khd Humboldt Wedag Gmbh Method for controlling the operation of a rotary furnace burner
US8070482B2 (en) * 2007-06-14 2011-12-06 Universidad de Concepción Combustion control system of detection and analysis of gas or fuel oil flames using optical devices

Similar Documents

Publication Publication Date Title
Lu et al. Concurrent measurement of temperature and soot concentration of pulverized coal flames
Lu et al. A digital imaging based multifunctional flame monitoring system
Luo et al. A combustion-monitoring system with 3-D temperature reconstruction based on flame-image processing technique
Yu et al. Monitoring flames in an industrial boiler using multivariate image analysis
Zhang et al. Image-based flame detection and combustion analysis for blast furnace raceway
Ögren et al. Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors
Yan et al. Spectral emissivity and temperature of heated surfaces based on spectrometry and digital thermal imaging–Validation with thermocouple temperature measurements
Salinero et al. Measurement of char surface temperature in a fluidized bed combustor using pyrometry with digital camera
Matthes et al. A new camera-based method for measuring the flame stability of non-oscillating and oscillating combustions
Katzer et al. Quantitative and qualitative relationship between swirl burner operatingconditions and pulverized coal flame length
Bu et al. Oxy-fuel conversion of sub-bituminous coal particles in fluidized bed and pulverized combustors
JPH0650177B2 (en) Multi-burner combustion condition monitoring method
JPH01312319A (en) Boiler combustion state monitoring device
Huang et al. Variation of hydrocarbon compositions and ignition locations on the radiative flame initiation characteristics through multi-dimensional DFCD incorporated image analysis
CN102288632B (en) Method for measuring ignition point of wind powder mixture in coal burning boiler
JPH01179815A (en) Boiler combustion status monitoring device
Huang et al. Syngas combustion radiation profiling through spectrometry and DFCD processing techniques
Yang et al. Ignition measurement of non-premixed propane with varying co-flowing AIR through high-speed Schlieren stereoscopic colour imaging
JP3524407B2 (en) Burner combustion diagnostic device
JP2756815B2 (en) Boiler combustion control search method and apparatus
Lu et al. Concurrent measurements of temperature and soot concentration of pulverised coal flames
Chen et al. Measurement of flame temperature field distribution and Extraction of intensity grade
JPH02106615A (en) Monitoring or control method of combustion state and its device
Draper Application of two-color pyrometry to characterize the two-dimensional temperature and emissivity of pulverized-coal oxy-flames
JP3524412B2 (en) Burner combustion diagnostic device